欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

《相遇问题》教案设计

时间:2025-11-15 08:31:21 其他范文 收藏本文 下载本文

以下是小编整理了《相遇问题》教案设计,本文共15篇,希望你喜欢,也可以帮助到您,欢迎分享!

篇1:《相遇问题》教案设计

《相遇问题》教案设计

各位领导、老师:

您们好!

今天,我说课的内容是津教版四年级上册第四单元《三步计算和应用》中的相遇问题。从以下三方面进行我的说课:分析教材,理清思路;优选教法,注重学法;优化程序,突出主体。

一、分析教材,理清思路

本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。

本节课的教学目标是:

1、知识目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。

2、能力目标:通过本节课的教学,培养学生动手操作、分析、推理能力及探索创新、合作学习的意识。

3、情感目标:通过本内容和实际相结合的教学,激发学生的学习兴趣,让学生体验到成功的喜悦。

在实施知识目标过程中,重点是让学生在“做”中发现规律,从而理解相遇问题的数量关系,掌握解答方法。

二、优选教法,注重学法

学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。

三、优化程序,突出主体

本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。

(一) 创设情境

1. 引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?(学生们会很快地说出:车多、人多)

2. 播放录像:注意观察马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)

[建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]

(二)实践探究

1、理解意义

(1)揭示课题——相遇问题

(2)制定目标——看到这个课题,你想研究哪些内容?

(教师依学生所说归纳出学习目标并板书:意义、规律、应用)

(3) 联系生活——提问:在实际生活中还有哪些情况属于相遇问题?

(4) 归纳小结——要想出现相遇的情况应具备哪些条件?

(板书:两个物体、同时、两地、相对、相遇)

(5) 教师指出——本节课侧重研究两个物体“同时”行进的规律。

[数学源于生活,生活中充满数学,让学生说说生活中相遇问题的实例,使学生感受到数学与现实生活的紧密联系,增强学习和应用数学的信心,调动学生学习数学的积极性,在这一良好状态下去发现数学知识。]

2、实践操作

小组合作:(1)利用相遇卡,两位同学同时从两端行进,一位每次行3厘米,另一位每次行进2厘米。

(2)每行进一次把数据填入表中。

行的次数

红色线段长

兰色线段长

两色线段长度和

两色线段距离

132510

264105

396150

(3)观察表中的数据,研讨发现了什么?

[设计这一实践活动的目的,是让学生在“做”中感受两物体同时从两地相向而行的运动规律:①两者之间的距离越来越小,直至为0,即相遇了;②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程;③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。学生在活动中把直接经验内化为知识能力,更好地去理解相遇问题的解题规律。]

3、应用规律

例:(媒体出示)90页,例3

(1) 自己选择学习方式

A 独立完成(鼓励用多种解法)

B 借助教材(依据小标题列式解答)

C 请教同学

(2) 指名板演,讲解思路

[在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]

(三) 巩固深化

1、口答:

先说说解答思路,再列式计算——目的是巩固新知

小明和小芳同时从自己家出发相向而行。小明每分走42米,小芳每分走48米。经过4.5分两人在学校相遇(学校在两家位置之间)两家相距多少米?(用两种方法解答)

2、自选——让学生依个人掌握知识情况,选择练习题

(1)练习十八 1、2

(2)两辆汽车同时从一个地方向相反的方向开出,甲车平均每小时行44.5千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?

3、编题:

小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。

[设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]

(四) 课后小结

谈一谈本节课有什么收获?

点评:

本节课从知识、能力、情感三方面确定教学目标,使目标更加明确具体。教学方法的设计合理新颖。在课的开始播放录像——马路上的场景,把学生带入了生活的情景中,从录像中学生很快弄明白“相向”、“相遇”、“同向”等概念,分散了教学的难点,既直观形象又加深了对概念的理解。教师巧妙的设计了“相遇卡”让学生通过动手实践,主动参与探究感悟知识的形成过程为新课做好了铺垫。在巩固深化这一环节中,开放性练习的设计(让学生自己设计运动情况),由学生自主选择,从单一走向开放,让不同水平的学生都能体验到学习的成功。

本节课的设计,符合“以人为本”的思想,学生的主体地位得以确立,他们乐于探究,主动参与,勤于动手,学习方式灵活、多样,同时教师注重了学生能力的培养。

红桥区实验小学赵丽 点评:侯立岷

各位领导、老师:

您们好!

今天,我说课的内容是津教版四年级上册第四单元《三步计算和应用》中的.相遇问题。从以下三方面进行我的说课:分析教材,理清思路;优选教法,注重学法;优化程序,突出主体。

一、分析教材,理清思路

本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。

本节课的教学目标是:

1、知识目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。

2、能力目标:通过本节课的教学,培养学生动手操作、分析、推理能力及探索创新、合作学习的意识。

3、情感目标:通过本内容和实际相结合的教学,激发学生的学习兴趣,让学生体验到成功的喜悦。

在实施知识目标过程中,重点是让学生在“做”中发现规律,从而理解相遇问题的数量关系,掌握解答方法。

二、优选教法,注重学法

学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。

三、优化程序,突出主体

本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。

(一) 创设情境

1. 引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?(学生们会很快地说出:车多、人多)

2. 播放录像:注意观察马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)

[建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]

(二)实践探究

1、理解意义

(1)揭示课题——相遇问题

(2)制定目标——看到这个课题,你想研究哪些内容?

(教师依学生所说归纳出学习目标并板书:意义、规律、应用)

(3) 联系生活——提问:在实际生活中还有哪些情况属于相遇问题?

(4) 归纳小结——要想出现相遇的情况应具备哪些条件?

(板书:两个物体、同时、两地、相对、相遇)

(5) 教师指出——本节课侧重研究两个物体“同时”行进的规律。

[数学源于生活,生活中充满数学,让学生说说生活中相遇问题的实例,使学生感受到数学与现实生活的紧密联系,增强学习和应用数学的信心,调动学生学习数学的积极性,在这一良好状态下去发现数学知识。]

2、实践操作

小组合作:(1)利用相遇卡,两位同学同时从两端行进,一位每次行3厘米,另一位每次行进2厘米。

(2)每行进一次把数据填入表中。

行的次数

红色线段长

兰色线段长

两色线段长度和

两色线段距离

132510

264105

396150

(3)观察表中的数据,研讨发现了什么?

[设计这一实践活动的目的,是让学生在“做”中感受两物体同时从两地相向而行的运动规律:①两者之间的距离越来越小,直至为0,即相遇了;②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程;③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。学生在活动中把直接经验内化为知识能力,更好地去理解相遇问题的解题规律。]

3、应用规律

例:(媒体出示)90页,例3

(1) 自己选择学习方式

A 独立完成(鼓励用多种解法)

B 借助教材(依据小标题列式解答)

C 请教同学

(2) 指名板演,讲解思路

[在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]

(三) 巩固深化

1、口答:

先说说解答思路,再列式计算——目的是巩固新知

小明和小芳同时从自己家出发相向而行。小明每分走42米,小芳每分走48米。经过4.5分两人在学校相遇(学校在两家位置之间)两家相距多少米?(用两种方法解答)

2、自选——让学生依个人掌握知识情况,选择练习题

(1)练习十八 1、2

(2)两辆汽车同时从一个地方向相反的方向开出,甲车平均每小时行44.5千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?

3、编题:

小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。

[设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]

(四) 课后小结

谈一谈本节课有什么收获?

点评:

本节课从知识、能力、情感三方面确定教学目标,使目标更加明确具体。教学方法的设计合理新颖。在课的开始播放录像——马路上的场景,把学生带入了生活的情景中,从录像中学生很快弄明白“相向”、“相遇”、“同向”等概念,分散了教学的难点,既直观形象又加深了对概念的理解。教师巧妙的设计了“相遇卡”让学生通过动手实践,主动参与探究感悟知识的形成过程为新课做好了铺垫。在巩固深化这一环节中,开放性练习的设计(让学生自己设计运动情况),由学生自主选择,从单一走向开放,让不同水平的学生都能体验到学习的成功。

本节课的设计,符合“以人为本”的思想,学生的主体地位得以确立,他们乐于探究,主动参与,勤于动手,学习方式灵活、多样,同时教师注重了学生能力的培养。

篇2:相遇问题教案设计参考

相遇问题教案设计参考

本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输―解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。

1、在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。

2、在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。

3、在合作交流中体验学习的乐趣,培养学习数学的积极情感。

用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。

理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。

多媒体课件,两个能在一条线上自由活动的小人。

一、情境导入,复习旧知

谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。

PPT出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。

根据这个信息,你能提出什么问题吗?

PPT出示:刘老师家距离人民公园有多远?

你会解决吗?

PPT:60×5=300(米)

这60表示什么?5呢?300呢?

通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。

今天我们就在这个关系式的.基础上来研究点新问题,好不好?

二、合作探究,构建数学模型

1、初步感知相遇问题

PPT出示例题:小明和李老师同时从家出发相对而行,小明步行每分钟走60米,李老师骑自行车,每分钟骑行140米,5分钟后他俩在人民公园相遇。小明家和李老师家相距多少米?

同学们自己读题。在这个题目中有没有你不太理解的词,将它找出来。你觉得这几个词(同时、相对而行、相遇、相距)是什么意思?

预设:让学生用语言或者肢体动作来解释这几个词的含义。

把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。

此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。

2、合作演绎相遇问题

现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。

学生活动,教师巡视。

(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?

预设:出现相遇点在中间和相遇点不在中间两种情况。

通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。

3、理解速度和

老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:

一分钟后他俩分别走了多少?一共走了多少?

两分钟后他俩又走了多少?一共走了多少?

三分钟?四分钟?五分钟呢?

通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。

4、画线段图

你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?

投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?

学生补充和完善自己的线段图。

师出示课件演示画线段图的过程。

5、自主解决问题

你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。

找2生板书2种方法,点评。

回顾这两种方法,我们是怎么解决相遇问题的?

小结:方法1:路程1+路程2=总路程

方法2:速度和×相遇时间=总路程

6、体会线段图的好处

对比题目文字和线段图,你有什么感觉?

小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。

三、巩固练习,拓展应用

1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)

2、

两队分别从两头同时施工,4个月开通。这条隧道长多少米? (只列式不计算)

3、两人同时打印一份稿件,甲的打字速度是85字/分,乙的打字速度是65字/分。1小时后两人共同录完。请问这份稿件一共多少字?(只列式不计算)

刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?

小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。

四、总结

这节课你有什么收获?学会了什么?

德州市实验小学 刘丽

篇3:《相遇问题》公开课教案设计

《相遇问题》公开课教案设计

设计说明

1.注重创设问题情境,为学生提供探索源泉。

“学起于思,思起于疑”,在教学中,创设问题情境是非常重要的。根据学生的年龄特征、知识经验、能力水平、认知规律等因素,抓住学生思维的热点与现实生活的联系点,创设问题情境,激发学生探索的欲望。同时,在本课时的教学中,充分利用学生已有的知识经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,体会数学在现实生活中的作用。

2.注重学生的自主探究,经历知识的形成过程。

学生学习知识是接受的过程,更是发现、创造的过程,引导学生自己去发现,主动去探索。列方程解决问题的难点是梳理数量关系,为了突破这个难点,运用学具动手演示相遇的过程,调动学生原有的知识和生活经验,初步理解相遇问题;根据实际的路线图,抽象出线段图来帮助学生理解数量关系,进而列出方程,建构数学模型,使学生经历知识的形成过程,对知识的理解更加深刻。

课前准备

教师准备PPT课件

学生准备 玩具小汽车 学具卡片

教学过程

⊙创设情境,导入新课

师:星期天,淘气要到笑笑家去玩,这是他们的电话录音。

淘气:喂,是笑笑吗?我今天想到你家去玩,路不熟,你能接我一段吗?

笑笑:好的,我去接你,咱们8点同时出发,不见不散。

淘气:好的,一会儿见。

师:谁能说一说淘气和笑笑在电话里说的是什么事?

预设

生:淘气要到笑笑家去玩,笑笑要去接他。

课件出示教材71页情境图。

1.学生自己观察情境图,交流获得的数学信息,理解题意。

(1)淘气家到笑笑家的路程是840米。

(2)淘气的步行速度是70米/分,笑笑的步行速度是50米/分。

(3)两人同时从家出发。

你能提出什么数学问题?

2.全班交流“相遇”的.意思,让学生在讲台上演示。引导出路程、时间、速度之间的关系。

3.板书课题:相遇问题。

设计意图:有趣的导入,能起到事半功倍的教学效果。先创设学生熟悉的生活情境,激发学生的学习兴趣,再通过学生的操作演示体会相遇问题的特点,有利于把感性认识向抽象思维过渡,深化了对相遇问题的理解。

⊙探究新知

活动一:估计两人在何处相遇。

1.让学生根据信息进行估计,两人在何处相遇?在小组内交流你的想法。

预设

因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

2.解决相遇问题一般利用线段图来帮助我们分析,你能把这条路线用线段图表示出来吗?同桌合作画线段图后全班展示。

活动二:思考并解决“出发后多长时间相遇”。

小组合作,汇报交流。

(1)小组内讨论,分析题中的数量关系并全班汇报。

预设1

笑笑走的路程+淘气走的路程=总路程(840米)。

预设2

(笑笑的速度+淘气的速度)×相遇时间=总路程(840米),也就是“速度和×相遇时间=总路程”。

预设3

因为“路程÷速度=时间”,所以,先算出两人的速度和,就可以用“路程÷速度”求出相遇时间。

(2)列式解答。

综合列式:840÷(70+50)=7(分)

(3)列方程解决问题:

解:设出发后x分相遇,那么淘气走了70x米,笑笑走了50x米。

篇4:小学数学《相遇问题》教案设计

精选小学数学《相遇问题》教案设计

一、教材分析:

青岛版小学四年级上册数学第46―48页的“相遇问题”,是在学习简单行程问题基础上继续学习的内容,情节、数量关系比以前学的内容复杂。教学时,要启发学生抓住题目中主要的数量关系,联系学过的知识,解决新问题。在教学中要紧紧地抓住对“速度”、“相遇时间”、“路程”这三个量之间的相依关系的理解。通过可逆性改编、变化题目中情节,进一步培养学生认真分析数量关系的能力;逆向思维的能力;及综合分析应用题的能力。

在教学中还要帮助学生突破对一些概念的理解。如“速度和”、“相向”、“相遇”、“同时”等。可以通过学生生活实际,通过演示,帮助学生理解这些概念。学生对这些概念理解了,有利于进一步理解题目的情节,并掌握数量之间的关系。 在教学中还要充分发挥准备题的作用,运用旧知识迁移,学会新知识。过去学习过一个物体走完一段路的行程问题,相遇问题是在这个基础上发展的,它的特点是由两个物体同走一段路,抓住新旧知识的联系与区别进行教学,有利于学生对“相遇问题”的理解和掌握。

二、设计理念:

本着以“学生的发展为本”的教育理念,在设计本课教学时,注重了学生的参与,注重了学生思维的开放,注重了学生个性的发展,使教学跟随学生的学习过程,紧贴学生的学习需求,让学生学有所得,学有所获。

三、教学目标:

1.学会分析“相遇问题”的数量关系。

2.掌握“相遇问题”应用题解题思路和解答方法,提高解题能力。 3.培养学生积极动脑,刻苦钻研的学习精神。

教学重点:

理解相遇问题的数量关系,建立解题思路,掌握解题方法。

教学难点:

理解相遇问题中速度和、相遇时间和总路程之间的关系。

教学关键:

使学生弄清每经过一个单位时间,两物体之间的距离变化。

四、教法学法:

为了更好地突出重点,突破难点,本节课我准备采用如下教法:

复习铺垫法 直观演示法分组讨论法启发讲解法练习巩固法 这样通过多种教法的交叉进行,相信一定会取得理想的教学效果。

在学法上引导学生通过观察、思考、讨论的方法掌握知识,学会知识的迁移、类推。

教具准备:计算机及辅助软件

教学过程:

一、展示设疑

1.口答:一架飞机平均每小时飞行600千米,从甲地飞往乙地用了4小时,甲乙两地相距多少千米?

师:谁会用一个数量关系式来回答?能把其它几个关系式也说出来吗?

看来大家对过去的`行程问题学得很不错,为自己鼓鼓掌,也对各位和我们一起学习讨论的老师表示欢迎!

这一道题用几个速度和走完全程?

小结:相遇应用题通常有两种解法,第一种先求什么?再求什么?第二种是又先求什么?再求什么?

(板书:速度和×相遇时间=总路程)

四、拓思创新

1.两个邮递员同时从相距3000米的两地相对而行,骑摩托车的速度是800米/分,骑自行车的速度是200米/分。经过几分钟两个邮递员相遇?

这道题与刚才研究过的有什么不一样吗?

2.甲乙两人同时从相距600米的两地相对而行,5分后相遇.甲每分行70米,乙每分行多少米?

3.甲乙两人同时从相距600米的两地相对而行,5分后相遇.乙每分行50米,甲每分行多少米?

这两道题是怎样求一方速度的呢?

根据 路程÷时间=速度和

速度和一方速度=另一方速度

4.小红和小刚同时从两家出发,小红每分钟走38米,小刚每分钟走45米,经过3分钟两人相距100米,小红和小刚家相距多少米?

这道题中的两人相遇了吗?

5.甲乙两人同时从M地相背而行,甲每分行70米,乙每分行50米,5分后他们相距多少米?”

这道题什么发生了变化?你觉得还可以用今天学的方法做吗?

(这是运动的双方方向上发生了变化,可数量关系并没有改变,因此,解题方法完全相同。像这样运动双方某一方面发生变化的譬如时间有先后的变化等等以后我们在研究。)

五、小结:谈谈这节课你又获得了哪些知识?

师:这节课我们研究的都是两个人走路呀、骑车呀这类问题,它还能不能研究其他问题呢?还可能研究哪些问题呢?这些都是值得我们思考的,老师想在下一节课中得到你们的答案。

篇5:相遇问题(一)(人教版五年级教案设计)

教学目标

1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.

2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.

3.渗透运动和时间变化的辩证关系.

教学重点

掌握求路程的相遇问题的解题方法.

教学难点

理解相遇问题中时间和路程的特点.

教学过程

一、以旧引新

(一)口答列式,并说明理由.

1.一辆汽车每小时行60千米,4小时行多少千米?

2.一辆汽车4小时行了240千米,每小时行多少千米?

3.一辆汽车每小时行60千米,行驶240千米需要几小时?

教师板书:速度×时间=路程

(二)创设情境

1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”

2.小组集体讨论

(1)张华送到李诚家;

(2)李诚来张华家取走;

(3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.

3.认识相遇问题

(1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?

(同时,从两地,相对而行)

(2)两个人之间的距离有什么变化?(越来越近,最后变为零)

教师指出:当两个人的距离为零时,称为“相遇”

具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”

板书课题:相遇问题

(三)出示准备题:

张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米.

根据已知条件填写下表

走的时间 张华走的路程 李诚走的路程70米 两人所走路程的和 现在两人的距离

1分 60米 70米

2分

3分

思考:

1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)

2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)

二、教学新课

(一)教学例3

小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?

1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.

请同学解释这两个词的含义.

2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)

3.由学生尝试解答例3

4.结合线段图订正答案.

方法一:65×4+70×4             方法二:(65+70)×4

=260+280                        =135×4

=540(米)                       =540(米)

速度和×相遇时间=路程

5.比较

(1)两种算法哪一种比较简便?

(2)两种算法之间有什么联系?

三、巩固练习

(一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?

(二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米?

篇6:相遇问题(二)(人教版五年级教案设计)

教学目标

1.使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题.

2.提高学生分析问题,解决问题的能力.

3.培养学生大胆尝试,勇于探索的精神.

教学重点

1.找到与求路程应用题的内在联系.

2.正确分析解答求相遇时间的应用题.

教学难点

掌握求相遇时间应用题的解题思路.

教学过程

一、复习引入

(一)出示复习题

小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?

1.画图,列式解答.

2.订正答案

3.小组讨论:试着改编一道求相遇时间应用题.

二、探究新知

例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?

1.讨论:复习题的线段图该怎样改一改.并试着画一画.

2.联系复习题的解法,尝试解答

3.订正思路

想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.

270÷(50+40).

想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:

相遇时间=路程÷速度和.

三、反馈调节

两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

1.学生独立分析解答.

2.订正答案.

3.质疑:对于“求相遇时间”应用题还有什么问题?

4.教师提问

(1)要求“相遇时间”题目中需告诉我们哪些条件?

(2)例4与复习题之间有什么联系?又有什么区别?

四、巩固练习

(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?

(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?

教师提问:怎样验证结果是否正确?

(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?

(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?

五、课后小结

我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

探究活动

猜两位数

活动目的

激发学生学习数学的兴趣.

活动方法

表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数.

例如:观众想的是59,他按规定计算出

59×167+2500=12353

表演者根据报的得数计算

53×3=159

于是就知道观众想的是59.

活动过程

1.教师进行表演

2.学生探讨其中的奥妙

3.学生自己设计这样的几个游戏.

猜数方法

将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数.

六、板书设计

篇7:相遇问题(一)(人教版五年级教案设计)

教学目标

(一)理解相遇问题的特点,并学会解答求路程的相遇问题。

(二)通过观察、比较、分析,提高学生灵活解答应用题的能力,培养学生合作意识。

教学重点和难点

重点:掌握求路程的相遇问题的解题方法。

难点:理解相遇时,两人所走路程的和正好是两地的距离;相遇时间为两人共同所走的同一时间。

教学过程设计

(一)复习准备

1.口头列式并计算:

小明每分走50米,小华每分走60米。

(1)小明5分走多少米?(50×5=250(米)。)

(2)小华5分走多少米?(60×5=300(米)。)

(3)小明、小华5分共走多少米?(①50×5+60×5=550(米);②(50+60)×5=550(米)。)

(4)小明5分比小华少走多少米?(①60×5-50×5=50(米);②(60-50)×5=50(米)。)

2.小结:行程问题的三量关系是什么?(速度×时间=路程;路程÷速度=时间;路程÷时间=速度。)

(二)学习新课

1.认识相遇问题。

(1)请两名同学到教室前边迎向走,相遇为止。

(2)同学们注意观察并说出他们是怎么走的?(同时,从两地,相对而行。)

(3)再走一遍,注意观察两人之间的距离有什么变化?(两人之间的距离越来越近,最后变为零。)

教师:当两人之间的距离变为零时,我们就说两人“相遇”。

具有“两物、同时从两地相对而行”这种运动特点的行程问题,叫做行程问题中的“相遇问题”。(板书:相遇问题)

(4)相遇问题与以前学习的行程问题有什么不同?(以前学习的行程问题是研究一个物体的运动情况,相遇问题是研究两个物体同时运动的情况。)

2.准备题。

张华家距李诚家390米。两人同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米。

(1)学生打开书,看线段图填表。

走的时间/张华走的路程/李诚走的路程/两人所走路程的和/现在两人的距离

(2)同桌二人用一把尺子、两块橡皮合作演示张华与李诚的行走过程,并说出每过1分后,两人所走路程的和与现在两人的距离。

(3)思考:

①出发3分后,两人之间的距离变成了多少?(出发3分后,两人之间的距离变成了零。)

说明3分后,两人相遇了。

②两人所走路程的和与两家的距离有什么关系?(两人所走路程的和+现在两人的距离=两家的距离。当3分后,两人相遇时,即两人之间的距离为零时,两人所走路程的和就与两家的距离相等。)

小结:相遇时,两人所走路程的和就是两家的距离。

3.学习例5:

小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?

(1)此题是不是相遇问题?怎么看出来的?

(2)学生用学具演示小强和小丽的行走过程。

思考并讨论:

①校门口是否在两家的中点?为什么?(小强的速度比小丽的慢,相遇时离小强家较近。)

②根据题意画出线段图。

③两人4分后在校门口相遇,说明他们两家相距的米数正好是什么?(4分后相遇,说明他们两家相距的米数正好等于4分所走的路程的和。)

(3)怎样求两人4分走的路程和呢?

学生列式计算,并讲解。

解法1:

答:他们两家相距540米。

解法2:

重点理解第二种解法。

①两人同时走1分,他们之间的距离有什么变化?(学生演示学具,缩短了65+70=135(米)。)

1分后缩短的135米,叫什么呢?(小强的速度+小丽的速度=速度和)

②2分后缩短了几个速度和?(学生演示学具)

③3分后缩短了几个速度和?

④4分后缩短了几个速度和?

小结:速度和与两家的距离有什么关系?

速度和×相遇时间=路程和。

(4)比较以上两种解法有什么联系和区别?哪种解法简单?为什么?

讨论得出:

区别:从数量关系上看,第一种解法是用两人各自的速度乘以时间,得出两人各自走的路程,然后再求两人所走路程的和;第二种解法是根据两人同时出发后相遇,所走时间相同,可以先算出两人每分一共走多少米?也就是先求“速度和”,再乘以时间。

联系:从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。

第二种解法比较简便,它是第一种解法的简便运算。

(三)巩固反馈

1.P59“做一做”。

(1)学生独立解答后,分析解题思路,订正。

解法1:54×5+52×5=270+260=530(米)。

解法2:(54+52)×5=106×5=530(米)。

(2)用哪种方法解答?((44+52)×2.5=96×2.5=240(千米)。)

2.研究 P61:2。

(1)思考:这题是不是相遇问题?它与相遇问题有什么不同?(相遇问题:相对而行;而此题:相背而行。)

(2)怎样解答?((44.5+38.5)×3=83×3=249(千米)。)

为什么解答方法与相遇问题相同?(相遇问题:两车之间距离在缩短;相背问题:两车之间距离在扩大。所求路程都是两车在相同时间内所行路程的和,所以解答方法相同。)

3.将例题改编成:

(1)如果同时行5分,会出现什么情况?此时两人相距多少米?

(65+70)×(5-4)=130(米)。)

(2)如果4分后两人还相距150米,他们两家相距多少米?

(65+70)×40+150=690(米)。)

(3)如果小强先走2分后小丽才出发,经过4分相遇,两家相距多少米?

(①(65+70)×4+65×2=670(米);②65×(4+2)+70×4=670(米)。)

4.课后作业;P61:1,3。

课堂教学设计说明

相遇问题是研究两个物体同时运动的情况,两个物体的运动情况是多种多样的。相遇问题关键是要弄清每经过一个单位时间,两个物体之间的距离的变化情况。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。因此在复习了行程问题的速度、时间和路程的关系后,通过两名同学的表演,引导学生观察、理解相遇问题的特点。又多次通过用学具演示及同桌的合作,不仅使学生理解了什么是相遇,相遇时两人所走路程的和正好是两地的距离及相遇时间为两人共同所走的同一时间这一教学难点,还提高了学生动手操作的能力,培养了学生的合作意识。

练习的设计由易到难,在学生掌握了基本的相遇问题的解答方法后,又出现了各种变化情况,有利于防止学生死套公式,形成思维定势,提高学生灵活解答应用题的能力。

板书设计

相遇问题

解法1:

小强所走路程+小丽所走路程=路程和

65×4+70×4

=260+280

=540(米)

解法2:

速度和×相遇时间=路程和

(65+70)×4

=135×4

=540(米)

答:他们两家相距540米。

篇8:相遇问题(二)(人教版五年级教案设计)

教学目标

(一)学会解答求相遇时间的应用题。

(二)通过分析解题思路,提高学生的口头表达能力及逻辑思维能力。

教学重点和难点

重点:掌握求相遇时间应用题的解题方法。

难点:明确求相遇时间应用题的解题思路。

教学过程设计

(一)复习准备

用简便方法解答下列各题:

1.甲乙两辆汽车从两地同时相对开出,甲车每时行45千米,乙车每时行55千米,5时相遇。两地相距多少千米?

2.两个修路队合修一条公路。甲队每天修200米,乙队每天修350米,8天正好修完,这条路全长多少米?

3.小东和小英同时从两地出发,相对而行。小东每分走50米,小英每分走40米,经过3分两人相遇。两地相距多远?

学生独立解答后订正:

(1)(45+55)×5=500(千米);

(2)(200+350)×8=4400(米);

(3)(50+40)×3=270(米)。

重点讲解第3题的解题思考:

两人每分共走一个速度和,即50+40=90(米),经过3分相遇,就走了3个速度和。

(二)学习新课

1.将复习题3改为例6。

两地相距270米。小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米。经过几分两人相遇?

(1)学生根据题意,画线段图。

(2)分析思考:

①小东、小英要走多少米,两人才能相遇?

②两人每分共走多少米?

③两人几分才能走270米?

(3)学生列式计算:

答:经过3分两人相遇。

(4)学生分析解题思路:两人相遇时共走了270米,而他们每分共走50+40=90(米)。看270米中包含多少个90米,就需要几分?

数量关系式:

路程和÷速度和=相遇时间。

2.将复习题1和2,也改编为求相遇时间的应用题,并解答。

(1)甲乙两辆汽车从相距500千米的两地同时相对开出。甲车每时行45千米,乙车每时行55千米,几时相遇?

(2)两个修路队合修一条4400米长的公路。甲队每天修200米,乙队每天修350米,修完这条路需要几天?

学生解答后,同桌互讲解题思路,订正。

①500÷(45+55)=5(时);②4400÷(200+350)=8(天)。

(三)巩固反馈

1.P60“做一做”。

(1)独生解答。(6400÷(600+200)=8(分)。)

(2)补充第2问:

相遇时,两人各行了多少米?

600×8=4800(米), 200×8=1600(米)。

2.甲乙两组电工,要架设一条6000米的电话线。他们同时从两端架线,甲组每天架设660米,乙组每天架设540米。完成任务时,两组各架设了多少米?

3.选择下列各题的正确算式,并说明理由。

(1)甲乙二人同时从相距38千米的两地相向行走,甲每时行3千米,乙每时行5千米,经过几时后二人相距6千米?

正确算式是(  )。

①(38+6)÷(5+3);

②(38-6)÷(5+3);

③6-38÷(5+3)。

(2)甲乙两个内河港口相距240千米,拖船顺水每时航行10千米,逆水每时航行8千米。在甲乙两港之间往返一次需要多少时间?

正确算式是(  )。

①240÷(10+8);

②240÷10+240÷8。

讨论:

第(2)小题是不是相遇问题?为什么?(不是相遇问题。因为它是一个物体,而不是两个物体,不可能同时从两地相对而行,也不存在相遇情况,所以不是相遇问题。)

4.课后作业:P61:5;P62:6,7,8。

课堂教学设计说明

求相遇时间的相遇问题是以求路程的相遇问题为基础的,在充分复习求路程的相遇问题的基础上,通过改编提出新的问题、画图思考和讲解题思路,学生掌握应用题的解答方法;通过补充问题,选择判断等练习,学生掌握相遇问题中的一些变化,并通过讨论区别相遇问题与行程问题的不同,提高学生解答应用的能力。

板书设计

相遇问题

例6  两地相距270米。小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米。经过几分两人相遇?

路程和÷速度和=相遇时间

270÷(50+4)

=270÷90

=3(分)

答:经过3分两人相遇

篇9:相遇问题

现代小学数学第七册第四单元综合应用相遇问题说课设计

相遇问题 相遇问题(教案初稿)一,           知识准备。1、练习(1)    邮递员骑自行车从甲地到相距3000米的乙地送信,速度是200米/分钟。多少时间后能够到达?3000÷200=15(分钟) 说出你所依据的数量关系:板书:速度*时间=路程(2)修一条隧道,甲队的速度是12米/天,6天修完。这条隧道长多少米?口答:列出算式并说出你列式的依据。12*6=72(米)  说说数量关系:板书:工作效率*工作时间=工作总量2讨论:甲,乙两队合修一条隧道,可以怎么修?        有三种情况:第一、两队实行倒班制;第二、从两端同时开始开凿。第三、两队从一端一起开凿。补充问题:哪一种的效率最高哪?结果会怎样?(进行猜测,引起认知冲突。)         甲、乙两队可以分别从两端同时开凿。结果会相遇。揭示课题:今天我们就来研究两个人或物同事合作一个工作的有关问题。 反思:准备联系,主要是为了能够为了接受新知识进行的巩固和唤醒相应部分的知识。同时,也考查学生的应变能力和利用自己的经验、知识来解决问题的锻炼。 二,           问题展示。1、出示例1,两个工程队合开一条隧道。同时从一端开凿。甲队的进度12米/天,乙队的进度是14米/天,由于使用了高科技经过6天打通。这条隧道长多少米?(1)    读题,理解题意。①    已知条件:a、  甲队工作效率――12米/天;b、乙队工作效率――14米/天;c、打通所用的时间――6天。D、合开,同时从一端开凿。② 未知条件:(求什么?)  隧道的长度是多少米?乙队                                        甲队                                                                                                            14米/天                                                                    12米/天                            ?米  利用课件加强学生对问题的理解,列出算式解决问题:12*6+14*6     分别表示的意义:   =72+84      12*6表示甲队的工作量,14*6表示乙队的工作量=156(米)  工作总量=甲队的工作量+乙队的工作量答:隧道长度是156米。 (12+14)*6   “12+14”表示的是什么?(工作效率和)=26*6    =156(米)         答:隧道长度是156米。 (12+14)*6        甲,乙1天开凿的米数之和*天数=隧道长度。  板书:工作效率和*时间=工作总量。 这道题表现了一个怎样的数量关系哪?与我们以往学习的有什么区别? 反思:这里是全课的重点,也是难点。在原有的学习数量关系的基础上可以顺利地接受并理解地一种解决方法。但是,第二种则需要进一步理解。为什么可以把两队的工作效率相加?是讲解的过程中遇到的最大的问题。这里最主要的解决方法是利用课件的直观和学生抽象思维来解决。所以这里课件一定要注意直观性和明确性。 2、展示例2:    两个邮递员同时从甲、乙两地相对而行,骑摩托车的速度是每分钟800米,骑自行车的速度是每分钟200米。他俩经过3分钟相遇。甲、乙两地相距多少米?邮递员1                                     邮递员2                                                                                                              800米/分                                                              200米/分 (1)    你是怎样解决这个问题的?800×3+200×3 =2400+600=3000(米)      中间的过渡过程,简略地给出。然后,引导学生列出下面的算式。×           (800+200)*3      “800+200”表示的是什么?=1000*3    =3000(米) 答:甲、乙两地相距3000米。 根据例1,你能总结出他根据的是怎样的数量关系吗?速度之和*时间=总路程 反思:在例2当中,最主要的是想说明不仅在工作效率当中可以使用“和”,在路程的问题当中,也可以使用“和”的概念。把所学习过的数量关系进一步扩展和达成教育教学目标 。同样这也是对学生元认知的直接运用。    3、展示例3:    两个邮递员同时从相距3000米的两地相对而行,其摩托车的速度是每分钟800米,骑自行车的速度是每分钟200米。经过几分钟两个邮递员相遇?(1)    读题,理解题意 已知条件:总路程;摩托车和自行车的速度; 未知条件:相遇的时间 800m                                          200m     _____________________________________________                                        3000m3000÷(200+800)=3000÷1000=3(分)       答:经过3分钟相遇。 反思:这是针对于本节课内容的变式训练,主要目的在于开阔学生的思路达到灵活和多角度掌握知识的目的。另外也起到锻炼学生有序思考的'作用,在数学中,这是非常重要的。  三、小结。这节课你都有哪些收获,你知道了哪些新的数量关系?工作效率之和*工作时间=工作总量;速度之和*时间=总路程 反思:及时地进行扩展,对上面的数量关系增强抽象的变式的训练。单纯从数量关系上面变式有利于学生抽象思维的发展和元认知的提高。从而更好地完成教育教学目标 。 四、巩固与提高。(首先比较两题之间的区别,然后根据全新的数量关系列式计算。) (1)    两列火车同时从两个站相对开出,一列火车的速度是每小时71千米的速度,另一列火车的速度是每小时69千米,开出后3小时相遇。两个车站的距离是多少千米?(2)    两个车站的距离是420千米,两列火车同时从两地车站相对开出,一列火车的速度是每小时71千米,另一列火车的速度是每小时69千米。两列火车多长时间后相遇? 五、教学后记:

篇10:相遇问题

相遇问题

现代小学数学第七册第四单元综合应用相遇问题说课设计

相遇问题相遇问题(教案初稿)一,知识准备。1、练习(1)    邮递员骑自行车从甲地到相距3000米的乙地送信,速度是200米/分钟。多少时间后能够到达?3000÷200=15(分钟) 说出你所依据的数量关系:板书:速度*时间=路程(2)修一条隧道,甲队的速度是12米/天,6天修完。这条隧道长多少米?口答:列出算式并说出你列式的依据。12*6=72(米)  说说数量关系:板书:工作效率*工作时间=工作总量2讨论:甲,乙两队合修一条隧道,可以怎么修?有三种情况:第一、两队实行倒班制;第二、从两端同时开始开凿。第三、两队从一端一起开凿。补充问题:哪一种的效率最高哪?结果会怎样?(进行猜测,引起认知冲突。)甲、乙两队可以分别从两端同时开凿。结果会相遇。揭示课题:今天我们就来研究两个人或物同事合作一个工作的有关问题。 反思:准备联系,主要是为了能够为了接受新知识进行的巩固和唤醒相应部分的知识。同时,也考查学生的应变能力和利用自己的经验、知识来解决问题的锻炼。二,问题展示。1、出示例1,两个工程队合开一条隧道。同时从一端开凿。甲队的进度12米/天,乙队的进度是14米/天,由于使用了高科技经过6天打通。这条隧道长多少米?(1)    读题,理解题意。①    已知条件:a、  甲队工作效率――12米/天;b、乙队工作效率――14米/天;c、打通所用的时间――6天。D、合开,同时从一端开凿。② 未知条件:(求什么?)  隧道的长度是多少米?乙队                                        甲队                                                                                                            14米/天                                                                    12米/天?米利用课件加强学生对问题的理解,列出算式解决问题:12*6+14*6     分别表示的意义:   =72+84      12*6表示甲队的.工作量,14*6表示乙队的工作量=156(米)  工作总量=甲队的工作量+乙队的工作量答:隧道长度是156米。(12+14)*6“12+14”表示的是什么?(工作效率和)=26*6    =156(米)         答:隧道长度是156米。 (12+14)*6        甲,乙1天开凿的米数之和*天数=隧道长度。板书:工作效率和*时间=工作总量。 这道题表现了一个怎样的数量关系哪?与我们以往学习的有什么区别?反思:这里是全课的重点,也是难点。在原有的学习数量关系的基础上可以顺利地接受并理解地一种解决方法。但是,第二种则需要进一步理解。为什么可以把两队的工作效率相加?是讲解的过程中遇到的最大的问题。这里最主要的解决方法是利用课件的直观和学生抽象思维来解决。所以这里课件一定要注意直观性和明确性。 2、展示例2:    两个邮递员同时从甲、乙两地相对而行,骑摩托车的速度是每分钟800米,骑自行车的速度是每分钟200米。他俩经过3分钟相遇。甲、乙两地相距多少米?邮递员1                                     邮递员2                                                                                                              800米/分                                                              200米/分 (1)    你是怎样解决这个问题的?800×3+200×3 =2400+600=3000(米)      中间的过渡过程,简略地给出。然后,引导学生列出下面的算式。×           (800+200)*3“800+200”表示的是什么?=1000*3    =3000(米) 答:甲、乙两地相距3000米。 根据例1,你能总结出他根据的是怎样的数量关系吗?速度之和*时间=总路程反思:在例2当中,最主要的是想说明不仅在工作效率当中可以使用“和”,在路程的问题当中,也可以使用“和”的概念。把所学习过的数量关系进一步扩展和达成教育教学目标。同样这也是对学生元认知的直接运用。    3、展示例3:    两个邮递员同时从相距3000米的两地相对而行,其摩托车的速度是每分钟800米,骑自行车的速度是每分钟200米。经过几分钟两个邮递员相遇?(1)    读题,理解题意 已知条件:总路程;摩托车和自行车的速度; 未知条件:相遇的时间 800m                                          200m     _____________________________________________                                        3000m3000÷(200+800)=3000÷1000=3(分)       答:经过3分钟相遇。反思:这是针对于本节课内容的变式训练,主要目的在于开阔学生的思路达到灵活和多角度掌握知识的目的。另外也起到锻炼学生有序思考的作用,在数学中,这是非常重要的。三、小结。这节课你都有哪些收获,你知道了哪些新的数量关系?工作效率之和*工作时间=工作总量;速度之和*时间=总路程反思:及时地进行扩展,对上面的数量关系增强抽象的变式的训练。单纯从数量关系上面变式有利于学生抽象思维的发展和元认知的提高。从而更好地完成教育教学目标。四、巩固与提高。(首先比较两题之间的区别,然后根据全新的数量关系列式计算。)(1)    两列火车同时从两个站相对开出,一列火车的速度是每小时71千米的速度,另一列火车的速度是每小时69千米,开出后3小时相遇。两个车站的距离是多少千米?(2)    两个车站的距离是420千米,两列火车同时从两地车站相对开出,一列火车的速度是每小时71千米,另一列火车的速度是每小时69千米。两列火车多长时间后相遇?五、教学后记:

篇11:相遇应用题教案设计参考

相遇应用题教案设计参考

教学目标:

1、使学生初步理解相遇问题的意义。

2、使学生会分析相遇问题的数量关系和解题方法。

3、培养学生初步逻辑思维能力。

教学重点:相遇问题中数量关系的理解和解题思路的分析。

教学难点:解答问题时对速度和的理解和运用。

教具准备:演示软件、实物投影机、幻灯机。

教学过程:

开场白:

同学们,过去我们已经学过一些有关行程问题的知识,今天,我们要在过去的知识基础上,把这个问题作进一步的研究,为更好地掌握新知识,现在我们把一些相关知识进行复习。

一、复习铺垫:?

口答:

1、张华每分钟走65米,走了4分钟,一共走了多少米

65×4=260(米)

提问:为什么这样求?谁会用一个数量关系式表示

在学生回答的同时板书:速度×时间=路程。并由学生说明:张华行走的速度是每分钟走65米,时间是4分钟,求一共走多少米?就是求张华所走的路程。

2、李诚每分钟走70米,走了4钟,

由学生补充问题并进行计算。

二、新授:

1、导入新课:刚才我们复习了一般的求路程的行程应用题,它是由一个物体运动完成的。下面我们研究两个物体运动的行程应用题。

2、出示准备题:

①读题看演示,初步理解题意。

问:题中告诉我们,张华和李诚是怎样出发的?他们行走的方向又是怎样?(两人同时从家里出发,向对方走去)

板书:两地同时出发相向而行?

②边演示边带学生填写P58表格的数据,并分析数量关系。

这是他们两人走的时间和路程的变化情况表。我们看看1分钟的情况(演示1分钟的情况)教师问:张华1分钟走60米,李诚1分钟走70米,那么两人所走路程的和是多少?你是怎样算的?现在两人的距离是多少?怎样计算?下面请同学们按表中的四个要求填写2分、3分的路程变化情况。

学生翻开课本第58页填写。(教师巡视)

师生继续填写完这个表格,边演示边让学生回答2分、3分时的情况。填写完后,教师指表的第4列问:纵观此列,每经过1分钟,两人之间的距离有什么变化?(缩短了1个60+70米)当两人距离为0米时,说明两人相遇了,这时他们用的时间都是3分钟。板书:相遇。问:相遇时,两人所走路程的和与两家的距离有什么关系?(正好相等)。学生回答后板书:两人所走路程的和=两地间的距离。

3、小结并揭示课题?

像这样,两人从两地同时出发,相向而行,最后相遇,他们所走路程之和正好等于两地间的距离。我们称它为相遇问题。现在我们就学习解答相遇求路程的方法。板书课题:相遇应用题。

4、讲授例5。

①出示例5,教师读题,学生说出已知条件和问题。

问:小强和小丽是怎样运动的?(两人同时从自己家里走向学校)也就是从两地同时出发,相向而行,经过4分,两人怎样?(相遇在学校门口)

②启发学生学习第一种解法

演示后提问:a、小强小丽走的路程各是哪一段?用色段表示。

b、两人4分所走路程的和与两家相距的米数有什么关系?(正好相等)

c、要求两家相距多少米?可先求什么?(先求两人到校时各自走的路程)再怎样?(将它们合起来)就得出时各自走的路程)再怎样?(将它们合起来)就得出两家相距的米数。

指一名学生口述,教师板书:65×4+70×4?=260+280?=540(米)

问:65×4和70×4分别表示什么?为什么要相加?

③启发学生学习第二种解法。

问:这道题还有别的解法吗?让学生列式计算。

指一名学生口述,教师板书:(65+70)×4?=135×4?=540(米)

问:65+70求出什么?乘以4表示什么意思?请讲出你的解题思路。

相遇时,两人是否一共走了4个65+70米的路程呢?我们演示来验证一下。(演示)

④小结:相遇求路程的应用题通常有两种解法:一种是先求出两个物体各自走的路程再将它们合起来求得总路程,另一种是先求每分钟两人所走的路程的和,即是两人的速度和,再乘以相遇时间,就等于总路程。边说边板书:速度和×相遇时间=总路程,学生齐读关系式。?

⑤学生看第58页的例5。

三、巩固练习:

1。志明和小龙同时从两地对面走来,志明每分钟走54米,小龙每分钟走52米,经过5分两人相遇,两地相距多少米?(用两种方法解答)?

学生读题后,独立完成,教师巡视,订正答案。

2。两列火车从两个车站同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2。5小时两车相遇。两个车站之间的铁路长多少千米?

让学生自选一种方法解答。

3。两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行44。5千米,乙车平均每小时行38。5千米。经过3小时,两车相距多少千米??

出示题目,请一名学生读题,演示后由学生独立完成。

提问:两辆汽车同时从一个地方向相反的方向开出,也就说明两辆汽车背向而行,两辆汽车开出后有没有相遇?(没有)求经过3小时,两车相距多少千米?能用相遇问题的解法吗?(能)为什么?(因为甲乙两车每走1小时,两车之间的.距离就拉开44。5+38。5千米的距离,3小时后,两车就拉开3个44。5+38。5千米的距离,也就是两车相距的米数。)

小结:当两个物体同时从一个地方背向而行,它们的结果是相距,两个物体所走的路程的和等于两地间的距离,同样可以用速度和乘以经过时间,求得相距路程。

4、思考题:甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地间的铁路长多少千米?

出示题目,全班读题,演示后让学生独立完成。

订正时,师说:求两地间的铁路长多少千米?可以把铁路分为两段,一段是甲开出1小时单独行驶的路程,另一段是两车2小时共同行驶的路程。

还有不同的解法吗?师生共同分析不同解法。

引深:如果甲车开出后2小时,乙车才开出,又该怎样列式呢?指一名学生列式。

四、课堂总结:

这节课我们学习了两个物体相向运动的行程问题,其中求路程的解答方法通常有两种:

一是先求出两个物体各自走的路程再将它们合起来求得总路程;

二是用速度和乘以相遇时间得总路程。

五、作业:

P61第1题,P62第12题。

篇12:《相遇应用题》教案设计

教学内容:

九年义务教育六年制小学数学第九册第58页准备题、例5。

教学目的:

1、使学生理解相遇问题的意义,学会分析“相遇问题”的数量关系,并能解答简单的相遇求路程的应用题。

2、培养学生的观察、比较、分析、综合能力及解决实际问题 的能力。

3、在教学过程中,渗透“事物是变化的`、发展的”辨证唯物主义观点。

教学重点:

理解相遇问题的数量关系,建立解题思路,掌握解题方法。

教学难点:

理解相遇问题中速度和、相遇时间和总路程之间的关系。

教学关键:

使学生弄清每经过一个单位时间,两物体之间的距离变化。

教具准备:

计算机及辅助软件

教学过程:

一、展示设疑:

⑴复习铺垫

同学们,过去我们已经学过一些有关行程问题的知识。今天,我们要在过去的知识基础上把这个问题作进一步的研究,为了更好地掌握新知识,现在我们把一些相关知识进行复习。

1、口答:张华每分钟走65米,走了4分钟,一共走了多少米?

为什么这样列式,谁会用一个数量关系式来回答?

2、在xx届奥运会中,我国体育健儿勇夺xx枚金牌,使我们每一个中国人都感到无比激动和自豪。现在我提议,以热烈的掌声祝贺我国体育健儿为我们取得的荣誉。

但是,鼓掌也很有学问,你们鼓掌时两只手是怎样运动的?从开始运动的地方,时间,方向及运动的结果等方面进行回顾,思考。

(边问、边答、边板书)

两手运动:

地点:两地 结果:相遇

时间:同时

方向:相对(相向)

今天,我们就要从以前研究一个物体的运动转变为研究两个物体运动的行程问题。

二、引导思疑

1、准备题:张华家距李诚家390米。两人同时从家里出发,向对方走去。张华每分钟走60米,李诚每分钟70米。

请同学们看屏幕,张华和李诚是怎样走的,结果怎样?

2、⑴先让学生独立填写表格中走的时间是1分钟这一行。完成后利用电脑演示两人同时出发相向而行1分钟的过程并集体校对答案。

问:走1分钟两人所走路程的和是怎样求出来?两人之间的距离呢?

⑵让学生把表格填完,利用电脑演示来校对

⑶引导学生观察并思考,随着两人走的时间一分一分地增加,两人所走路程的和怎样变化?两人之间的距离同时发生什么变化?

当两人的距离是0时,我们就说这时两人怎样了(相遇了)两人运动的结果就是相遇

⑷同桌讨论:相遇时两人所走路程的和与两家距离有什么关系?

要求两家距离就是求什么?

(板书:两家距离等于相遇时两人所走路程的和)

⑸像这样,两人从两地同时出发,相向而行,最后相遇,他们所走的路程之和正好等于两地间的距离。我们称它为相遇问题。

(板书:相遇应用题)

三、引思解疑

1、出示例5:小强和小丽同时从自己家里走向学校。小强每分钟走65米,小丽每分钟走70米,经过4分钟,两人在校门口相遇。他们两家相距多少米?

2、小强和小丽是怎样运动的?

3、让学生尝试解答。

你是怎样想的?在小组内相互讨论。

4、反馈学生情况,全班讨论并强化两种解法。

⑴请你说出先求什么?再求什么?怎样列式?

答:他们两家相距540米。

再请一位同学来说一说,先求什么?再求什么?

⑵还有别的解法吗?

答:他们两家相距540米。

问:65+70求什么?这就叫做速度和。乘以4表示什么?请说出你的解题思路。

相遇时两人是否是一共行了4个(65+70)米的路,我们来验证一下。

小结:相遇应用题通常有两种解法,第一种先求什么?再求什么?第二种是又先求什么?再求什么?

(板书:速度和×相遇时间=总路程)

四、拓思创新

1、甲乙两个工程对同时修筑一条公路,14天修完。甲队每天修280米,乙队每天修300米。这条路全长多少米?

2、甲乙两人同时从对面走来。甲每分钟走52米,乙每分钟走48米,两人走了10分钟。两地相距多少米?

板书设计:

篇13:相遇问题(二)

教学目标

(一)学会解答求相遇时间的应用题。

(二)通过分析解题思路,提高学生的口头表达能力及逻辑思维能力。

教学重点和难点

重点:掌握求相遇时间应用题的解题方法。

难点:明确求相遇时间应用题的解题思路。

教学过程设计

(一)复习准备

用简便方法解答下列各题:

1.甲乙两辆汽车从两地同时相对开出,甲车每时行45千米,乙车每时行55千米,5时相遇。两地相距多少千米?

2.两个修路队合修一条公路。甲队每天修200米,乙队每天修350米,8天正好修完,这条路全长多少米?

3.小东和小英同时从两地出发,相对而行。小东每分走50米,小英每分走40米,经过3分两人相遇。两地相距多远?

学生独立解答后订正:

(1)(45+55)×5=500(千米);

(2)(200+350)×8=4400(米);

(3)(50+40)×3=270(米)。

重点讲解第3题的解题思考:

两人每分共走一个速度和,即50+40=90(米),经过3分相遇,就走了3个速度和。

(二)学习新课

1.将复习题3改为例6。

两地相距270米。小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米。经过几分两人相遇?

(1)学生根据题意,画线段图。

(2)分析思考:

①小东、小英要走多少米,两人才能相遇?

②两人每分共走多少米?

③两人几分才能走270米?

(3)学生列式计算:

答:经过3分两人相遇。

(4)学生分析解题思路:两人相遇时共走了270米,而他们每分共走50+40=90(米)。看270米中包含多少个90米,就需要几分?

数量关系式:

路程和÷速度和=相遇时间。

2.将复习题1和2,也改编为求相遇时间的.应用题,并解答。

(1)甲乙两辆汽车从相距500千米的两地同时相对开出。甲车每时行45千米,乙车每时行55千米,几时相遇?

(2)两个修路队合修一条4400米长的公路。甲队每天修200米,乙队每天修350米,修完这条路需要几天?

学生解答后,同桌互讲解题思路,订正。

①500÷(45+55)=5(时);②4400÷(200+350)=8(天)。

(三)巩固反馈

1.P60“做一做”。

(1)独生解答。(6400÷(600+200)=8(分)。)

(2)补充第2问:

相遇时,两人各行了多少米?

600×8=4800(米), 200×8=1600(米)。

2.甲乙两组电工,要架设一条6000米的电话线。他们同时从两端架线,甲组每天架设660米,乙组每天架设540米。完成任务时,两组各架设了多少米?

3.选择下列各题的正确算式,并说明理由。

(1)甲乙二人同时从相距38千米的两地相向行走,甲每时行3千米,乙每时行5千米,经过几时后二人相距6千米?

正确算式是( )。

①(38+6)÷(5+3);

②(38-6)÷(5+3);

③6-38÷(5+3)。

(2)甲乙两个内河港口相距240千米,拖船顺水每时航行10千米,逆水每时航行8千米。在甲乙两港之间往返一次需要多少时间?

正确算式是( )。

①240÷(10+8);

②240÷10+240÷8。

讨论:

第(2)小题是不是相遇问题?为什么?(不是相遇问题。因为它是一个物体,而不是两个物体,不可能同时从两地相对而行,也不存在相遇情况,所以不是相遇问题。)

4.课后作业:P61:5;P62:6,7,8。

课堂教学设计说明

求相遇时间的相遇问题是以求路程的相遇问题为基础的,在充分复习求路程的相遇问题的基础上,通过改编提出新的问题、画图思考和讲解题思路,学生掌握应用题的解答方法;通过补充问题,选择判断等练习,学生掌握相遇问题中的一些变化,并通过讨论区别相遇问题与行程问题的不同,提高学生解答应用的能力。

板书设计

篇14:相遇问题(二)

例6 两地相距270米。小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米。经过几分两人相遇?

路程和÷速度和=相遇时间

270÷(50+4)

=270÷90

=3(分)

答:经过3分两人相遇

篇15:相遇问题(一)

教学目标

(一)理解相遇问题的特点,并学会解答求路程的相遇问题。

(二)通过观察、比较、分析,提高学生灵活解答应用题的能力,培养学生合作意识。

教学重点和难点

重点:掌握求路程的相遇问题的解题方法。

难点:理解相遇时,两人所走路程的和正好是两地的距离;相遇时间为两人共同所走的同一时间。

教学过程设计

(一)复习准备

1.口头列式并计算:

小明每分走50米,小华每分走60米。

(1)小明5分走多少米?(50×5=250(米)。)

(2)小华5分走多少米?(60×5=300(米)。)

(3)小明、小华5分共走多少米?(①50×5+60×5=550(米);②(50+60)×5=550(米)。)

(4)小明5分比小华少走多少米?(①60×5-50×5=50(米);②(60-50)×5=50(米)。)

2.小结:行程问题的三量关系是什么?(速度×时间=路程;路程÷速度=时间;路程÷时间=速度。)

(二)学习新课

1.认识相遇问题。

(1)请两名同学到教室前边迎向走,相遇为止。

(2)同学们注意观察并说出他们是怎么走的?(同时,从两地,相对而行。)

(3)再走一遍,注意观察两人之间的距离有什么变化?(两人之间的距离越来越近,最后变为零。)

教师:当两人之间的距离变为零时,我们就说两人“相遇”。

具有“两物、同时从两地相对而行”这种运动特点的行程问题,叫做行程问题中的“相遇问题”。(板书:相遇问题)

(4)相遇问题与以前学习的行程问题有什么不同?(以前学习的行程问题是研究一个物体的运动情况,相遇问题是研究两个物体同时运动的情况。)

2.准备题。

张华家距李诚家390米。两人同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米。

(1)学生打开书,看线段图填表。

走的时间/张华走的路程/李诚走的路程/两人所走路程的和/现在两人的距离

(2)同桌二人用一把尺子、两块橡皮合作演示张华与李诚的行走过程,并说出每过1分后,两人所走路程的和与现在两人的距离。

(3)思考:

①出发3分后,两人之间的距离变成了多少?(出发3分后,两人之间的距离变成了零。)

说明3分后,两人相遇了。

②两人所走路程的和与两家的距离有什么关系?(两人所走路程的和+现在两人的距离=两家的距离。当3分后,两人相遇时,即两人之间的距离为零时,两人所走路程的和就与两家的距离相等。)

小结:相遇时,两人所走路程的和就是两家的距离。

3.学习例5:

小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?

(1)此题是不是相遇问题?怎么看出来的?

(2)学生用学具演示小强和小丽的行走过程。

思考并讨论:

①校门口是否在两家的中点?为什么?(小强的速度比小丽的慢,相遇时离小强家较近。)

②根据题意画出线段图。

③两人4分后在校门口相遇,说明他们两家相距的米数正好是什么?(4分后相遇,说明他们两家相距的米数正好等于4分所走的路程的和。)

(3)怎样求两人4分走的路程和呢?

学生列式计算,并讲解。

解法1:

答:他们两家相距540米。

解法2:

重点理解第二种解法。

①两人同时走1分,他们之间的距离有什么变化?(学生演示学具,缩短了65+70=135(米)。)

1分后缩短的'135米,叫什么呢?(小强的速度+小丽的速度=速度和)

②2分后缩短了几个速度和?(学生演示学具)

③3分后缩短了几个速度和?

④4分后缩短了几个速度和?

小结:速度和与两家的距离有什么关系?

速度和×相遇时间=路程和。

(4)比较以上两种解法有什么联系和区别?哪种解法简单?为什么?

讨论得出:

区别:从数量关系上看,第一种解法是用两人各自的速度乘以时间,得出两人各自走的路程,然后再求两人所走路程的和;第二种解法是根据两人同时出发后相遇,所走时间相同,可以先算出两人每分一共走多少米?也就是先求“速度和”,再乘以时间。

联系:从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。

第二种解法比较简便,它是第一种解法的简便运算。

(三)巩固反馈

1.P59“做一做”。

(1)学生独立解答后,分析解题思路,订正。

解法1:54×5+52×5=270+260=530(米)。

解法2:(54+52)×5=106×5=530(米)。

(2)用哪种方法解答?((44+52)×2.5=96×2.5=240(千米)。)

2.研究 P61:2。

(1)思考:这题是不是相遇问题?它与相遇问题有什么不同?(相遇问题:相对而行;而此题:相背而行。)

(2)怎样解答?((44.5+38.5)×3=83×3=249(千米)。)

为什么解答方法与相遇问题相同?(相遇问题:两车之间距离在缩短;相背问题:两车之间距离在扩大。所求路程都是两车在相同时间内所行路程的和,所以解答方法相同。)

3.将例题改编成:

(1)如果同时行5分,会出现什么情况?此时两人相距多少米?

(65+70)×(5-4)=130(米)。)

(2)如果4分后两人还相距150米,他们两家相距多少米?

(65+70)×40+150=690(米)。)

(3)如果小强先走2分后小丽才出发,经过4分相遇,两家相距多少米?

(①(65+70)×4+65×2=670(米);②65×(4+2)+70×4=670(米)。)

4.课后作业;P61:1,3。

课堂教学设计说明

相遇问题是研究两个物体同时运动的情况,两个物体的运动情况是多种多样的。相遇问题关键是要弄清每经过一个单位时间,两个物体之间的距离的变化情况。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。因此在复习了行程问题的速度、时间和路程的关系后,通过两名同学的表演,引导学生观察、理解相遇问题的特点。又多次通过用学具演示及同桌的合作,不仅使学生理解了什么是相遇,相遇时两人所走路程的和正好是两地的距离及相遇时间为两人共同所走的同一时间这一教学难点,还提高了学生动手操作的能力,培养了学生的合作意识。

练习的设计由易到难,在学生掌握了基本的相遇问题的解答方法后,又出现了各种变化情况,有利于防止学生死套公式,形成思维定势,提高学生灵活解答应用题的能力。

板书设计

《相遇问题》公开课教案设计

相遇问题教学设计

相遇问题数学教后反思

相遇签名

相遇作文

相遇句子

相遇散文

感恩相遇作文

相遇高一作文

感谢相遇作文

《《相遇问题》教案设计(共15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档