以下是小编帮大家整理的培养学生思维灵活性心得,本文共8篇,仅供参考,欢迎大家阅读。

篇1:培养学生思维灵活性心得
培养学生思维灵活性心得
创新思维是创新教育的核心,是培养学生创新能力的关键。创新思维包括发散思维、逆向思维、侧向思维、辩证思维等。
发散思维是以某一对象为出发点,通过想像、猜测等心理过程,激发各种新思想的一种思维方法。如在作文教学中,要求学生对“ 0”说一句话,结果同学们众说纷纭:“0”像一盘冷月,像一轮红日,像飞速旋转的车轮,像一群围观的人群,像妈妈滴落的眼泪,像爸爸举起的酒杯……“0”是起点,也是终点。有志者,失败从“0”开始;无志者,几经折腾,仍以“0”告终。培养学生的发散思维能力,可以突破传统观念的束缚,充分发挥学生的自由想像和自由创造的`能力,使思想不断地向外延伸和拓展,最终获得创新性成果。
逆向思维就是从常规思维的反面去思考,打破思维定势,对人们习以为常的传统观念或旧的观点,大胆地进行否定或对原概念和定义以新的解释,提出独特的见解。如在现象与本质教学中,要求学生分析“眼见未必为实”。一只筷子在水中看上去是弯曲的,这是由于光的折射作用所致,而事实上筷子是笔直的。在讲解成语“见异思迁”时,一般人认为这是一种不良倾向,值得批判,而少数学生提出与常人相反的观点:一个有积极进取精神的人就应该见异思迁。从正反两方面举例论证,说理透彻,给人一种奋发向上的新鲜感。
侧向思维是利用其他领域的观念、知识或现象来寻求解决某个特定问题的可能途径和思路的一种思维方法。我国古代能工巧匠鲁班从带刺的茅草划破手掌得到启发而发明了锯;美国莱特兄弟看见空中鸟儿能够自由飞翔发明了飞机;蝙蝠在空中飞行,能利用超声波了解前面的障碍物,人们利用这种现象发明了雷达。人们在思考问题时,常常联想到某些已有的理论和知识,从而得到启发,找到处理和解决问题的办法。
辩证思维是指用全面的、一分为二的、发展的观点来分析问题的一种思维方法。它要求人们在看待某个现象或问题时,既要看到其积极方面,又要看到其消极方面。例如:教师讲解《愚公移山》一文,常常归纳出愚公改造自然的宏伟抱负和坚强毅力的含义。愚公移山的精神值得大家赞扬,但其方法恰当吗﹖与其让子子孙孙移山,倒不如叫愚公迁居。现实生活中,愚公果真那么移山,试问太行、王屋二山会移到哪年哪月﹖俗话说:“苦干不如巧干”,处理问题或解决矛盾时,要深思熟虑,寻找最佳方案解决问题,切不可一意孤行,我行我素。
总之,在教育教学过程中,教师若能积极创造条件,改变教法,注重学生思维能力的训练,学生的创新思维能力必将不断提高。
篇2:学生思维灵活性的培养的论文
研究表明,从初中二年级开始,学生的思维由经验型水平向理论型水平转化,到高中一、二年级,逐步趋向成熟。作为高中教学教师,应抓住学生思维发展的飞跃时期,利用成熟期前可塑性大的特点,做好思维灵活性的培养工作,使学生的思维得到更好的发展。
我校是一所省示范性高级中学,生源较好。然而总有较多学生进入高中之后,不能适应高中阶段的数学学习,在思维要求上有较大差距,成绩显下降趋势。究其原因:由于初中数学教学受升学考试指挥棒的影响,在教学过程中注重了知识的传授,而忽视了思维灵活性的培养。
现代教育强调“知识结构”与“学习过程”,目的在于发展学生的思维能力,而把知识作为思维过程的材料和媒介。只有把掌握知识、技能作为中介来发展学生的思维品质才符合素质教育的基本要求。数学知识可能在将来会遗忘,但思维的灵活性的培养会影响学生的一生,思维灵活性的培养是数学教育的价值得以真正实现的理想途径。
思维主要包括思维的灵活性、广阔性、敏捷供、深刻性、独创性和批判性等几个方面。思维的灵活性是建立在思维广阔性和深刻性的基础上,并为思维敏捷性、独创性和批判性提供保证的良好品质。在人们的工作、生活中,照章办事易,开拓创新难,难就难在缺乏灵活的思维。所以,思维灵活性的培养显得尤为重要。
篇3:学生思维灵活性的培养的论文
思维起点的灵活:能从不同角度、不同层次、不同方法根据新的条件迅速确定思考问题的方向。
思维过程的灵活:能灵活运用各种法则、公理、定理、规律、公式等从一种解题途径转向另一种途径。
(3)思维迁移的灵活:能举一反三,触类旁通。
如何使更多的学生思维具有灵活特点呢?我在教学实践中作了一些探索:
一、以思维灵活性的提高带动思维其他品质的提高,以思维其他品质的培养来促进思维灵活性的培养
由于思维的各种品质是彼此联系、密不可分的,处于有机的统一体中,所以,思维其他品质的培养能有力地促进思维灵活性的提高。
1.思维的广阔性是指善于抓住问题的各个方面,又不忽视其重要细节的思维品质。要求学生能认真分析题意,调动和选择与之相应的知识,寻找解答关键。
在把握整体的前提下,侧重某一条件作为解答突破口,在思维广阔性的基础上,充分运用思维灵活性调动相关知识、技能寻找解题途径。
2.思维的敏捷性指思维活动的速度。它的指标有二个:一是速度,二是正确率。具有这一品质的学生能缩短运算环节和推理过程。思维灵活性对于思维速度和准确率的提高起着决定性作用。
3.思维的深刻性指思维过程的抽象程度,指是否善于从事物的现象中发现本质,是否善于从事物之间的关系和联系中揭示规律。美国心理学家吉尔福特(j·p·guilford)提出的“发散思维”(divergentthinking)的培养就是思维灵活性的培养。“发散思维”指“从给定义的信息中产生信息,其着重点是从同一的来源中产生各种各样为数众多的输出,很可能会发生转换作用。”在当前的数学教学中,普遍存在着比较重视集中思维的训练,而相对忽视了发散思维的培养。发散思维是理解教材、灵活运用知识所必须的,也是迎接信息时代、适应未来生活所应具备的能力。
4.思维的独创性指思维活动的独创程度,具有新颖善于应变的特点。思维的灵活性为思维的独创性提供了肥沃的土壤,为解题“灵感”的'闪现提供了燃料。灵活的构想独特巧妙,数形结合思想得到充分体现。我在教学中比较注重学生解题思路的独特征、新颖性的肯定和提倡,充分给予尝试、探索的机会,以活跃思维、发展个性。思维的批判性指思维活动中独立分析的程度,是否善于严格地估计思维材料和仔细地检查思维过程。我在数学教学中,鼓励学生提出不同的甚至怀疑的意见,注意引导和启发,提倡独立思考能力的培养。
二、灵活新颖的教法探求和灵活扎实的学法指导
教师的教法常常影响到学生的学法。灵活多变的教学方法对学生思维灵活性的培养起着潜移默化的作用,而富有新意的学法指导能及时为学生注人灵活思维的活力。引人入胜的教学导入可以激发学习兴趣和热情。以“创设情境”,“叙述故事”、“利用矛盾”、“设置悬念”、“引用名句”、“巧用道具”等新颖多变的教学手段,使学生及早进入积极思维状态。让学生反串角色,扮演教师批改作业。换一个角度来考察学生的知识掌握情况,寻找错误产生的原因,以求更好的加深对知识的掌握。变换结论寻求条件的不同之处;变换提出问题的背景,寻求多题一解;变换问题的思考角度,寻求一题多解;……以变来培养学生灵活的思维。让学生自己编制一份测验试卷.并给出解答。使学生站在老师的角度体验出题心理,更好的掌握知识结构和思维方式。激励学生善于进行总结,培养良好的思维品质。
几年来,所教学生在经过有目的的培养后,思维都有了很大的提高。相应的,学生的学习质量也有了很大提高。许多学生进入大学、甚至走上工作岗位后,常常来信谈及虽然数学知识有许多已经遗忘,但老师教的数学思维方式却常令他们在工作、学习、生活中得益不少。
近年来,随着课程教材改革的推进,突出思维灵活性的培养已成为广大教师和教育工作者的共识。我要继续探索下去,以求获得更多的收获。
篇4:如何训练思维灵活性
思维灵活性训练
思维的灵活性是指能根据情况的变化,及时地调整和改变原有的思维进程和方向,不过多地受思维定势的消极影响,善于自我调节,从旧的模式或通常的制约条件中摆脱出来。它反映了思维活动中的灵活程度。进行克服思维定势的训练是培养思维灵活性的个体体现。
1、多方感知和观察的训练
感觉和知觉是认识事物的最初级形式,观察是知觉的高级状态,是认识事物最基本的途径,对客观事物的多方面感知和观察,有助于改变原有的程序和模式,能及时调整思路。
2、加强知识逆向运用的训练
从正面思维转向逆向思维是思维灵活性的一种表现。不少问题正向思考已山重水复,改为逆向思维可又柳暗花明。知识逆向运用的训练包括定义的逆用,公式、法则、定理的逆用等。
反常规方法的运用也是一种逆向思维训练。进中求退、化简为繁、反客为主、正难则反等反常规方法可开拓学生思路,克服思维定势的影响,提高思维的灵活度。
思维敏捷性训练
思维的敏捷性是指思考问题时,思维主体能对客观事物作出敏锐快速的反应,它反映了思维活动中的反应速度和熟练程度。只有准确掌握基础知识和形成熟练的基本技能,达到融会贯通,才能有真正的敏捷性。
1、思维定向训练
思维定向训练就是训练学生在遇到新问题时,善于“化归”为某种数学模式,善于通过对已知条件和结论的分析,尽快形成明确的解题思路。为此,教学中应注意对数学思想、方法、经验的积累,重视对一般规律的提示。
2、思维技能训练
我们对学生进行思维技能的训练不能局限于机械呆板的操作上,比如解二元一次方程组,其基本的思想和方法学生掌握之后,重点训练学生如何通过观察、判断,迅速地选择合适的方法,并求出其解,而不是呆板的运用某一种方法。我认为这一点很重要,很多学生在解决问题时不够注意,总是拿到题目之后就开始动笔,缺少分析、观察的过程,容易走弯路,甚至是歧路。
锻炼大脑思维的方法
1、灵活使用逻辑。有逻辑思维能力不等于能解决较难的问题,仅就逻辑而言,有使用技巧问题。何来?熟能生巧。学数学可知,解题多了,你就知道必须出现怎样的情况才能解决问题,可叫数学哲学。总的来说,文科生与理科生差异在此,不在逻辑思维的有无。同时,现实中人们认为逻辑思维能力强的,实际上是思想能力强,并无分文理。而且思想也不是逻辑地得到,而是逻辑地说明。
2、参与辩论。思想在辩论中产生,包括自己和自己辩论。例如关于是主权高于人权还是相反,我认为是保护人权的主权大于人权,不能包括导致国王享用婴儿宴的主权,既必须界定主权,前者有条件成立。导致该认识的原因是有该问题辩论,否则不会去想。
3、坚守常识。其实我很轻松得到关于人权的个人结论,原因是不论大牌专家怎么宏论,我不认同的道理只有一个,我坚守谁都不愿意自己的正当权利被侵犯,除非不得已这样的常识。因为坚守这个常识,就要具体分析主权比如国家保有军队的权利,该权利会在不同情况下要求国民承担不同义务,战时似乎侵犯人权,但这是为每个人安全需要的一种付出,主权必须具有正当性。可见坚守常识及逻辑地得到的结论的重要性。要注意的是,归纳得到的结论不能固守,因为归纳永远是归纳事物的一部分,不可能是全部,它违反部分怎样不等于全部怎样的常识,例如哲学。中国人常常用哲学说明问题,总是从一个一般到另一个一般,所以说而不明,好象不会逻辑思维,谬矣。
4、敢于质疑。包括权威结论和个人结论,如果逻辑上明显解释不通时。
篇5:创新思维的灵活性是什么
创造性思维思路开阔,善于从全方位思考,思路若遇难题受阻,不拘泥于一种模式,能灵活变换某种因素,从新角度去思考,调整思路,从一个思路到另一个思路,从一个意境到另一个意境,善于巧妙地转变思维方向,随机应变,产生适合时宜的办法。创造性思维善于寻优,选择最佳方案,机动灵活,富有成效地解决问题。
篇6:创新思维的灵活性是什么
与保守思维重复旧模式、执著旧思路的呆板性不同,创新思维过程往往表现出极大的灵活性、应变性。一次,一位女主持人走上舞台时不小心摔倒了,观众席上立刻传出一阵哄笑声。怎么办?这位主持人的头脑中迅即闪出一连串应急方法,躺着不动,假装晕倒,爬起来,退到后台,请求换一位主持人退到后台,定一定神再说;站起来,向观众道歉;站起来,向观众解释摔倒的原因;站起来,当作什么事也没发生,按原定方案继续主持节目。这些方法效果都不理想,都会带来负面影响,最后她忽然灵机一动,站起来,面对观众,大声说道“我刚才是为热心的观众而倾倒。”观众席上的哄笑声立即为掌声所代替。
怎么进行思维能力的训练
(1) 推陈出新训练法
当看到、听到或者接触到一件事情、一种事物时,应当尽可能赋予它们的新的性质,摆脱旧有方法束缚,运用新观点、新方法、新结论,反映出独创性,按照这个思路对学生进行思维方法训练,往往能收到推陈出新的结果。
(2) 聚合抽象训练法
把所有感知到的对象依据一定的标准“聚合”起来,显示出它们的共性和本质,这能增强学生的创造性思维活动。这个训练方法首先要对感知材料形成总体轮廓认识,从感觉上发现十分突出的特点;其次要从感觉到共性问题中肢解分析,形成若干分析群,进而抽象出本质特征;再次,要对抽象出来的事物本质进行概括性描述,最后形成具有指导意义的理性成果。
(3) 循序渐进训练法
这个训练 法对学生的思维很有裨益,能增强领导者的分析思维能力和预见能力,能够保证领导者事先对某个设想进行严密的思考,在思维上借助于逻辑推理的形式,把结果推导出来。
(4) 生疑提问训练法
此训练法是对事物或过去一直被人认为是正确的东西或某种固定的思考模式敢于并且善于或提出新观点和新建议,并能运用各种证据,证明新结论的正确性。这也标志着一个学生创新能力的高低。训练方法是:首先,每当观察到一件事物或现象时,无论是初次还是多次接触,都要问“为什么”,并且养成习惯;其次,每当遇到工作中的问题时,尽可能地寻求自身运动的规律性,或从不同角度、不同方向变换观察同一问题,以免被知觉假象所迷惑。
(5) 集思广益训练法
此训练法是一个组织起来的团体中,借助思维大家彼此交流,集中众多人的集体智慧,广泛吸收有益意见,从而达到思维能力的提高。此法有利于研究成果的形成,还具有潜在的培养学生的研究能力的作用。因为,当一些富个性的学生聚集在一起,由于各人的起点、观察问题角度不同,研究方式、分析问题的水平的不同,产生种种不同观点和解决问题的办法。通过比较、对照、切磋,这之间就会有意无意地学习到对方思考问题的方法,从而使自己的思维能力得到潜移默化的改进
篇7:如何培养学生发散思维
一、从多维猜想入手
在小学数学教学过程中,学生由于思维模式单一,对问题的看法或见解往往比较片面或者呆板,在这种情形下,学生思考问题自然不深,此时,教师要鼓励学生从多维猜想入手,充分调动学生思维的灵活性与深刻性,从而使学生的发散能力得到明显提高。
如在教学人教版数学五年级下册《能被3整除的数的特征》一课时,传统教法是让学生先熟背能被3整除的数的特征的定义、概念、规律,然后,再按照这种定义解决具体问题。这样教学,不利于学生发散性思维的发展,因此,在学生已有能被2,5整除的数的特征认识的基础上,教师引导学生猜想:能被3整除的数的特征可能是什么?在教师的鼓励下,学生展开了大胆猜想:有的说“个位上是3的数能被3整除”;有的说“各位上的数的和是3的倍数的数能被3整除”;有的说“各个数位上的数都应该是3”。就这样,在猜想和验证的过程中,学生的发散性思维得到了有效培养。
本案例在教学“能被3整除的数的特征”时,教师主要从鼓励学生多方猜想引入,让学生尽情发表自己的看法,并在经历猜想、验证的过程中,不仅使学生对所学知识的印象更加深刻,而且学生的发散思维能力也得到了发展。
二、从多元解题入手
广阔性是发散思维的重要特征,鉴于此,在学生解题过程中,教师要引领学生从不同的角度思考问题、解决问题,鼓励学生寻求多种解决问题的途径。因此,在课堂教学中,教师要鼓励学生灵活变通,思维不应局限于一种认识上,而是能够从中心向四周不同方向扩散。
如在解决“幸福小学原计划买12个篮球,每个72元,现在从买篮球的钱中先拿出432元买足球,剩下的钱还够买几个篮球?”这个数学问题时,由于习题中“从买篮球的钱中拿出432元”这个条件的提出很容易对学生产生干扰,因此,教师先鼓励学生用自己喜欢的方式解决问题,并说明理由。在教师的鼓励下,学生从自己的需要出发,选择自己喜欢的解题方式,得到了以下几种结果:
①(72×12-432)÷72 ②12-432÷72
=432÷72 =12-6
=6(个) =6(个)
③设剩下的钱还可以买x个篮球
72x=12×72-432
72x=432
x=6
④设剩下的钱还可以买x个篮球
72x+432=72×12
72x+432=864
672x=864-432
x=6
由于学生在解题时思维方式不同,思考的路径不同,解决问题的方法自然也不会一样,但是,殊途同归,不管学生采取哪种方法,都是为了能够顺利解题,这样教学,有利于学生在多种算法中结、提炼出最优的算法,从而为学生发散思维的培养奠定了基础。
三、从多方追问入手
在小学数学课堂教学中,学生由于思维深度不同或因思维惰性所致,在回答问题时没有从深入把握问题本质的层面去思考、回答,导致回答问题时大都停留在一个浅层的局面,不利于学生发散思维的培养。因此,教师要根据学生回答问题的情况,进行多方追问,促使学生的发散思维得到有效培养。
如在教学六年级下册《圆柱的体积》一课时,为了激活学生的思维,教师提问:“我们已经知道了圆柱体积的计算方法,那么,如果往这个圆柱形容器里注入适量的水,你能求出这个容器中水的体积吗?”学生很快回答道:“量出水的长宽高就行了。”教师继续追问:“如果在水中放入一块土豆,你能求出土豆的体积吗?”在教师的鼓励下,学生纷纷说出了自己的解决办法。通过这样有效追问,引领学生由浅入深地分析问题、解决问题,从而使学生在剖析问题、分析问题的过程中不仅明白了解决问题的本质,而且发散思维也得到了有效发展。
总之,教师要根据学生所学知识的需要,鼓励学生猜想,并根据学生回答问题的状况及时追问,进一步培养学生的发散思维能力,提高课堂教学效果。
篇8:如何培养学生数学思维
训练学生的数学思维应有系统
散乱无序的思维是不能正确反映客观世界的整体性的。“所谓智力的发展不是别的,只是很好组织起来的知识体系”,要使数学知识在考虑数学知识本身的逻辑系统和学生认知规律的相互作用下,能上下、左右、前后各个方向整合成一个纵向不断分化,横向综合贯通,联系密切的知识网络,使数、形、式各部分知识纵横联系,相互促进,广中求深。实践证明,知识联系越紧密,智力背景就愈广阔,迁移能力也就越强,创造性思维就越有可能。一个多方向、多层次的整体结构,对知识的理解、掌握、储存、检索和应用愈有利。
但由于小学身心发展的自身规律决定了教师在教学中不可能将知识一下子整体传授给学生,而是在教学时具有一定的等级层次性、阶段性,不同的层次、不同的阶段反映不同的思维水平和不同的思维品质。如小学数学中整数计算的四次循环,分数、小数的两次循环。而三角形知识的两次教学等。教师在教学时应从整体的、系统的观点出发,明确每一层次、每一阶段对学生思维训练的要求,恰到好处地进行训练。
训练学生的数学思维要有方向
小学生学习数学的思维方向明显特点是单向直进,即顺着一个方向前进,对周围的其他因素“视而不见”。而皮亚杰认为思维水平的区分标志是“守恒”和“可逆性”。这里在所谓“守恒”就是当一个运算发生变化时,仍有某些因素保持不变,这不变的恒量称为守恒。而“可逆性”是指一种运算能用逆运算作补偿。学生要能进行“运算”,这个运算应当是具有可逆性的内化了的动作。
因此,教师在教学中既要注重定向集中思维,又要注重多向发散思维。前者是利用已有的信息积累和记忆模式,集中向一个目标进行分析推理,全力找到的合理的答案。后者是重组眼前或记忆系统中的信息,产生新的信息。解答者可以从不同角度,朝不同方向进行思索,探求多种答案。在对培养学生创造能力越来越强烈的今天,我们必须十分注重学生数学思维的方向性,要利用一切教材中的有利因素,训练学生一题多解、一题多变、一题多用的思维方法。
2数学教师如何培养学生的创新能力
教师要对学生创新能力的发展尽到培养和保护的责任
学生的创新意识和创新能力在早期是不成熟的,教师要允许他们在探索中出现这样那样的错误。关键是要弄清出现错误的原因,让他们以积极的态度承认错误改正错误,这本身也就是在培养他们的创新态度。教师要以辩证的观点和发展的眼光进行多元化的发展评价。从客观上保护学生思维的积极性,从而促进学生以积极的态度投入到学习中。在数学教学中,经常遇到学生“插嘴”,影响正常的讲课,教师要把这种现象理解为学生思维敏捷的表现,理解为学生的思路紧跟或超过讲解的速度的表现,理解为这是学生创新能力的萌芽而正面引导,不要理解为学生不遵守纪律,捣乱课堂。
否则,将会阻碍学生创新能力的产生和发展。作为一个创新型的教师,不管学生在课堂内外,不管回答问题或提出问题,不管是否超出讲授内容或怎样离奇,都要给予积极评价,明确的赞扬,增加学生的自信心,表达你对他们的关注和赞许。教师要树立良好的教风,不要让学生成为“小绵羊”,不能让学生完全按教师自己的设计轨道行走,要让学生积极发言,积极思维,敢于说出自己的看法,敢于发表与大家不同的见解。这样既可以使学生在学习过程中产生愉悦的情感体验,调节课堂气氛,调动学生学习和思维的积极性,又能使学生受到激励,师生间产生情感交流,相互感染,共同体验教学和学习成功的愉快和喜悦。
类比迁移法是培养思维能力的有效途径
1、运用类比迁移法启迪学生思维想象。教学两位除以一位数笔算时,我出示这样一个例题,63÷3时,由于学生会做6÷3或3÷3,我先用一张纸把63遮住一个数,让学生说出商,然后换遮一个数,又让学生说出商,这样启迪学生运用已有的知识来解决63÷3,这时学生对两位数除以一位数有了一定兴趣,教师此时顺水推舟,指点学生除到哪一位,商就写在哪一位上。引导学生仿照上述过程来解决二位数除以一位数的问题,学生通过比较模仿并展开联想,思维能力得到显著提高。
2、通过分析归纳,培养学生创新思维能力。教学平面图形面积计算公式后,我要求学生归纳一个能概括多个平面图形面积公式,我让学生进行讨论,学生归纳总结小学阶段学过的面积公式都可以用梯形面积的公式计算。梯形的面积公式是(上底+下底)X高÷2,而长方形,正方形,平行四边形的上底和下底相等,可将公式变为底(长,边长)X高(宽,边长)X2÷2=底(长,边长)X高(宽,边长),又因为圆面积公式是根据长方形面积公式推出来的,因此梯形面积公式对圆也同样适用,当梯形的上底为零时,(即梯形上一个三角形)这时梯形面积公式成:底×高÷2,即三角形面积公式。通过分析、归纳学生不仅能更好地熟悉掌握平面图形的面积公式,同时也培养学生的创新思维能力。
文档为doc格式