欢迎来到千学网!
您现在的位置:首页 > 作文大全

比和比例应用题作文

时间:2022-05-21 21:42:53 作文大全 收藏本文 下载本文

【导语】下面是小编收集整理的比和比例应用题作文(共30篇),供大家参考借鉴,欢迎大家分享。

比和比例应用题作文

篇1:比和比例应用题作文

比和比例应用题作文

两个数相除,叫做两个数的.比。表示两个比相等的式子,叫做比例。应用题比和比例和方法解答的应用题叫做比和比例应用题。比和比例应用题涉及面很广。这里,我们只研究按比例分配和正反比例应用题。比和比例应用题作文100字

小学生作文(中国大学网)

篇2:比和比例的应用题

比和比例的应用题

(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(2)在一幅的平面图上,量得一块平行四边形的菜地的底是12厘米,高是10厘米,这块菜地的实际面积是多少公顷?

(3)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(4)在一幅地图上,用3厘米的线段表示实际距离600千米。在这幅地图上,量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(5)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(6)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(7)在比例尺是15000000 的地图上,量得甲、乙两地的距离是9.6厘米。甲、乙两地的实际距离是多少千米?

(8)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(9)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(10)在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(11)在比例尺是1∶300000的地图上,量得甲、乙两地的距离是12厘米,它们之间的实际距离是多少千米?如果改用1∶500000的比例尺,甲、乙两地的`距离应画多少厘米?

(12)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?(用比例解)

(13)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?(用比例解)

(14)修一条公路,原计划每天修360米,30天可以修完。如果要提前5天修完,每天要修多少米?(用比例解)

(15)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)

(16)修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)

(17)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)

(18)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)

(19)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约1/8,实际可以烧多少天?(用比例方法解)

(20)两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米? (用比例方法解)

(21)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)

(22)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。从动轮有20个齿,每分转多少转?(用比例方法解)

(23)6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?(用比例方法解)

(24)一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?(用比例方法解)

(25)某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车?(用比例方法解)

(26)用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?(用比例方法解)

(27)种农药,药液与水重量的比是1:1000。

(1)、20克药液要加水多少克?

(2)、在6000克水中,要加多少克药液?

(3)、现在要配制这种农药500.5千克,需要药液和水各多少千克?

(28)一种稻谷每1000千克能碾出大米720千克。照这样计算,要得到180吨大米,需要稻谷多少吨?

(29) 某工程队修一条公路,已修了1200米,这时已修的未修的比是3:2,这条公路全长是多少米?

(30)园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。这批树苗一共有多少棵?

(31)一辆汽车三天共行720千米,第一天行驶5小时,第二天行驶6小时,第三天行驶7小时,如果每小时行驶的路程都相同,这三天各行多少千米?

(32) 甲、乙两地相距350千米,一列快车和一列慢车同时从两地相对开出,3.5小时后相遇。已知快车和慢车的速度比是3:2,这两列火车的速度分别是多少?

(33) 甲、乙两堆煤原来吨数比是5:3,如果从甲堆运90吨放入乙堆,这时两堆吨数相等,甲、乙原来各有多少吨?

(34)园林绿化队要栽一批树苗,第一天栽了总数的15% ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。这批树苗一共有多少棵?

(35)生产一批零件,计划每天生产160个,27天可以完成,实际每天超产20个,可以提前几天完成?(36)用边长15厘米的方砖铺一块地,需要块,如果改用边长为20厘米的方砖铺地,需要多少块?

(37)一堆煤用载重4吨的汽车运需20辆才能一次运完,如果改用载重5吨的汽车运,需要几辆才能运完?

(38)学生参加搬砖劳动,6人搬砖162块,照这样计算,再增加432块,需要学生多少人?

(39)一捆铅丝重520克,剪下20米,这捆铅丝少了130克,这捆铅丝还剩多少米?

(40)运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

篇3:比和比例的经典应用题

比和比例的经典应用题

一、请用比例的方法试解下列应用题:

1、配制一种农药,药粉和水的比是1:500.

(1) 现有水6000千克,配制这种农药需要药粉多少千克?

(2) 现有药粉3.6千克,配制这种农药需要水多少千克?

2、学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?

3、一个房间,用面积为9平方分米的方砖铺地需240块,如果改用边长4分米的砖铺地,需多少块?

4、服装厂原来生产一套成人西服用布2.5米,改进裁剪方法后,每套节约用布20%,原来生产240套西服的布,现在可生产多少套?

二、应用题:用合适的方法进行求解

1、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

2、甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

3、在比例尺是

的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

5、甲乙两人分别从相距255千米的`两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

6、小淘气看一本科技书,第一天看了全书的 ,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?

7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

8、某车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?

9、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?

10、客货两车的速度比是3:2,货车行完甲乙两地全程要 小时。如果客货两车同时从甲乙两地出发,几小时可以相遇?

三、生活题:

吴工程师和李技术员从公司出发,合乘一辆出租车,吴工程师去实验室,李技术员去工地。(如下图)两人商定出租车费由两人合理分摊。

公司        4千米       实验室                                     工地

12千米

已知出租车的车费牌价为:0~3千米(起程价)8元;3千米以上每千米1.8元。

①他俩的车费共计多少元?                 ②吴工程师应承担多少元车费?

篇4:数学比和比例应用题总复习题

数学比和比例应用题总复习题

1.某校六年级举行数学竞赛,一班占参赛人数的 ,二班和三班参赛人数的比是11:13,二班比三班少8人,,三个班各有多少人参加?

2.甲做一个竹盒要20分钟,乙做一个同样的竹盒要22分钟,现在两人同时做,一共做了147个竹盒。两人各做了多少个?

3.大新小学,男生人数的 等于女生人数的 ,女生人数比男生人数少40人,这个小学共有学生多少人?

4.甲、乙两个瓶子的容积相等,甲瓶中酒精与水的体积比是5:2,乙瓶中酒精与水的体积比是4:1,甲、乙两瓶的混合液中酒精与水的体积比是多少?

5.一个长方体的棱长总和是192厘米,长、宽、高的比是3:4:5,它的.体积是多少立方厘米?

6.甲、乙两车同时从A城4开往B城,已知甲车行完全程需5小时,乙车行完全程与甲车行完全程所需时间的比是6:5,当甲车到达B地时,乙车还距B城54千米。A、B两城的距离多少千米?

7.一个比例式,两个外项的和是37,差是13,比值是 ,写出这个比例式。

8.十月份第一车间与第二车间的产量比是4:7,第一车间与第三车间的产量比是5:3,第三车间比第二车间少生产1380件。三个车间各生产多少件产品?

9.甲、乙、丙三人共同得奖金124元,乙所得的是甲的 ,乙、丙两人所得的比是 。问三人各得奖金多少元?

10.买甲、乙两种铅笔共210枝,甲种铅笔每枝3元,乙种铅笔每枝4元,两种铅笔用去的钱数相等。问甲种铅笔买了几枝?

本文为大家推荐的是总复习题,希望大家在考试中取得优异的成绩

篇5:比和比例应用题的教学设计

教学要求:

1、使学生加深理解比与除法、分数的关系,能用不同的表述方法说明比、分数和倍数关系的含义。

2、使学生进一步学会应用不同的知识解答比和比例的应用题,培养学生灵活、合理地解答应用题的能力。

教学过程:

一、揭示课题

1、口算。

让学生口算练习二十二第3题。

2、引入课题。

我们已经复习了比和比例的知识,知道了比和除法、分数之间的联系,根据这样的联系,对于比和比例应用题,可以用不同的方法来解答。这节课,我们来复习用不同的方法解答比和比例应用题。(板书课题)通过复习,要学会用不同的'知识解答同一道应用题,提高灵活、合理地解答应用题的能力。

二、复习比与除法、分数的关系

1、提问:比与除法、分数有什么关系?

2、出示:甲数与乙数的比是1 :4。提问:根据甲数与乙数的比是1 :4,你能用分数、倍数关系表示甲数与乙数的关系吗?

3、做练习二十二第4题。

小黑板出示。指名一人板演,其余学生做在课本上。集体订正,选择两题让学生说说是怎样想的。

三、用不同方法解答应用题

1,说明:对于一个比或一个分数、倍数,我们都可以从不同的角度来理解数量之间的关系。这样,就可以用不同的知识来解答关于比和比例方面的应用题。

2、做“练一练”第1题。

让学生读题,再说一说80克盐这个数量与比的哪一部分是对应的。提问:盐和水的重量比1 :15可以怎样理解?提问:按照1 :15这三种角度的理解,题里已知盐重80克,你能用三种不同的方法解答吗?请同学们做在练习本上,如果有困难,再看看书上是怎样想的。(老师巡视辅导)指名学生口答算式,老师板书三种解法。提问:第一种解法为什么用80×15可以求出加水的重量?这样做的数量关系是怎样的?第二种解法按怎样的数量关系列等式的?为什么用方程解答?第三种解法是按怎样的方法解答的?列比例的依据是什么?提问:这三种不同的解法,都是根据哪个条件来找数量之间的关系的?指出:这三种解法虽然不同,但都是根据盐和水的重量比1 :15这个条件,从倍数、分数和比的意义这三个不同的角度来找出盐和水的重量之间的关系,得出相应的三种解法,求出了问题的结果。

3、做“练—练”第2题。

学生读题。指名板演,其余学生做在练习本上。集体订正,让学生说说各是怎样想的。注意学生中的不同解法。

4、做练习二十二第5题。

让学生默读题目,找一找三道题的相同点和不同点。谁来说一说,每题里元数与份数是怎样对应的?指名三人板演,其余学生做在练习本上,要求学生每道题用两种方法列出算式,不要计算结果。集体订正,让学生说说每种解法是怎样想的。追问:这里都是把哪个条件经过转化后找出不同解法的。

5、讨论练习二十二第6题。

请大家比较一下,这两题有什么相同和不同的地方?合唱组人数是舞蹈组的2倍可以怎样理解?两题里的人数对应的份数各是怎样的?

6、做练习二十二第7题。

让学生比较相同点和不同点。提问:第(1)题男衬衫和女衬衫件数的比是几比几?第(2)题男衬衫和女衬衫件数的比是几比几?这里两道题请同学们都用两种方法解答。指名两人板演,其余学生在练习本上列出算式。集体订正。提问:用分数知识解答这两道题列出的方程为什么不一样?各是按怎样的数量关系列方程的?用比的知识解答这两道题时列出的式子有什么不一样?为什么会不一样?还有没有不同的解法?指出:解答应用题要根据题意,弄清题里的数量关系,根据数量关系列式解答。

四、课堂小结

提问:比和比例应用题,或者倍数、分数应用题,用不同知识解答时,主要把哪个条件从不同角度理解的?(用比、分数或倍数表示两种量关系的条件)指出:由于表示两个数量关系的条件可以从不同角度理解,所以,解题时就可以根据每次理解这个条件的知识,用相应的方法灵活、合理地解答。

五、布置作业

课堂作业:练习二十二第6、8题。

家庭作业:“练一练”第3题。

篇6:比和比例

申晋良

教学目标:

1、使学生理解比的意义和性质,掌握 求比值和化简比的方法。

2、理解按比例分配的意义,会解答按比例分配应用题。

3、理解比例的意义和性质,掌握解比例的方法。

4、使学生理解比例尺的意义,会求平面图的比例尺或根据比例尺求图上距离、实际距离。

5、理解正比例和反比例的意义,掌握判断两种量是否成正比例活泛比例的方法,会解答最基本的正比例、反比例应用题。

教学重点:

1、比例的意义和基本性质。

2、正比例和反比例的意义。

教学难点:

理解正反比例的意义。

第一课时

3.27

教学目标:在学习除法的基础上,学习比的意义。

教学重点:理解比的意义并能正确写出笔,直到比与除法、分数之间的关系。

教学难点:理解比的意义。

教学过程:

一、复习准备

列式解答下面各题

我们班男生4人,女生12人,女生人数是男生人数的几倍?男生是女生的几分之几?

学生回答

提问:你还能说出两种量相除的事例。学生举例。

二、新授

(一)揭示比的意义

1、男生是女生的几分之几? 4÷12,可以说成男生和女生人数的比是4比12。

2、女生是男生的几倍?12÷4,可以说成女生和男生的比是12比4。

强调谁和谁比。试着把同学们自己说的关系用比来表示。

3、总结:比的意义:两个数相除又叫两个数的比。

(二)、学习比的各部分名称

1、 12 : 4

前项 比号 后项

2、求比值

提问如何求比值?前项除以后项

(三)、比与分数、除法之间的关系

1、分组讨论

2、交流汇报

三巩固练习

1、把下面各比用分数表示出来。

17∶8 4∶1 20∶10

2、满载抗洪救灾物资的货车3小时行270千米,汽车5小时行200千米,你能说出几个比吗?

四、作业 数学书59页1题

五、板书、 比的意义

两个数相除又叫两个数的比。

6 ∶ 5

前项 比号 后项

第二课时

3.29

教学目标:学习比的性质并运用性质化简比。

教学重点:学习化简比的方法

教学过程:

一、复习

1、什么叫比?

2、比与分数、除法的关系?

二、新授

(一)、学习比的性质

出示:20∶5 8∶2 16∶4 4∶1

10∶2 25∶5 20∶4 5∶1

1、读出比来。

2、计算比值:你们发现了什么?

3、小组交流(1)这些比的前项和后项是怎么变化的?

(2)总结比的性质

(二)、化简比

提问:你们说出几个比来?要求说得和别人的不一样。

有:小数比、分数比、百分数比、整数比

师:刚才打家举的例子,有的不是最简单的整数比,你能化简比吗?

1、 小组学习:

2、交流汇报:说说你是怎么化简的?

3、总结化简方法。

三、巩固练习

1、填空

15∶5 =3∶ 28∶12 = ( )∶3

1∶4= ( )∶8 12.5∶10= 5∶( )

2、化简比

65 ∶40 75∶15 0.35∶1.26 4/5∶1/3

3、2:25化成后项是100

4、9.6:3X=8

四、作业

数学书60页5、6、8、9题

五、板书: 化简比

20∶35=4∶7

0.75∶0.5=3∶2

3.30 科任月考

3.31 语树英月考

第三课时

4.3

教学目标:复习比的意义和化简比。

教学重点:达到熟练化简比

教学过程:

一、复习

1、直接化简比

出示:10∶5 0.5∶0.1 2/3∶2/3

2、口算比值

75∶15 1000∶125 100∶4

2∶5 2/3∶2/3 1∶5

二、应用

1、满载救灾物资的货车3小时行270千米,汽车5小时行200千米,你能说出几个比来吗?并化简比、求出比值。

2、甲拖拉机3.5天耕地23.1公顷,乙拖拉机2.25天耕地1.7公顷。

写出甲、乙两台拖拉机耕地时间的最简单的整数比。

写出甲、乙俩台拖拉机工作效率的最简单的整数比。

3、求比值并化简比

18∶63 0.75∶0.25 9.9∶1.21 3.6∶4.8

第四课时

4.4

教学目标:1.使学生理解比例的意义。

2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

3.培养学生分析问题、解决问题的能力和创新能力。

教学重点:理解比例尺的意义。

教学难点:根据比例尺求图上距离和实际距离。

教学过程:

一、复习:

1. 将比改为除法算式

5/3 A/B X:9 31:X

2. 说出比值

3:900

3. 求未知项

4. 导入新课:刚才我们复习了有关比的知识,这些知识与我们的实际生活有什么联系呢?我们就一起来研究有关比的知识在实际生活中的应用。

二、探索、学习新知识:

1、 学校要举行运动会,操场长80米,宽40米,你能按实际距离画在16厘米的正方形纸上吗?该怎么办?

2、在平面图上,可以用多长来表示实际的长和宽呢?

3、小组设计,看看长和宽都缩小了多少倍?

4、讨论什么叫比例尺?

这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

比例尺怎样求:(看上述四个比例式得出):

图上距离实际距离=比例尺

5、理解比例的意义。

三 、巩固练习:

(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

比例尺有多少种表示方法?让生说一说

(常见的有:比的形式 分数的形式 线段形式)

四、总结:通过这节课的学习,你有什么收获?

五、作业:

六、板书: 比例尺

图上距离∶实际距离=比例尺

第五课时

4.5

教学目标:1、运用比例尺求实际距离或图上距离。

2、培养学生分析问题、解决问题的能力和创新能力。

教学重点:能够根据比例尺求实际距离或图上距离的方法。

教学过程:

一、复习准备

1、什么叫比例尺?

2、求比例尺?

二、运用比例尺解决问题:

根据比例尺的关系式,求实际距离。

(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

(学生独立解答,同时抽一生板演)

解:设上海到北京的实际距离为x厘米,

105000000厘米=1050千米。

3.5∶x=1∶3000000

x=1050

答:上海到北京的实际距离大约是1050千米。

(2)学习例3:

1、独立学习完成

2、交流汇报。

(3)认识线段比例尺

三、.巩固练习

1. 1. 在一幅比例尺是16000000的地图上,量得一座城市和海港的距离是8厘米。这个城市离海港有多少千米?

2. 2. 在150000000的地图上,量得一条铁路从起点到终点的长是2.8厘米。这条铁路长多少千米?

先让学生独立解答,后讲述。

四、回顾总结:

今天你又有那些收获?已知图上距离和比例尺求实际距离时,应注意那些事项?

五、作业:

板书:

比例尺

图上距离实际距离=比例尺

例2解:设上海到北京的实际距离为x厘米,

105000000厘米=1050千米。

3.5∶x=1∶3000000

x=1050

答:上海到北京的实际距离大约是1050千米

第六课时

4.7

教学目标:使学生理解按比分配的意义,使学生掌握解答方法〉

教学重点:理解按比分配的意义。

教学过程:

一、 复习引入

1、 同学们,你们分过东西吗?如果请你们帮助老师分一分包里的东西,大家像一项都要知道什么?

2、 下面分一分我们学校的这块卫生区,学校卫生区有200平方米,平均分给5个班,每隔半分得多少平方米?

列式计算

(1) 如果六年级负责三份,分多少平方米?

(2) 五年级负责两份,分多少平方米?

3、 变形:如果我们把这块卫生区看作单位1,这道题可以这样叙述:学校有一块平方米的卫生区六年级负责其中的3/5,五年级负责2/5.个负责多少平方米?

二、 新授

学校有一块200平方米的卫生区,分给六年级和五年级,他们负责的面积的比是3:2,两个班各负责多少平方米?

利用旧知识解决问题

1、 分组讨论学习

2、 交流汇报

3+2=5

200*3/5=120平方米

200*2/5=80平方米

3、 确定解题思路

(1) 确定总分数

(2) 把比转化成分数。

(3) 求一个分数的几分之几十多少?

三、 总结

四、 练习

1、学校科技组、英语组运动队共33人它们之间的比是1:2:3

每个组各有多少人?

2、讨论:甲乙丙三个修路队和修一条长200千米的公路,已知甲修了50千米,乙丙两队的比是2:3,丙队修多少米?

3、选择:长方形州长14米,长与宽的比是6:1长与宽各多少米?

(1)6+1=7 (2)6+1=7

14*6/7=12 14/2=7

14*1/7=2 7*6/7=6

7*1/7=1

五、 作业:数学书66业1、2、3题

六、 板书: 按比分配

第七课时

4.7

教学目标:深化对按比分应用题地掌握,能够熟练解答应用题。培养学生认真审题的良好习惯。

教学重点:达到熟练解决此类应用题。

教学过程:

一、复习铺垫

1、请你说说上节课我们所学内容的解题思路。

2、口答:小兰家养了24 只.......,公.......和母.......只数的的比是1:5,

公.......和母.......各有多少只?

二、新授

(一)、出示:建筑工地上混凝土使用沙子、水泥和石子配制而成的。沙子、水泥、石子重量的比是3:2:5。要配制12吨这样的混凝土,需要沙子、水泥、石子个多少吨?

1、独立完成。

2、检查汇报:把你的列式和想法说给大家听一听。

3、追问:你为什么这样做?

4、你怎么验证这道题是正确的?

(二)、继续研究

希望小学把508本图书按照六年级三个班的人数分配分配给每个班,一班有40,二班有42人,三班有45人,三个班各得图书多少本?

1、分组学习

2、讨论汇报。

三、巩固练习

1、一个长方体,长、宽、高的比是3:2:1。棱长总和是48 厘米,这个厂房体积是多少立方厘米?

2、蓝田纺织厂把库存原料按照2:4:3分配给甲、乙、丙三个车间,已知甲车间得到54吨原料,这个厂一共有原料多少吨?两车间分到原料多少吨?

四总结:

五、作业:数学书67业7、8、9题

六、板书: 按比分配

例2 建筑工地上的混凝土使用沙子、水泥、石子配制而成的。沙子、水泥、石子重量的比是3:2:5。要配制12吨这样的混凝土,需要沙子、水泥、石子个多少吨?

3+2+5=10

12*3/10=3.6

12*5/10=6

12*2/10=2.4

4.10 看电影

第八课时

4.11

教学目标:在已有的知识基础上理解比例的意义。知道什么是比例。

教学重点:理解比例的意义。

教学过程:

一、复习铺垫

请同学们任意说出几个比来,并求比值。

二、新授

1、求下面各比得比值你发现了什么?

4:3.2 1/3:2/5 6:24

12:4 0.6:0.2 9:15

0.2:0.8 5:6 3:5

学生计算,讨论其规律。

2、这些比值相等的比写成等式形式

3、理解比例的意义(像这样的式子我们把他叫比例)。

4、提问:你说一说什么叫比例?(表示两个比相等的式子叫做比例)

5、小结:、想一想根据什么判断两个比是否成比例?

6、学习比例的外项、内项

7、学习比例的基本性质

三、巩固练习

1、判断是否成比例

21:14和9:6

3:0.6和1:0.2

9/12和12/15

4/5:5和8:15

2、练习的4、5题

四、作业:数学书71页2、3、6、7题

五、板书: 比例

3:5=9:15

12:4=0.6:0.2

1/3:2/5=5:6

表示两个比相等的式子叫做比例。

篇7:比和比例说课稿

加强知识的内在联系,形成良好的数学认知结构。

数学的复习过程,其实就是学生的知识不断重组,并形成良好的认知结构的过程。在此过程中,学生的自主整理和构建知识网络的能力就显得特别重要。毕业班的复习课注重帮助学生把分散在各年级、各章节中有关的数学知识上下串联,左右沟通起来。理清知识体系要充分调动学生的主动性和积极性,要让学生自己动手动脑,教师的作用主要是引导、帮助、点拨和补充。

《比和比例》属于概念课,为了让学生对比和比例的知识形成整体的认识,又能把握住知识之间的联系和区别,达成触类旁通,一举多得,我将比和比例的知识进行对比复习,深化基本概念。《比和比例》这部分内容概念较多,而且这些概念之间有联系也有区别,学生容易混淆,上课之前,我是这样备课的:把各知识点用表格列出来(比和比例的意义、各部分名称、比和比例的基本性质;化简比和求比值;比和分数及除法的关系)。

通过列表的方式使学习的知识系统化,并分别从区别和联系两个方面对这些概念进行比较,也明确了各知识点的共性和个性,从而达到学生对知识的理解,更重要的是渗透了学生对各类信息的整合、梳理,培养了科学的学习方法,让学生学会学习。为了让学生对比和比例的知识形成整体的认识,又能把握住知识之间的联系和区别,达成触类旁通,一举多得,我将比和比例的知识对比复习,深化基本概念。

基于上述考虑,我在设计比和比例这节复习课时考虑了一下几个环节。

1、问学生“关于比和比例我们已经知道了些什么?”

当问学生“关于比和比例我们已经知道了些什么?”时,同学们讲了很多,同时也深深感到这些知识点如果这样处理的话会显得零乱、无序、缺乏系统化,这一环节的处理旨在激发学生“自主萌生出整理知识,梳理结构”的需求。

2、在此基础上以小组为单位展开学习

学生在明确了学习要求之后学习的愿望得到了满足,学生学习方向明确,学习要求具体,认知冲突相对集中,这样学生的兴趣浓厚了,每一位学生有了具体的任务,避免了小组学习只搞形式学生无事可干的尴尬局面。

但是在这样设计这节课之前我也重点权衡了一组矛盾,也就是学生将知识图表化的过程需要较长的一段时间,如果把这一过程放在课堂上的话可能会“浪费”很多时间,具体的练习就会很少,甚至没有。但是如果放在课前去完成的话,学生的整理只是把概念抄一抄而已,还是缺乏知识的系统化。所以我决定还是把这个过程放在课堂上去完成,因为我想作为一节复习课我不仅仅是一些题海战术,而是应该给学生数学思想和方法,这才是学生一生都受用的。

3、把概念的整理和具体的题目结合起来,让学生感受概念在数学问题中的重要性。

我要求学生整理概念的同时,还同步练习一些具体的概念的应用题目和学生平时作业中容易混淆和错误的题目。比如在复习到比的化简和求比值这部分知识时,首先针对学生结果容易混淆的情况加以提问。

(1)什么是求比值,然后问那么求比值的结果应该是什么?什么是化简比,那么化简比的最后结果应该是什么?通过这样的对比提问和相应的练习,解决了学生容易混淆的问题,也使学生进一步感受到概念的重要性,只有很好的理解和掌握了概念,才能更好的解决知识。

反思这节课的教学,我想,在以后的教学过程中要注意把握好如下三个问题:

1、由于比和比例这部分知识概念比较多,概念之间的联系也比较复杂,因此在整理概念时,不仅要求学生进行网络式的整理,还要分析概念间的相互联系和具体的题目练习,因此在时间上比较紧。教学时要注意调配时间。由于是复习课,概念较多,使到在练习中的时间不够,有小部分基础较差的学生在练习中没有完成。其实有些补充题的设计,能利用书本上的习题,这样可以较好的避免重复的练习。

2、对学生整理概念的实际水平估计还是有些不足,()在以后的教学中应更好的做好备好学生这一头,这样能更好的有针对性的设计好教学环节。适度把握留给学生自主的时间和空间。学生活动时间和空间不足,可能使活动流于形式没在实效;学生活动时间与空间过广,可能又使学生无所适从或由于难度较大而不能有效解决。

3、复习课的提问要区别于新授课,提问要注意广度,如:在问学生“什么是比”时,如果改为直接问:你能回顾出以前学过的比的哪些知识?但自己问的范围很狭小,如果是那样问,学生的回忆搜索就被打开了,也许学生不仅能想到比,想到比值,还能想到比的各部分名称,还能想到比的基本性质。

4、平时的教学中,应尽可能多的展示概念和教学的发生过程,加强对概念的理解和联系。我们平时总是诉苦学生对知识的遗忘率为什么总是这么高,其实平时我们还是过多的采取了机械或照搬式的教学。概念复习课则在于选择合适的方法将相关概念系统化,学生能对之整体把握,进而形成清晰的认识。因此我觉得这“浪费”的时间是值得的,学生经过自己的努力而整理出来的知识体系,学生理解得更深刻,记忆得特别牢固,而且能有效地锻炼和培养学生的自学能力。

通过对这节课的教学,我意识到教师的教要以学生的发展为基准,把学生的学放到主要地位上来,真正的做到以学生为主体,让学生在教师的指导下自主构建知识的教学模式。让学生所学的知识能够形成一条条知识链,只有这样,学生才能更好的掌握和运用知识,或许只有这样才能让我们走出“学生学的知识为什么总是忘得那么快”这样一个迷惑。

篇8:《比和比例》课件

《比和比例》课件

知识教学点:

1.理解比和比例的意义和及性质。

2.理解比例尺的含义。

能力训练点:

1.会化简比和求比值,会解比例。

2.能正确地解答有关比例尺的应用题。

德育渗透点:

引导学生探索知识间的联系,激发学生学习兴趣。

教学步骤:

一、基本训练

二、归纳整理

1.比和比例的意义及性质

(1)教师引导学生回忆所学知识并完成下表:

(2)说一说,比和分数、除法有什么联系?根据学生的回答完成下表:

(3)提问:比的基本性质有什么作用?比例的`基本性质呢?

引导学生小结几种比的化简方法:

①整数比化简,比的前项和后项同时除以它们的最大公约数。

②小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简。

③分数比化简,一般先把比的前项、后项同时乘以分母的最小公倍数,使它成为整数比,再用第一种说法化简。

④也可以用求比值的方法化简,求出比值后再写成比的形式。

例2 解比例 12∶x=8∶2

指名学生说出解法,教师板书。

(4)做教材第101页的“做一做”

①李师傅昨天6小时做了72个零件,今天8小时做了96个零件。写出李师傅昨天和今天所做零件个数的比和所用时间的比。这两个比能组成比例吗?为什么?

②甲数除以乙数的商是1.4,甲数和乙数的比是多少?

2.求比值和化简比

学生做完后,组织学生比较求比值和化简比的区别,并整理成下表:

(2)完成教材第102页“做一做”的题目,做完后集体订正。

3.比例尺

(1)教师出示一张中国地图,让学生观察后提问:

②什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(2)完成教材第103页上面的“做一做”的题目,做完后集体订正。

(3)反馈练习

在一幅地图上,用3厘米长的线段表示实际距离900千米。这幅地图的比例尺是多少?在这幅图上量得A、B两地的距离是

2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

三、巩固发展

1.填空。

(1)根据右面的线段图,写出下面的比。

③甲数与甲乙两数和的比是( )。

④乙数与甲乙两数和的比是( )。

不变,后项应该( )。如果前项和后项都除以2,比值是( )。

(4)把(1吨)∶(250千克)化成最简整数比是( ),它的比值是( )。

(6)如果 a×3=b×5,那么 a∶b=( )∶( )

(7)如果a∶4=0.2∶7,那么a=( )

(9)甲数乙数的比是4∶5,甲数就是乙数的( )

2.选择正确答案的序号填在( )里。

(1)1克药放入100克水中,药与药水的比是( )。①1∶99 ②1∶100 ③1∶101 ④100∶101

篇9:正反比例应用题反思

教师:杨明义

正反比例应用题从教参上看主要是分三个层次教学:1、正比例应用题的教学,2、反比例应用题的教学,3、正反比例应用题解答方法的总结。重点应放在如何判断每题中的两个量是否成比例,成什么比例上。下面我结合自己本节课的教学谈一谈我自己的体会。 成功之处:

1、开头的复习比较的设计比较到位,层次分明,时间分配得当。

2、总结解比例的方法时能鼓励学生去体验,通过小组的方式去总结解正反比例应用题的方法。

不足之处:

1、例题教学时应让学生讨论分析,多花时间研究数量关系式。

2、教师在教学时不能按步就搬,应能及时抓住Www.unjs.com学生的闪光点,及进表扬,充分让学生表现自己。

3、改造例1时让学生宏观上思考与例1的区别,这样可让学生更深层次地理解比例应用题的解题步骤。

4、 练习题中的表述要清,练习的亮点没有得到很好的拓展。

5、教学解正反比例应用题的关键,是使学生能够正确找出两种相关联的量,判断它们是成哪种比例关系,然后根据正比例或反比例的意义列出等式(方程)。 在教学例题1时,学生能判断当工作效率一定时,工作总量与工作时间成正比例,教师要求学生列式时,有这样两个比例式(1)40÷5=X÷9(2)5÷40=9÷X,且通过计算两个答案是一样的。我抓住这一点,让学生展开热烈的讨论。我预想第(2)个式子,大多数学生会认为是错误的,但说不上理由的,然后由我来讲对的理由。但出乎我的预料,学生中居然有几种对的理由。第1个式子,毫不疑问,绝对正确,因为题中工作总量与工作时间成正比例,那么工作总量比上工作时间的比值一定,即相对应的两个数的比值一定,可以列式为40÷5和x÷9;第(2)个式子学生中居然有人认为也准确,因为工作总量与工作时间成正比例,那么他们的.比值一定,这个比值没有说,一定要谁与谁比,因此可以40÷5也可以5÷40(不可估低学生的能力)。还有人认为比例式X÷9与5÷40=9÷X从数学角度讲,它们内项之积与外项之积,根本没变,

只不过是比例的两种形式而已。

好不容易有这样热烈的气氛,我趁热打铁,把练习十的第8题继续让学生分组讨论列式,结果又有两种列式(1)解:设如果每分钟整修8平方米x分钟可以整修完成。列方程为6.4×30=X×8。(2)解:设如果每小时整修8平方米X小时可以整修完成。列式为6.4×0.5=x×8。按例每分钟整修6.4平方米乘0.5小时不能表示什么,也就是这个式子根本没意义,但是用反比例的意义来理解这题,也就不难理解了。

通过这样的教学,把“正反比例应用题”这课上活了,而且把正反比例的意义挖的更深,学生的兴趣更浓,积极性更高,掌握的知识更牢。

篇10:比例分配应用题及答案

比例分配应用题及答案

一、请用比例的方法试解下列应用题:

1、配制一种农药,药粉和水的比是1:500.

(1) 现有水6000千克,配制这种农药需要药粉多少千克?

(2) 现有药粉3.6千克,配制这种农药需要水多少千克?

2、学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?

3、一个房间,用面积为9平方分米的方砖铺地需240块,如果改用边长4分米的砖铺地,需多少块?

4、服装厂原来生产一套成人西服用布2.5米,改进裁剪方法后,每套节约用布20%,原来生产240套西服的布,现在可生产多少套?

二、应用题:用合适的方法进行求解

1、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的`共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

2、甲乙两地相距360千米,一辆汽汽车从甲地到乙地计划7小时行完全程,汽汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

3、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客汽车和货汽车同时从甲乙两地相对开出,经过3小时相遇。已知客汽车每小时行65千米,那么这辆货汽车每小时行多少千米?

4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽汽车从B城到C站共用了0.6小时,求这辆汽汽车的速度。

5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

6、小淘气看一本科技书,第一天看了全书的 ,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?

7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

8、某汽车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?

9、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?

10、客货两汽车的速度比是3:2,货汽车行完甲乙两地全程要 小时。如果客货两汽车同时从甲乙两地出发,几小时可以相遇?

三、生活题:

吴工程师和李技术员从公司出发,合乘一辆出租汽车,吴工程师去实验室,李技术员去工地。两人商定出租汽车费由两人合理分摊。

公司        4千米       实验室                                     工地

12千米

已知出租汽车的汽车费牌价为:0~3千米(起程价)8元;3千米以上每千米1.8元。

①他俩的汽车费共计多少元?                 ②吴工程师应承担多少元汽车费?

篇11:解比例应用题含答案

第一题

某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。现在由三人共同加工,问完成任务时,三人各加工了多少个?

解答

甲、乙、丙三人工作效率的比=

容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。

第二题

有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。现将两瓶盐水并在一起,问在混合后的.盐水中盐与水重量的比是多少?

解答

正确的解答是:1∶8=2∶16,2+16=18;

1∶5=3:15,3+15=10。(2+3)∶(16+15)=5:31

答:在混合后的盐水中盐与水重量的比是5∶31。

篇12:解比例应用题含答案

(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(2)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(3在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(4) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

(5)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(6)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(7)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(8)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(9)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?(用比例解)

(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?(用比例解)

(11)修一条公路,原计划每天修360米,30天可以修完。如果要提前5天修完,每天要修多少米?(用比例解)

(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)

(13)修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)

(14)用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?(用比例方法解)

(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)

(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约1/8,实际可以烧多少天?(比例解)

(17)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)

(18)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。从动轮有20个齿,每分转多少转?(用比例方法解)

(19)6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?(用比例方法解)

(20)一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?(用比例方法解)

(21)某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天就完成,每天要多运多少车?(用比例方法解)

篇13:正反比例应用题及答案

正反比例应用题及答案

正反比例,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

正反比例问题与前面讲过的倍比问题基本类似。

例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

解 由条件知,公路总长不变。

原已修长度∶总长度=1∶(1+3)=1∶4=3∶12

现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为 300÷(4-3)×12=3600(米)

答: 这条公路总长3600米。

例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

解 做题效率一定,做题数量与做题时间成正比例关系

设91分钟可以做X应用题 则有 28∶4=91∶X

28X=91×4 X=91×4÷28 X=13

答:91分钟可以做13道应用题。

例3 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

解 书的页数一定,每天看的页数与需要的.天数成反比例关系

设X天可以看完,就有 24∶36=X∶15

36X=24×15 X=10

答:10天就可以看完。

例4 一个大矩形被分成六个小矩形,其中四个小矩形的面积如图所示,求大矩形的面积。

解 由面积÷宽=长可知,当长一定时,面积与宽成正比,所以每一上下两个小矩形面积之比就等于它们的宽的正比。又因为第一行三个小矩形的宽相等,第二行三个小矩形的宽也相等。因此,

A∶36=20∶16 25∶B=20∶16

解这两个比例,得 A=45 B=20

所以,大矩形面积为 45+36+25+20+20+16=162

答:大矩形的面积是162

篇14:比例应用题含有答案

比例应用题含有答案

【试题】

【题1】甲数比乙数少20%,那么乙数比甲数多百分之几?

【题2】有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?

【题3】一个正方体的棱长增加原长的1/2,他的表面积比原表面积增加百分之几?

【题4】商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现在总数的25%,卖出的篮球是多少个?

【题5】把一个正方形的一边减少20%,另一边增加2公尺,得到一个长方形,他与原来的正方形面积相等,那么正方形的面积是多少平方公尺?

【题6】已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的.百分之几?

【题7】把25公克盐放进100公克水里制成盐水,制成的这种盐水,含盐量是百分之几?

【题8】某次会议,昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加5%,今天共1995人出席会议,昨天参加会议的有多少人?

【题9】有甲、乙两家商店,如甲店的利润增加20%,乙店的利润减少10%,那么,这两店的利润就相同,问原来甲店的利润是原来乙店的利润的百分之几?

【题10】有浓度为3.2%的盐水500公克,为把他变成浓度是8%的盐水,需要使他蒸发掉多少公克的水?

【参考答案】

1.【解答】20%÷(1-20%)=25%。

2.【解答】16÷【(1-25%)÷25%―(1―45%)÷45%】=9(块)。

3.【解答】【(1+1/2)×(1+1/2)×6】÷(1×1×6)-1 = 125%。

4.【解答】45×60%-18×【25%÷(1-25%)】 = 6(个)。

5.【解答】【2×(1-20%)÷20%】2 = 64(平方公尺)。

6.【解答】

方法一:【40%×30%+(1-42%)】÷(1+40%)= 50%。

方法二:

解:∵甲校学生数=乙校学生数×0.4∴甲校学生数+乙校学生数=乙校学生数×1.4∵甲校女生数=甲校学生数×0.3∴甲校女生数=乙校学生数×0.4×0.3=乙校学生数×0.12∵乙校男生数=乙校学生数×0.42∴乙校女生数=乙校学生数×0.58∴甲校女生数+乙校女生数=乙校学生数×0.12+乙校学生数×0.58=乙校学生数×0.7∴(甲校女生数+乙校女生数)÷(甲校学生数+乙校学生数)=(乙校学生数×0.7)÷(乙校学生数×1.4)=0.5 即为百分之五十∴两校女生总数占两校学生总数的百分之五十。

7.【解答】含盐量是【25÷(25+100)】×100%=20%。

8.【解答】(1995-700×90%)÷(1+5%+90%)×2+700=2100(人)。

9.【解答】(1-10%)÷(1+20%)=75%。

10.【解答】500-500×3.2%÷8%=300(公克)。

篇15:六年级数学比例应用题练习题

六年级数学比例应用题练习题

(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?

(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?

(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开始装配,每天装配40台,完成这批任务时,甲组做了多少天?

(6)修筑一条公路,完成了全长的2/3后,离中点16。5千米,这条公路全长多少千米?

(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。如果两队合修2天后,其余由乙队独修,还要几天完成?

(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

(10)前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

11、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

12、甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

13、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

14、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

15、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

16、小淘气看一本科技书,第一天看了全书的1,第二天看了42页,这时看了的页数与剩6下的页数比是2:5,这本科技书一共有多少页?

17、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

18、一个直角三角形的周长为36厘米,三条边的长度比是3 :4 :5,这个三角形的面积是多少平方厘米?

19、一瓶盐水,盐和水的重量比是1 :24,如果再放入75克水,这时盐与水的重量比是1 :27,原来瓶内盐水重多少千克?

20、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。已知三种颜色的球共175个,红球有多少个?

21、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4 :1。如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是多少?

22、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为多少?

23、甲、乙、丙三个数的平均数是60。甲、乙、丙三个数的比是3 :2 :1。甲、乙、丙三个数各是多少?

24、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?

25、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。求大、小瓶里各装油多少千克?

26、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5 :4,求甲、乙、丙三人各有图书多少本?

27、一个直角三角形的三条边总和是60厘米,已知三条边的比是3 :4 :5.这个直角三角形的面积是多少平方厘米?

28、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?

29、甲、乙、丙三人的彩球数的比例为9:4:2,甲给了丙30个彩球,乙也给了丙一些彩球,比例变为2 :1 :1。乙给了丙多少个彩球?

30、某车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?

31、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3 :1。问买圆珠笔和钢笔各花了多少元?

32、甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。那么两包糖果重量的总和是多少?

33、某小学男、女生人数之比是16 :13,后来有几位女生转学到这所学校,男、女生人数之比变成为6 :5,这时全体学生共有880人,问转学来的女生有多少人?

34、小明读一本书,已读的和末读的页数比是1 :5。如果再读30页,则已读的和末读的页数之比为3 :5。这本书共有多少页?

(35)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(36)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(37)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(38)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(39)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?

(40)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?

(41)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(42)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(43在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(44) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

45、1吨煤用去45吨,还剩20%吨。( )

46、大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比。( )

47、甲数比乙数多吨,则乙数比甲数少吨。( )

48、比的前项和后项同时乘或除以非0的数,比值不变。( )

49、9千克的水加入1千克的盐后,盐占盐水的。( )

50、4米长的钢管,剪下1/4后,还剩下3米。( )

51、比的前项和后项同时扩大2倍,比值不变。( )

52、两个分数相除,商一定小于被除数。( )

53、从家到学校,小明用8分钟,小红用9分钟,小明和小红的速度比是8:9( )

54、把一段木材分成5段,每段是全长的。( )

55、1吨铁的和5吨铁的质量相等。( )

56、甲数的56等于乙数的65,甲数比乙数小。( )

57、a是b的9倍,b与a的比是9:1。( )

58、真分数的倒数都比它大,假分数的倒数都比它小。( )

59、因为25×12×5=1,所以25、12、5互为倒数。( )

60、一桶油用去12千克,还剩下12。( )

61、10克盐溶解在100克水中,这时盐和盐水的比是1:10。( )

62、比的前项乘5,后项除以。比值不变。( )

63、男生比女生多,男生与女生人数的比是7:5。( )

64、既可以看作分数,也可以看成一个比。( )

65、任何数都有对应的倒数。( )

66、比的前项和后项都增加或减少相同的数,比值不变。( )

67、如果大圆和小圆的半径比是5:1,面积和周长的比都是25:1( )

68、生产105个零件,全部合格,合格率是100%。( )

69、甲数比乙数多14,甲数与乙数的比是1:4。( )

70、比的前项和后项都乘或除以一个数,比值不变。( )

71、圆柱的体积是圆锥体积的3倍。( )

72、半径是2CM的圆,周长和面积相等。( )

73、正方形的面积和边长成正比例。( )

74、如果两个分数的值相等,那么它们的分数单位也相等。( )

75、圆锥的半径扩大2倍,体积也扩大2倍。( )

76、相邻的两个自然数的积一定是2的倍数。( )

77、如果一个三角形的两个内角之和是100°,那么这个三角形一定是锐角三角形。( )

78、用98颗黄豆做发芽实验,结果全部发芽。这些黄豆的发芽率是98%。( )

79、周长相等的两个圆,面积不一定相等。( )

80、扇形统计图能清楚地表明各部分数量同总数之间的关系。( )

篇16:用比例知识解答应用题

教学目的

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

3.通过复习,培养学生的`分析能力、综合能力以及判断推理能力.

教学重点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学难点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学过程

一、复习准备.

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.

(2)总价一定,每件物品的价格和所买的数量.

(3)小朋友的年龄与身高.

(4)正方体每一个面的面积和正方体的表面积.

(5)被减数一定,减数和差.

谈话引入:我们今天运用正反比例的知识来解决实际问题.

篇17:比例应用题数学教学设计

【教学内容】

义务教育课程标准实验教科书《数学》(人教版六年级下册)教材P59―60内容。

【教学目标】

1、理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

2、通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

3、发展学生的应用意识和实践能力。

【教学重点】

运用正反比例解决实际问题。

【教学难点】

正确判断两种量成什么比例。

【教材分析】

解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数

列比例解答。判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视。同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力。

【学情分析】

解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。所以本节课可以重点体现“学生是数学学习的主人”,“以学生为中心”,“一切为了学生的发展”的教学理念。学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

【设计理念】

利用比例的知识解答应用题,首先要判断两种相关联的量的关系,判断的过程就是正、反比例意义实际应用的过程,所以是比例应用题的重点,也是难点。正、反比例的应用题,学生在已学过的四则应用题中,实际上已经接触过,只是用归一、归总的方法来解答,因此在教学中可以运用迁移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣。首先让学生用以前的方法解答,然后提问:“这道题里有怎样的的比例关系?为什么?”引导学生判断两种量的比例关系,最后根据比例的意义列出等式解答。这样加深了对比例的理解,又揭示了与旧知识的联系,既分散了难点,又教给了思维方法。

通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题。

【教学过程】

一、铺垫孕伏(课件演示:比例的应用)

判断下面每题中的两种量成什么比例关系?

1、速度一定,路程和时间。

2、路程一定,速度和时间。

3、单价一定,总价和数量。

4、每小时耕地的公顷数一定,耕地的总公顷数和时间。

5、全校学生做操,每行站的人数和站的行数。

【设计意图:通过基本数量关系式的分析让学生进一步熟练掌握正反比例的意义,为后面分析应用题做好铺垫。】

二、探究新知

(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习比例的应用。(板书:解比例应用题)

(二)教学例5(课件演示:教材对话主题图)

例5、张大妈上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?

学生利用以前的方法独立解答:

先算出每吨水的价钱,再算10吨水的多少钱?

12.8÷8×10

=1.6×10

=16(元)

【设计意图:通过学生用原来学习的解答归一应用题的方法,能使学生进一步理解:单价一定的意义,为正确列出比例式打好基础了。】

2、利用比例的知识解答。

思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)

哪种量是一定的?你是怎样知道的?(水的单价一定。)

用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系。)

教师板书:单价一定,水的数量和总价成正比例

教师追问:两家水的.总价和用水量的什么相等?(比值相等,也就是水的单价相等)

怎么列出等式?

解:设李奶奶家上个月水费x元。

8x=12.8×10

x=16

答:李奶奶家上个月水费16元。

3、怎样检验这道题做得是否正确?(学生自主完成)

4、变式练习:张大妈上个月用了8吨水,水费是12.8元,王大爷上个月水费是19.2元,他们家上个月用了多少吨水?

【设计意图:通过变式训练的订正和交流,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没有改变,只是未知量变了,这样可以让学生更加灵活地理解和解答这样的应用题。】

(三)教学例6(课件演示例6主题图)

例6:一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?

1、学生利用以前的算术方法独立解答。

20×18÷30

=360÷30

=12(包)

2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的————是一定的,__________和__________成__________比例。所以两次捆书的__________和__________的__________是相等的。

3、如果设要捆x包,根据反比例的意义,谁能列出方程?

30x=20×18

x=360÷30

x=12

答:每捆12包。

4、变式练习

一批书如果每包20本,要捆18包,如果每捆15包,每包多少本?

【设计意图:例6教学沿用了例5的教学形式,但放开了学生,让学生自主探究,明白正、反比例应用题的区别和联系,学生在解答过程中不但学会了分析正、反比例应用题的技巧,同时也能够区分两种应用题的解答方法】

三、全课小结

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

四、随堂练习

1、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?

(2)王师傅4小时生产了200个零件,照这样计算,__________?

2、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

3、同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

【设计意图:通过由易到难,梯级训练,让学生对用比例解决问题有一个初步的巩固和训练,加深知识印象,同时也对本节课起到系统知识的目的,让学生形成一个完整的知识整体,为后面完成课堂作业做好准备】

五、布置作业

1、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?

3、P60——做一做

【设计意图:通过独立作业,让学生理解用比例解决问题的一般方法和技巧,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力,发展学生的应用意识和实践能力,完成本节课的教学目标。】

【教学后记】:

正反比例应用题是小学阶段应该掌握的重点内容,这节课通过新旧知识之间的联系和以旧促新教学理念,设计了简单易学的教学过程,学生在学习的过程中,没有感到学习新知识的压力,能够轻松完成学习任务。同时通过变式训练和拓展训练,让学生掌握了正反比例应用题的相同点和不同点,为后面解答比例问题打好了坚实的基础。

篇18:正反比例应用题教学设计

一、 教学衔接

X的7/8与Y的3/4相等,X与Y的比是

如果x/8=Y/13 ,那么X:Y=()

甲数除乙数的商是1.8,那么甲数与乙数的比是。

在一个比例中,两个比的比值等于2,比例的外项是0.08和0.6,写出这个比例

二、 教学内容

反比例应用题:

XY=K(K一定)

如:时间×速度=路程(已知时间和速度,路程一定)

例:一辆车去时每小时行60千米 6.5小时到达目的地 回来时每小时行78千米 多长时间能够返回出发点?

(路程一定)

例:学校小商店有两种圆珠笔小明带的钱刚好可以买4这单价是1.5元的 如果买单价是2元的 可以买多少支? (总价一定)

练习:

学校举行团体操表演如果每列25人 要排24列 如果每列20人 要排多少列?

一批书每包20本 要捆18包 如果每包30本 要捆多少包?

修一条水渠每天工作6小时12天可以完成 如果工作效率不变每天工作8小时多少天可以完成任务?

正比例应用题:

=K(K一定)、Y=KX (K一定)

如:时间×速度=路程 即:路程÷时间=速度(已知时间和路程,速度一定) 例:汽车5小时行200千米,照这样计算,3小时行多少千米?(速度一定)

例:小兰身高1.5米她的影长2.4米 如果同一时间同一地点测得一棵树的影子长4米这棵树有多高? (影子与身长的比值一定)

练习:

我国发射的科学实验人造地球卫星 在空中绕地球运行6周要10.6小时 运行14周要用多少小时?

一个晒盐场100克海水可以晒出3克盐 如果一块盐田一次放入585000吨海水可以晒出多少吨盐?

张大妈上个月用8吨水水费12.8元 李奶奶用水10吨 上个月李奶奶水费多少元?

小明买4支圆珠笔用6元 买3支笔要多少?

比例尺应用题:

图上距离÷实际距离=比例尺 图上距离÷比例尺=实际距离

实际距离×比例尺=图上距离

(求比例尺)一栋楼房东西方向长40m,在图纸上的长度是50m。这幅图的比例尺是多少?

(求实际距离)北京市地铁规划图的比例尺是1:500000。地铁1号线在图中的长度大约是10cm,它的实际长度大约是多少?

(求图上距离)学校要建一个长80m、宽60m的长方形操场,画出操场的平面图。(比例尺为1:1000)

操作题:(1)画出下图中三角形按1:3的比缩小后的图形;

(2)画出下图中平行四边形形按2:1的比放大后的图形。

练习:

小明家在学校正西方向,距学校200m;小亮家在小明家正东方向,距小明家400m;小红家在学校正北方向,距学校250m,在下图中画出他们三家和学校的位置平面图(比例尺自定)

篇19:正反比例及应用题教学设计参考

正反比例及应用题教学设计参考

教学要求:

1.使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。

2.使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题。进一步培养学生分析、推理和判断等思维能力。

教学过程():

一、揭示课题

这节课,复习正、反比例关系和正、反比例应用题。(板书课题)通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的`量,正确地解答正、反比例应用题。

二、复习正、反比例的意义

1.复习正、反比例的意义。

提问:如果用x和y表示成比例关系的两种相关联的量,(板书:x、y是相关联的量)那么,什么情况下成正比例关系,什么情况下成反比例关系?想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?指出:正比例关系和反比例关系的相同点是:都有相关联的两种量(x和y),一种量随着另一种量的变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。

2.判断正、反比例关系。

(1)做“练一练”第1题。

指名学生口答。提问:判断是不是成比例和成什么比例的根据是什么?

(2)做练习二十二第1题。

指名学生口答。

3.判断x和y这两种量成什么关系,为什么?

(1)y=8x (2)y=

指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。

三、复习正、反比例应用题

1.做“练—练”第2题。

让学生读题,判断每题里两种量成什么比例。提问:这道题成正比例或反比例的关系,各要根据什么相等来列式解答?指名一人板演,其余学生做在练习本上。集体订正,突出列式的等量关系是比值还是积一定。

2.启发学生思考:

你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?怎样解答正、反比例应用题?指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。

四、课堂小结

成正、反比例的量各有什么特点?成正、反比例量的应用题要怎样解答?

五、课堂作业

篇20:正反比例应用题教学设计

正反比例应用题教学设计

教学内容:教材第51~52页例1,例2和“练一练”,练习十第1—3题。

教学要求:

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

教学重点:认识正、反比例应用题的特点。

教学难点:掌握用比例知识解答应用题的解题思路。

教学过程:

一、复习引新

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

二、教学新课

1.教学例1。

(1)出示例1,让学生读题。

提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?

(2)说明:这道题还可以用比例知识解答。

提问:题里“照这样计算”说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次抽水的总量与时间对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的.数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的?先求总数量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。

4.教学改编题。

出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。

5.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)

三、巩固练习

1.做“练一练”。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十第1题。

让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方?按过去算术解法都要先求什么量?用比例知识解答有什么相同的地方?(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方?(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。

3.做练习十第2题。

让学生默读题目。提问:用算术方法解答都要先求什么数量?这两题里两种数量成什么关系,为什么?要按什么相等来列等式?

四、课堂小结

这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?

五、布置作业

课堂作业;完成练习十第1、2题的解答。

家庭作业:练习十第3题。

篇21:比例分配应用题教学反思

比例分配应用题教学反思

有些好的教学片段,往往在不经意间被你瞬间捕捉。而一堂精彩的数学课,必须有教学理念的支撑,教学方法的落实,学生思维的启发。

比例分配应用题刚上完。我对此有些想法,以便在今后的教学中积累一点有用的东西,以便更好的服务于学生。

一、有价值的问题,激发学生积极思维

导课问题有价值。我处理如下,有45只苹果分给六(1)班的男女同学,你们自己打算怎样分。这样的问题比较开放,不以条条框框限制学生思维,限制学生的思维空间,体现学生主体性发展的过程,充分挖掘每个学生的潜能。

引导问题有价值。如能否根据比例与分数之间的联系来解决比例分配应用题等。问题必须提在点子上,让学生在已有的基础上,运用知识迁移解释问题的解决。一堂成功的数学课就在于师生之间的解释清晰明了的程度。

二、营造机会,寻找思维的切入口

联系导课问题,营造机会。抓住按男女生人数来分作为契机,六(1)班男生21人,女生24人,以班级实际联系比的知识,让学生自编符合课时要求的应用题。拉进知识与学生的距离,启发学生思维,创造距离机会。

创设跳一跳摘“桃子”的机会,以小坡度多元化来解决问题。如运用多种方法解比例分配应用题的引导。看一下班级的具体人数能解决问题吗?这种是什么方法呢?

三、提供线索条件,让学生尝试摸索

如比例分配应用题解答方法不是一种,赛一赛谁的方法多,并给自己的方法取个名好吗?再如男女生人数比是7比8,你知道了什么?也可以接着给予提示。教学就是要创设一个宽松的环境,鼓励学生思考、讨论、想象。敢于提出自己的`独立见解和方法。

四、倡导学生相互解释,验证方案地可行性

现在的学习,是多渠道、多元化、提倡终身学习的学习。学生最终必须得依赖自己,而不是教师,因此他们不得不学会学习。在数学教学中,尽量避免教师的绝对权威,判断学生的是非。应在教师的引导下,逐步应用一些方法让学生用自己的知识来审视自己的思考过程。

最后,针对自己不足提些疑问,希望我的教学反思上交后,帮助我解决一个疑问。再此我表示深深地感谢。

(1)、课文规定一课时的内容我能否分两课时上,比如情况出现在公开课。

(2)、方法多样化,是否能够照顾到后近生。

(3)、上课时,鼓励学生一题多解,有时学生的方法确实可行,但你不能很好的解释,该如何处理。

篇22:正反比例应用题教学设计

教学目标

1.复习成正比例和反比例关系的量的意义。

2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。

3.进一步培养同学们分析、推理和判断等思维能力。

教学重点和难点

1、 判断两种相关联的量成什么比例;确定解答应用题的方法。 教学准备 多媒体课件

教学过程设计

今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。

一、复习概念

1、什么叫成正比例的量?它的关系式是什么?

2、什么叫成反比例的量?它的关系式是什么?

3、正反比例它们有什么相同和不同的地方?

二、复习数量关系

1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成什么比例?

1.工作效率一定,工作时间和工作总量。( )

2.每块砖的面积一定,砖的块数和铺地面积。( )

3.挖一条水渠,参加的人数和所需要的时间。( )

4.从甲地到乙地所需的时间和所行走的速度。( )

5.时间一定,速度和距离。( )

2.选择题:

1.如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。 ① 成正比例② 成反比例③ 不成比例

2.步测一段距离,每步的平均长度和步数( )。

① 成正比例② 成反比例③ 不成比例

3.比的后项一定,比的前项和比值。

① 成正比例② 成反比例③ 不成比例

4.C= πd 中,如果c一定,π和 d( )。

①成正比例 ② 成反比例③ 不成比例

5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。

?40:15= 60: ② 40=15×60 ③ 60=15×40

三、复习简单应用题

例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?

A、题中涉及哪三种量?其中哪两种是相关联的量?

B、哪一种量是一定的?你是怎么知道的?

C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。

2、总结 正 、反比例解比例应用题要抓的四个环节

3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。

②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。

④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

⑤、小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?

⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

四、 巩固练习

1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?

解:设可装订本。

(30+10)=500×30

4 0=15000

=15000

=375

答:可装订375本。

2、比一比,想一想,每一组题中有什么不同, 你会列式吗?

(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?

(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?

五、拓展延伸

用正反两种比例解答:

1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?

六、全课总结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

七、板书设计

正反比例应用题

=K(一定) X×Y=K(一定)

X和Y成正比例关系。 X和Y成反比例关系。

正y 、反比例解比例应用题要抓的四个环节

第一、分析:可分四步。

第一步:确定什么量是一定的。

第二步:相依变化的量成什么比例。

第三步:找准相对应的两个量的数。

第四步:解方程(根据比例的基本性质)

第二、设未知数为X,注意写明计量单位。

第三、根据正反比例的意义列出方程。

第四、检验并答题。

正反比例的意义和应用题是人教版小学数学第十二册的`内容,这个教学内容要求学生学会分析、判断两种相关联的量是否能成正比例或反比例,学会比较正反比例的相同点及不同点,同时学会用比例的方法解答相关的应用题,作为一节复习课,课前我首先进行了深入的研究,对本课内容进行了整合,自己设计了课件,一节课下来有很多感触: 我觉得在教学过程中做好了以下几方面:

1、能强化正、反比例意义概念的复习,因为正反比例的意义所涉及的文字内容较多,因此,在教学中以简化的概括让学生很容易就把两个意义的核心内容记牢。

2、重视知识间的对比,让学生在对比中发现正、反比例的相同点及不同点,杜绝在以后的学习中出现混乱的现象。

3、练习设计形式多样,让学生在完成不同类型的题目中巩固知识。

4、善于引导学生分析问题,回答问题,出现问题的根源所在,让学生真正掌握知识。

5、课堂教学的连贯性较强,知识之间的衔接严密,教学层次之间过渡自然,让不同层次的学生均能有所收获。

课后,我反复回忆了本节课,发现也存在不足之处,

1.教学时没有让学生讨论分析题里的数量关系成什么比例,老师讲的多,学生说的少。

2.教学时不注重情感交流,应及时抓住学生的闪光点,及进表扬,充分让学生表现自己。

3.讲课节奏快,对差生辅导不到位。讨论的环节和交流的环节花费的时间少,抽的学生少,导致学生没有更好的掌握怎样从关键字眼上找正反比例的特征,因此有些学生不会判断。不会判断就不会列方程。 对于这节课的不足我在今后的教学中要克服缺点,不断积累有效的教学经验,争取每节课都能收到很好的教学效果。

篇23:比和比例教学反思

做为毕业班的数学教学,到六年级的下学期,将有一半以上的课程是复习和整理,传统的复习课让习题一道道呈现,让学生仅仅停滞在“会”的目标上,复习课究竟应该如何上好,应该如何让学生感受学习的快乐和数学的魅力一直是我们思索的问题。在一节班会课上,学生自己组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入数学课堂?这样是不是数学课上我也可以和班会课一样成为学生的组织者,引导者和合作者,而不是课堂上的“权威”?本着“体现新理念,用活教材,练活习题,激活课堂”的思想,针对本节课的教学目标,我采用让学生分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让学生在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。那么该如何上好复习课呢?

明确复习课的任务。复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成功感”。而是担负着查漏补缺、系统整理和巩固发展的任务。在设计复习课时,一要帮助学生建立清晰、完整的'知识结构;二要通过复习培养学生收集、整理、归纳知识的意识和能力;三要帮助不同层次的学生扫除学习上的障碍,从而在自己的知识基础上建立一个更高的学习的平台。

让每个学生积极参与复习,在组织教学时,应营造一个轻松、平等、和谐的学习氛围,让学生在独立思考、合作交流、活泼愉悦的过程中“温故而知新”,如果只采用师生之间问答式的交流,只能实现第一个目标。在教学过程中可以让学生经历整理、归纳复习的全过程,从中了解学生的需求。在实际教学过程前,可以课前布置具体的预习要求,这样才能让他们在小组里都能积极交流自己整理的知识要点。

篇24:比和比例教学反思

由于新教材把“比”的内容前移至十一册,学生难免会有遗忘和生疏,所以在教学时我适当增加“比”的复习分量,除了教材上的复习内容,还多加了几道复习题。

新授例1后得到两个相等比80:2=200:5,此时,应当再次指出:这个等式和复习题后面列出的等式都是比例。那么什么叫做比例呢?

引导学生观察归纳,一般都可以根据几个式子共有的特征得出结论。虽然班上有些学生自己得出的结论,不够严密,我还是加以肯定和鼓励。那么在此基础上引导学生再来讨论“两个比能否组成比例,主要是看什么?”这样的问题,自然会水到渠成。

这样不仅加强知识间的联系,而且减缓学生认知过程的坡度,学生在逐步深入理解“比”的基础上再去学习“比例”的知识,会轻松得多。

《比例的基本性质》的推导是这节课的重点,也是难点。但是我们教学时不是用数学证明的方法得到比例的基本性质的,而是引导学生研究具体比例的外项积和内项积的关系,在此基础上归纳得出比例的基本性质。为了使归纳的结论具有说明力,我让学生在草稿本上任意写一个比例,并研究两内项积与两外项积有怎样的关系,再分小组讨论。

让学生通过自己的研究观察得出,不论怎样的比例,它的外项与内项积都相等,并让学生自己用字母表示出来。

这节课学生不仅掌握了一个“基本性质”,更重要的是向学生渗透了研究问题的方法,学生的主体意识得以培养和发挥。

篇25:比和比例的练习题

比和比例的练习题

一、填空不困难,全对不简单。

1、甲、乙两数的比是8:5,甲数是120,乙数是( )。

2、积一定,两个因数成( )比例。

3、a-c=0(a0,c0),则a与c成( )比例。

4、用3,6,2,9四个数组成两个不同的比例是( ),( )。

5、甲、乙各加工一批零件。速度的比是2:3,时间的比是3:4,则工作总量比是( )。

二、我是小法官,对错我会判。

1、如果3x=4y,那么x:y=3:4。( )

2、比例尺的前项一定小于后项。( )

3、因为a是b的 ,所以a和b成正比例。( )

4、甲数的25/24和乙数的24/25的比是1/4:0.3,甲数和乙数相等。( )

三、慧眼识珠,我会选。

A.成正比例

B.成反比例

C.不成比例

1、出米率一定,出米的质量和稻谷的质量。( )

2、地图上的比例尺一定,图上距离和实际距离。( )

3、小红上学,已走的路程和没有走的路程。( )

4、圆的'周长和半径。( )

四、求下列各比的比值。

50:28

5/8:9/10

五、解比例。

0.9:4.2=11/2:x

x:4.5=4/5:3.2

六、应用题。

1、有一个长方形的儿童乐园,长320m,宽200m,按照1:10000的比例尺,画出它的平面图。

2、有一项工作,原计划用40人,18天正好完成,如果每个人的工作效率相同,现在增加5人,可以提前几天完成任务?

篇26:比与比例数学教案

比与比例数学教案

该板块主要复习比和比例的意义、性质及应用,除了对基本概念的复习外,还注重沟通比和比例间的关系及与分数、除法的联系。

例题:关于比、比例的知识,你都知道哪些?对比和比例的相关知识的复习。

教学时,以问题“关于比和比例的知识,你都知道哪些?”引入,让学生自主地回顾知识。学生可能会想到很多,同时也会感到这些知识点比较零乱、无序、缺乏系统化,进而激发学生梳理这部分知识的需求,在此基础上以小组为单位展开学习。重点对比、比例、比例尺的意义及比和比例的性质、化简比、求比值、解比例、求图上(实际)距离、判断正(反)比例等内容进行整理与复习。

“讨论与交流”是从知识内在联系方面进行整理,重点弄清楚比、比例与相关知识的联系与区别。

教学第一个问题时,先让学生自主讨论比、分数、除法的联系与区别,借助于下图,揭示它们之间的关系。

从意义上区分:“比”是表示两个数的倍数关系;“除法”表示的是一种运算;“分数”则是一个数。

教学第二个问题时,结合第一个问题的讨论,让学生自主交流,能体会到比、除法、分数的基本性质在本质上是相同的。

教学第三个问题时,可在对比和比例意义进行对比的基础上进行讨论、交流,明确“比”表示两个数相除的关系,而“比例”表示两个比相等的'式子。了解比是比例的基础,比例是比的扩展,没有两个相等的比是组不成比例的。还要弄清楚不是任意的两个比都能组成比例的,-定是比值相等的两个比才能组成比例。所以,要判断两个比能否组成比例,关键要看这两个比的比值是否相等。可借助下面的表格帮助学生理解:

通过上面的复习,让学生进一步地感受到“数学知识间,有着密切的联系”

第1题,是运用逼和比例尺解决问题的题目,练习时先让学生说一说每一个信息中比及比例尺所表示的实际意义,然后再结合实际意义感受比和比例在实际生活中应用非常广泛。

第2题是运用正比例知识解决实际问题的题目。练习时,可以用以下几种方法测量大树的高度:

(1)利用影子。人影与树影、人高与树高的比组成比例,根据人高、人影、树影的高度求出树高。

(2)利用标杆。方法同上

最后,让学生谈谈感受,体会比例知识在生活中的实际应用。

第3题是用百分数和比解决问题的题目。练习时,可让学生在解决问题的基础上,交流百分数和比所表示的实际意义,理解比与百分数意义的区别,体会在通常情况下,表示各部分的关系时,用比表示更清楚;表示部分与总数之间的关系,用百分数更合适一些。

第4题是一道实际问题。练习时,可引导学生先分析用什么方法来解答,形成思路后,再解答。该题可以用分数的知识解答,先求出总数是5000顶,再计算5000×(1-),得出4000顶;也可以用比例的知识解决,设未加工的为x顶,1:4=1000:x,求出未加工4000顶;还可以用其他方法解决。通过解题让学生体会在实际解决问题时,可以选用不同的方法。

5.式与方程

本板块是对小学阶段学习的代数初步知识进行整理,包括用字母表示数、简易方程及用方程解决实际问题。

例1:用字母表示数,可以简明地表达数量关系、运算律和计算公式。你能举出一些这样的例子吗?是对用字母表示数知识的系统整理。

教学时,让学生通过举例来回顾如何用字母表示数、数量关系、公式等,并以表格的形式来呈现,同时引导学生对用字母表示的内容进行观察,使之对小学阶段的公式、数量关系、运算律等又系统的了解。对用字母表示数时容易出错的问题,教师要加以强调。如:字母和数相乘、字母和字母相乘时的写法等。

例2:你能把有关方程的知识整理一下吗?是对有关方程知识进行整理。

教学时,可以先让学生对有关的概念进行回顾,如:等式、方程、方程的解、解方程等进行回顾,并对易混概念:等式与方程、方程的解与解方程进行讨论区分。然后引导学生列表整理,交流完善。

复习解方程时,要使学生弄清解方程中每一步的根据是什么(等式的性质),以及怎样检验。教师可通过举例来引导学生复习。

“讨论与交流”是对用字母表示数的优越性及用方程解决问题的特点进行讨论。

教学时,对于用字母表示数的优越性,要使学生在交流的基础上感受到用字母表示数很简洁、概括、准确。对于第二个问题,可结合具体的题目,让学生分别用方程与算术方法解答,通过对比,分析用方程和算术方法解决问题的基本思路及特点,体会两种思路的区别,知道有些题目适合用方程思路解决,有些题目适合用算术方法解决。明确在用方程解决问题时,关键是要抓住题目中主要的等量关系,设未知数,列方程解答。

“应用与反思”

第1题是练习用字母表示数的题目。练习时,让学生独立完成,交流时注意说说每个题的数量关系。最后,体会用字母表示数量关系的简洁性。

第2题是一个找规律的题目。练习时,可以让学生边观察边填表,在填写的过程中发现规律,自觉地运用字母表示出规律。规律是:分成的三角形的个数比边数少2,用含有字母的式子就是n-2。体会用字母表示数的概括性。

第4题是用列方程的方法解决问题的题目。练习时,先找出题中的等量关系,通过交流引导学生自觉选择最基本的等式列方程。之后,可以让学生交流用方程解决问题的方法。练习完成后,教师可以把该题的已知条件和问题变化一下,变成用算术方法解决的问题,让学生体会到灵活选择解答方法的必要性。最后,引导学生总结用不同方法解决问题的特点。

篇27:比和比例题型总结

比和比例题型总结

比例与比例尺题型分类

比和比例的有关概念

填空题

1.( )叫做比。

2.( )叫做比例。

3.写一个能与:组成比例的比( )。

3

4

135.甲数的是甲乙两数和的,甲乙两数的比是( )。 4513144.甲数×=乙数×60%,甲:乙=( : )。

6.在含糖25%的糖水中,糖与水的比是( )。

7.10克糖溶解在100克水中,糖和糖水重量的比是( )。

8.在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另

一个内项是( )。

9.一个比例式,两个外项的和是37,差是13,比值是,这个比例

式可以是( )。

10.在一个比例式中,两个外项都是质数,它们的积是39,一个内项

是这个积的20%,这个比例式可以是( )。

判断题

1.因为甲数:乙数=25:23,所以甲数=25,乙数=23。( )

2.如果a×3=b×5,那么a:b=5:3。 ( )

3.半径与直径的比是1:2 ( )

56

4.甲地到乙地,甲车要6小时,乙车要8小时,甲和乙的速度比

是3:4。( )

5.两个数相除的商又叫做两个数的比。 ( )

● 比例的基本性质

1.比例的基本性质是( )

2.在一个比例里,两个外项互为倒数,一个内项是最小的质数,另一

个内项是( )。

3.如果a×5=b×8,那么a:b=( )。

4.如果与互为倒数,那么a、b、c、d这四个数写成比例是

( )。

5.在一个比例式中,两个外项都是质数,它们的积是39,一个内项

是这个积的20%,这个比例式可以是( )。

16.在比例3:10=18:60中,如果第二项增加它的,那么第四项必须2

( ),比例仍然成立。 ( )

● 解比例

1、

badcχ25=1.214 3、6.5:χ=3.25:4 2、 25:χ=:754

6 6、27:χ=15 4、=:χ 5、0.8=χ:

11810142359

7、4=

23χ2515 3=0.5:5 9、=χ: 8、χ:4196

12 11、10、:χ=3:

13、13:7=3431141=:χ 12、=χ:15 105496χ21112 14、6:χ=1:50% 15、=χ:14365

比例尺的概念

填空题

1.( )和( )的比叫做比例尺。

2.比例尺=( ):( ),比例尺实际上是一

个( )。

3.用图上距离5厘米,表示实际距离200米,这幅图的比例尺是

( )

A. 5:200 B.1:4000 C.5:0 D.1:4000厘米

4.一幅图的比例尺是1:200,改成线段比例尺是( )

5.在1的图纸上,一个正方形的面积为16平方厘米,它的实际面 1000

积是( )平方米。

判断题

1.所有的比例尺的前项都是1( )

2.一幅图的比例尺应根据图纸的大小来确定( )

3.一幅地图的比例尺是1:3000000米

比例尺的应用

1、在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲乙两地的实际距离是780千米。

(1)求这幅图的比例尺,并用线段图表示。

(2)在这幅地图上量得A、B两城的`图上距离是5厘米,求A、B两城的实际距离。

2、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。

(1)求这间教室的图上面积与实际面积。

(2)写出图上面积和实际面积的比。并与比例尺进行比较,你发现了什么?

3.一个长方形机件长4.5毫米,宽2.4毫米,按8:1的比例尽画在图纸上,长和宽各应画多长?

4..在比例尺是1:4000000的地图上量得甲、乙两地的距离是30厘米。两列火车同时从甲、乙两地相对开出。已知甲车每小时行65千米,乙车每小时行55千米,几小时后两车才能相遇?

--

5..有两列火车同时从甲、乙两地相对开出,慢车每小时行70千米,快车每小时比慢车多行10千米,4小时后两车行全程的2/3。在比例尺是1:10000000的铁路运行图上,甲、乙两地之间的图上距离是多少厘米?

6.在一幅比例尺是1:5000000的地图上,

比和比例题型总结量A B两地的距离是2.2厘米,在另外一幅比例尺是1:2000000的地图上,A B两地的距离是多少?

篇28:《比和比例》教学反思

整节课下来,学生能按设想完成本节课的学习任务。效果很好。

问题:在备课时觉得例3在解比例的步骤上有些不好。写成2.5×6/1.5这样的形式,学生在遇到了分数的时候会出现繁分数,所以把这个步骤舍掉了,让学生先算出乘积后再除以1.5。可是做一做中的题却出现了始料未及的问题,结果学生再除的时候除不尽,个别学生选择约数而不是用分数表示结果。后来反思例题在这一步的编排上的用意。可以让学生先约掉一部分数后再进行计算,会降低计算的难度。

《正比例的意义》教学反思

小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的`本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。例如:在教学例题时,让学生先观察这两个表格,然后思考下面的问题:

(1)表1、表2中有哪两种量?它们相关联吗?

(2)哪个表中的两种量的变化更有规律?有什么规律?

上面思考题中“更有”两个字对学生的思维有一定定向作用,让学生着重去寻找表1中的规律。在学生深入观察、独立思考、合作交流后,必会发现表1中的两个量变化的规律。

《反比例的意义》教学反思

有了前节课的学习,这节课总体来说孩子是比较积极活跃的,反比例知识掌握的也够扎实。

教学环节中,我考虑到例题比较相近,因此要注意学习方式必须加以改变。我采取把自主权交给学生方式,营造了民主、宽松、和谐的课堂氛围,因而对例题的学习探索取得了比较好的效果。然后通过例题与例题进行比较,归纳出成反比例的两种量的几个特点,再以此和正比例的意义作比较,猜想出反比例的意义。最后经过验证,得出反比例的意义和关系式。既达成了本课的知识目标,又培养了推理的能力。

篇29:《比和比例》教学反思

本节课通过创设生活情景,使学生始终处于动手操作、动脑思考的状态,解决了线段比例尺和数值比例尺的转化,让学生从中体会到成功的喜悦.同时鼓励学生用不同的方法去解答,以此培养学生思维的灵活性.这样让孩子在获得知识的同时,培养了能力,通过本节课让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。

教学时间把握得不好,因为,理解比例尺的意义是教学重点,所以课堂上让学生说比例尺的意义占用的时间多了,导致相应的习题没有完成,学生的练习时间偏少。

篇30:《比和比例》教学反思

因为本节课的知识比较零散,还涉及到如线段比例尺的类型,放大比例尺应注意的问题等,本节课没能全部解决,但我觉得本节课的方法思路学生明白透彻了,也为其它类型的题打好了基础。重要的是,本节课中,学生体会到了用不同的思路来解决问题,那么在出现线段比例尺的时候,学生就不会生搬硬套的用公式来解决了。

《用比例解决问题》教学反思

本节课的教学课堂内容安排过多,安排了两道例题,在学生探究时才发现学生对用比例知识解决这样的问题存在困难,最后导致了学生的练习时间没有了。课堂内容的安排应考虑到学生的已有知识水平和思维习惯。

学生习惯于用算术法解决这类问题,很难接受用比例的知识解决这样的问题,把学生从传统的算术方法中释放出来才是问题的关键,因为习惯是难以改变,一种新的思维的注入是需要时间去改变的,所以对于用比例来解决问题必须在以后的课堂中经常提到,去改变他们传统的思维习惯。

用比例知识解应用题复习反思

本节复习用比例知识解应用题,从判断两种相关联的量是否成比例入手,然后通过具体的问题,引导学生在解决问题的活动中与他人合作,探索解决问题的有效方法。小学数学应用题中,有一些题里相关联的两种量成比例,这些题除了用算术方法解以外,还可以用比例知识解。在实际教学中,学生用比例知识解应用题的意识不强,还有些中等偏下的学生害怕用比例知识解答。因为关于判断两种相关联的量是否成比例有些抽象,学生难以把握,同时这样的题用算术方法解他们也比较熟悉,这样一来他们就更不愿意用比例知识解了。还有学生用比例知识解容易出错,简单一点的还可以,稍微复杂一些,就找不着对应量。

比和比例的教案

比和比例题型总结

比和比例教学反思

小升初数学比和比例复习题

比和比例教学反思参考

比和比例教学反思的作文

六年级数学《比和比例》复习评课稿

如何解比例分配应用题六年级教案设计

用比例解应用题复习(人教版六年级教案设计)

数学应用题和练习题教案

《比和比例应用题作文(精选30篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档