下面是小编整理的高三数学知识点总结及数学学习方法,本文共17篇,欢迎大家阅读分享借鉴,希望对大家有所帮助。

篇1:高三数学知识点总结及数学学习方法
高三数学知识点总结 这一篇就够了
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
高三数学必背的公式
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
学好高中数学的方法
认真听课适当做笔记,不放过任何联想小结的机会是读好书的关键。上课的内容有难有易,不能因为容易而轻视它,也不能因为困难而害怕它。容易的问题思维强度小,但所提供的思维空间却很大,可以把自己的方法与老师的方法进行整合,对相关的问题进行小结,对问题的发展进行预测,为后面更难的问题积累充足的思维惯性。
弄清概念、性质和基本方法是每个学科学习的第一步也是最重要的一步,如果概念没有弄清就去解题是没有不碰壁的。正确理解概念再做习题就比较容易了,通过习题的演算反过来还可以进一步理解概念与性质。
在小学初中时复习靠老师,到了高中复习要靠自己。因为在高中的课程多,内容广,所以在课堂上不可能经常反复。一节课内容一个星期之内不复习就有可能变得陌生,最好是三天内复习一次。
高三数学一轮复习如何复习更有效率
学习数学需要通过复习来循序渐进地提高自己的数学能力,考生在数学首轮复习中,为了避免高三数学总复习的盲目性,真正做到复习的计划性、针对性、实效性,下面有途网小编跟大家分享一下高三数学一轮复习如何复习更有效率,希望对你有帮助。
高三数学一轮复习如何复习更有效率一
回归课本,注重基础,重视预习。
数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。回归课本,自已先对知识点进行梳理,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。预习还可以培养自己的自学能力。
高三数学一轮复习如何复习更有效率二
提高课堂听课效率,勤动手,多动脑。
高三的课只有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要有自己的思考,听课的目的就明确了。现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。此外还要特别注意老师讲课中的提示。作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等做出简单扼要的记录,以便复习,消化,思考。习题的解答过程留在课后去完成,每记的地方留点空余的地方,以备自已的感悟。
高三数学一轮复习如何复习更有效率三
适量训练是学好数学的保证
学好数学要做大量的题,但反过来做了大量的题,数学不一定好,“不要以做题多少论英雄”,因此要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。
1、要有针对性地做题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题;
2、要循序渐进,由易到难,要对做过了典型题目有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做能起到事半功倍的效果。
3、是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。
4、独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不轻易问人,不要一遇到不会的东西就马上去问别人,自己不动脑子,专门依赖别人,而是要自己先认真地思考一下,依靠自己的努力克服其中的某些困难,经过很大的努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。学会提出问题,提出问题往往比解决问题更难,而且也更重要。
5.加强做题后的反思,解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会,对于一道完成的题目,有以下几个方面需要总结:
1.在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
2.在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
3.能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
高三数学一轮复习如何复习更有效率四
养成良好的解题习惯
如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学)自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。
篇2:高三数学学习方法总结
高三数学学习方法总结
一、注重学习策略
学生一定要学会自学考纲,即注重课前复习,看考纲数学要求,做到心中有数。而且在学习数学时,一定要不断巩固,适当重复,举一反三。此外,做题后的反思也很重要,学生要有意识地反思题目考察的知识点,考察的数学方法、数学思想,以及易错的点是什么。切忌钻难、怪、偏题,花无谓的时间,切忌题海战,要提高学习效率。
二、重视“三基”
高考数学学科的考试既考查中学数学的基础知识和方法,又考查考生进人高校继续学习的潜能。因此,既突出对基础知识、基本技能、基本数学思想方法的考察,又强调能力立意,以数学的基础知识为载体,考察学生的数学能力,同时注意考察学生的创新能力。学生在高三的学习过程中要注重“三基”。首先,是基础知识。学生要注重基础知识的积累,能将基础知识全面的掌握和理解。其次,是基本方法,也就是“通法”,最基本的解题方法,以及书本和考纲要求学生掌握的基本方法。最后,就是基本能力。数学的基本能力包括思维能力、运算能力、空间想象能力及分析和解决问题的能力等。高三生在解题过程中一定要思维缜密、有理有据,步骤完整。在立体几何部分,解题时要多运用数理结合、数的运算,要有耐心。
三、梳理基础知识
以前学过的知识要全面掌握和理解,在心中建立知识网络。打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。如函数可以利用框图的形式由粗到细进行回忆。概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。
提高高考数学成绩三大妙招
一、思路思想提炼法:催生解题灵感“没有解题思想,就没有解题灵感。有了解题思想,解题思如泉涌。”但“解题思想”对很多学生来说是既熟悉又陌生。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。在老师的指导下,结合典型的数学题目,可以快速掌握。
二、典型题型精熟法:抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,“当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解起题来就得心应手。”
三、逐步深入纠错法:巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。
高中数学解题时需要注意的问题
1.精选题目,避免题海战术
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2.认真分析题目
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。
3.做好题目总结
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
1)在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
2)在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
3)能否归纳出题目的类型,进而掌握这类题目的解题方法。
篇3:高三数学学习方法总结
一、用好课本:侧重以下几个方面
1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念。如以“角”的概念为例,课本中出现了不少种“角”,如直线的斜角,两条异面直线所成的角,直线与平面所成的角,复数的辐角主值,夹角、倒角等,它们从各自的定义出法,都有一个确定的取值范围。如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的唯一性。对此理解、掌握了才不会出现概念性错误。
2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围。如用平均值不等式求最值,必须满三个条件,缺一不可。有的同学之所以出错误,不是对平均值不等式的结构不熟悉,就是忽视其应满足的条件。
3.掌握典型命题所体现的思想与方法。如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法。
因此,端正思想,认真看书,全面掌握,并结合其它资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础。
二、上好课:课堂学习质量直接影响学习成绩
1.会听课。会听课就是要积极思考。当老师提出问题后,就要抢在老师前面思考怎么办?想一想解决这个问题的所有可能的途径和方法,然后在和教师讲的去比较,可能有的想法行有的不行,可能老师的方法更好,可能你的方法还简明、还奇妙。而不要等老师一点一点告诉你,自己仅仅是听懂了就认为学会了,这实际上是只得怀疑的。难怪不少同学说老师一讲就会,自己一做就错,原因是自己没有真正去思考,也就不可能变成自己的东西。所以积极思考是上好课最为重要的环节,当然也学习的主要方法。
2.做笔记。上课老师讲的含有重要概念,各种问题常规思想与方法,易错的问题,以及一些很适用的规律和技能等,所以,上课做好笔记是必要的。
3.要及时复习。根据记忆规律,复习应及时,每天一复习,一周一复习,每单一总结为好。
三、多做题:高三学习数学要做一定量习题
1.难度适当。现在复习资料多,题多,复习时应按老师的要求。且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失。因此,练习时应从自已的实际情况出发,循序渐进。应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质。
2.题贵在精。在可能的情况下多练习一些是好的,但贵在精。首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”。其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程。第三对重点问题要舍得划费时间,多做一些题。第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一。
3.重视改错。有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,尤其老师已经批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意。只有经过不断的改正错误,日积月累,才能提高。
4.注意总结。不仅包括题型、方法、规律的总结,还要掌握一些基本题。
四、搞好每一阶段的复习
进入高三后基本上就开始复习了,要服从老师的计划和安排,扎扎实实完成每一阶段的任务,不能急于求成。一般分为四个阶段:
1.第一阶段是系统复习。时间大约九个月。重点是全面复习,侧重基础,即按章节进行,以“三基”为核心,系统而全面地弄清每一个知识点,熟练掌握通性、通法,并注重知识体系的形成。
“三基”是指数学的基础知识、基本技能和基本方法。对“三基”的掌握需要一个过程,必须经过适量、适当的训练才能达到。因此,应养成一种好的学习习贯,把每一次练习都当成一次学习、巩固的机会,一看到问题就上联想这类问题所涉及的相关知识点和解决它的通法,逐渐对“三基”的掌握达到自动化,能随时拈来。
对“三基”的复习,不是简单的重复,加强记忆,重要的是要深化认识,从本质上发现数学知识之间的联系,从而加以分类、整理、综合,逐渐形成一个条理化,秩序化、网络化的有机体,正真实现由厚到薄。
注意数学能力的提高。通过大量的解题练习,应在运算能力,逻辑思维能力,空间想象能力,利用所学知识分析问题和解决问题的能力等方面得到提高。
注意思想方法的应用。著名数学家波利亚指出:“完善的思想方法,犹如北极星,许多人通过它而找到正确的道路。”说明掌握思想方法是何等的重要。如某些比较得杂的代数问题如果利用数形结合的方法来做,就能轻松遇快地解决。
2.第二阶段是重点复习。时间大约为一个半月。重点是以提高“三性”,即知识与能力的综合性、应用性和创新性。这是以来考题的改革方向。经过第一阶段的复习,同学们对“三基”的掌握已经达到了一定的程度,接下来老师就要给同学们组织一些专题了。包括:
知识内在联系型专题,如:函数、方程、不等式专题;函数与数列专题;函数图象与方程的曲线专题等。
思想方法类专题,如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想;运动与变换的思想方法;转化与化归的.思想方法等。
应用问题专题,进一步加强各种类型应题的练习,提高阅读理解、建立数学模型的能力。
创新思维专题,加强思维训练,在“通性、通法”的基础上进行创造性思维,体现多一点,少一点算或不急于算。
3.第三阶段是综合练习。时间大约一个月。重点是提高应试水平。通过综合试卷的反复练习,应在答题策略、时间分配,尤其是读题时的一次性感觉、一次性切入、一次性成功上加强训练。
4.第四阶段是保温和自由复习阶段。保持良好精神状态和平静的心理,坚信自己的实力,满怀信心迎接高考。
总之,高三是一个新的起点,我们要坚定信心,脚踏实地按照老师的要求并结合自己情况认真去做,采用科学的学习方法,持之一恒,一定能获得成功的喜悦。
篇4:高三数学学习方法总结
课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
重点难点突破
对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
篇5:高三数学学习方法总结
一、以纲为纲,明晰考试要求
所谓“纲”,主要指《考试说明》和《教学大纲》。简单地说,《考试说明》就是对考什么、考多难、怎样考这三个问题的具体规定和解说。《教学大纲》则是编写教科书和进行教学的主要依据,也是检查和评定学生学业成绩、衡量教师教学质量的重要标准。我们可以结合上一年的高考数学评价报告,对《考试说明》进行横向和纵向的分析,发现命题的变化规律。
二、以本为本,把握通性通法
近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡化特殊技巧”。就是说高考最重视的是具有普遍意义的方法和相关的知识。例如,将直线方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根方式、韦达定理、两点间距离公式等可以编制出很多精彩的试题。尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。
三、以“错”纠错,查漏补缺
这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。
除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。
四、以考学考,提高应试技能
考试是一门学问,高考要想取得好成绩,不仅取决于扎实的基础知识、熟练的基本技能和过硬的解题能力,而且取决于临场的发挥。我们要把平常的考试看成是积累考试经验的重要途径,把平时考试当做高考,从心理调节、时间分配、节奏的掌握以及整个考试的运筹等诸方面不断调试,逐步适应。
篇6:高三数学学习方法总结
一、高三数学学习方法 助力高三数学成绩提高
高三学生不仅要想学,还必须“会学”,要讲究科学的学习方法,提高学习效率,变被动学习为主动学习,才能提高学习成绩。
1、培养良好的学习习惯。良好的学习习惯包括制定学习计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
2、循序渐进,积极归因,防止急躁。
由于高一同学年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣,想靠几天“冲刺”一蹴而就。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。让高一同学学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折,循序渐进,争取在高考成功。
3、注意研究学科特点,寻找最佳高三数学学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。其中运算能力的培养一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行,教学中进行一题多解思考,优化运算策略;逻辑思维能力是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高,使用归类、网联策略,区别好几个概念:三段式推理、四种命题和充要条件的关系;空间想象能力对平面知识的扩充既要能钻进去,又要能跳出来,结合立体几何,体会图形、符号和文字之间的互化;运用所学知识分析问题、解决问题的能力,就是要重视应用题的转化训练,归类数学模型,体会数学语言。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。
高一数学是高三学习一个艰苦的磨炼,经过了这个阶段的砺炼,就会打开高三数学的学习思维,前面的道路就会豁然开朗,只要同学们增强信心,再掌握正确的高三数学学习方法,付出的努力一定会有回报。
二、坚持整理独一无二的“错题集”
相信很多同学在学习数学的时候都会遇到这样的情况:明明这道题看着很熟悉,自己好像遇到过,当时还做错了来着,但偏偏就是想不起来正确的解法是什么,结果……又做错了。这说明你并没有真正的掌握这个知识点,或者说,你没有掌握得足够牢固。面对一张讲解过的试卷,你有把握自己能得满分吗?人总是能从自己的失败中学到更多的东西,所以,你需要一本错题集。
整理错题集就是把自己平时和考试时做错过的题目抄下来,不仅要把正确的答案写上去,还要把错误的答案加上,然后分析做错的原因,是知识点没掌握,还是忽略了使用的条件范围,或者因为粗心计算错误。数学的知识点繁多而且相对独立,考试前复习时总是不知道从哪里下手才好,回想一下好像自己基本原理都懂了,但考试要用到时却总是想不起来。而错题集,就像一张药方,既有“症状描述”,还有对症下的药。对比错题集,能够很快找到自己的不足,加以巩固,避免再犯同样的错误。跌倒一次不可怕,可怕的是在同一个地方连续跌倒两次。
因此建议同学们能够在第一轮复习、老师系统地梳理知识点的时候,把自己的错题集建立起来。错过这一时间的也可以自己根据知识点或者做错原因进行一下分门别类,便于以后的查找和整理。
错题集的升级版就是不仅有错题,还有“好题”。相信阅尽题海的同学都会对一些题记忆深刻。有的需要全面细致的分类讨论,稍微考虑不周就会坠入陷阱;有的看似计算量庞大得吓人,其实反向思维,将答案代入其中也不过小菜一碟(这种情况在选择题中尤为突出);有的条件众多,刁钻古怪,不知道从何下手(如最后的附加题),其实放下畏惧,步步为营,也可以得到大部分的步骤分。收集好题可以让你摸清出题者的思路和惯用的考查手法,识破其中的陷阱和伎俩。当你能够出一道复杂的题难倒同学时,还有什么难题能难倒你呢?
其实不少同学已经有把错题集合起来再做一遍的习惯,但难能可贵的是坚持。错题集不仅适用于数学,也同样适用于政治、历史等其他学科。它为你提供了一个知识的框架,提醒你考查的重点和自己尚存的缺点。更重要的是,每个人的错题集都是独一无二的,它是属于你自己的“武林秘笈”。
篇7:高三数学知识点和学习方法2022
1、混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
2、忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
4、函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
5、函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
6、三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
7、向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
8、忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
9、对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差数列。
10、an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
11、错位相减求和项处理不当致误
错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
12、不等式性质应用不当致误
在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
13、数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
14、不等式恒成立问题致误
解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法。通过最值产生结论。应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系。
15、忽视三视图中的实、虚线致误
三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽。
16、面积体积计算转化不灵活致误
面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法。(1)还台为锥的思想:这是处理台体时常用的思想方法。(2)割补法:求不规则图形面积或几何体体积时常用。(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积。(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解。
17、忽视基本不等式应用条件致误
利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。
篇8:高三数学知识点和学习方法2022
1、勤动手
学习数学不能光用脑子想想就可以的,学数学一定要勤动手,因为有很多时候,我们没有想明白,但用手去写谢谢,说不定就做出来了。
2、作业很重要
学习数学的一个重要方法就是要完成老师布置得作业,如果只是上课听讲,那是远远不够的,在完成老师布置作业的同事,还要多做课后习题进行巩固。
3、上课预习,下课复习
学习数学的很重要一点便是,上课之前做好预习,这样我们才能在听课的过程中重点听自己预习时不太懂的知识点,下课要及时复习,毕竟上课时听得没有经过巩固很容易忘记。
4、总结错题库
学习数学的时候,我们可以用一个本子来记录自己所做错的题目,每隔3天左右,再回头进行做一遍,有些错题,当时我们可能会做了,但过几天有可能就会再次忘记。
5、不要太在意难题
学习数学的时候,我们会碰到很多各种各样的难题,有的时候,老师也可能解决不了,这个时候,我们大可不必太在意,我们专心的把基础题弄懂做会,考试的时候大部分还是基础题的!
数学学习技巧
做数学题的目的是检查自己学的知识、方法是否已经掌握很好了。如果掌握得不准或有偏差,那么多做题反而巩固了自己的缺欠,所以要在准确把握住基本知识和方法的基础上再做一定量的数学练习是很有必要的。
对于中档题,尤其要讲究做题效益,做完题之后,需要进行一定的“反思”,思考一下本题所用的基础知识或数学思考方法是什么等。自己可以自问自己,该题是否还有其他的想法或解法也可以做出来。
做完题之后,要分析方法与解法,善于总结,该解题方法在其他问题时,是否也用到过,然后把它联系起来,这样可以得到更多的经验和教训,更重要的是要养成善于思考的好习惯,这样将更利于以后的学习打下扎实的基础。
当然,学好数学,如果没有一定量的练习就不能形成技能。有的同学做完作业,就一推了事,其实这是很不好的习惯,应当学会通过自己独立检查来验证作业的结果是否正确,这样不但可以培养自己独立思考能力,而且对参加各种数学考试也十分有利。
篇9: 高三数学知识点总结
高三上册数学知识点整理
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
人教版高三数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
篇10: 高三数学知识点总结
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
不等式的判定:
①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a
③不等号的开口所对的数较大,不等号的尖头所对的数较小;
④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
任一x?A,x?B,记做AB
AB,BAA=B
AB={x|x?A,且x?B}
AB={x|x?A,或x?B}
Card(AB)=card(A)+card(B)-card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1.集合元素具有①确定性;②互异性;③无序性
2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法
(3)集合的运算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性质
n元集合的字集数:2n
真子集数:2n-1;
非空真子集数:2n-2
篇11: 高三数学知识点总结
必修一
第一章:集合和函数的基本概念
这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。
还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数
——指数、对数、幂函数三大函数的运算性质及图像
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的.对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。
第三章:函数的应用
这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。
必修二
第一章:空间几何
三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。
在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。
第二章:点、直线、平面之间的位置关系
这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
第三章:直线与方程
这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。
第四章:圆与方程
能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。
必修三
总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。
程序框图与三种算法语句的结合,及框图的算法表示,不要用常规的语言来理解,否则你会在这样的题型中栽跟头。
秦九韶算法是重点,要牢记算法的公式。
统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。
概率,主要就只几何概型、古典概型。几何概型只要会找表示所求事件的长度面积等,古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函数
考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。
第二章:平面向量
向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。
第三章:三角恒等变换
这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。
必修五
第一章:解三角形
掌握正弦、余弦公式及其变式、推论、三角面积公式即可。
第二章:数列
等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。
第三章:不等式
这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。
篇12: 高三数学知识点总结
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a2,V=a3
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
篇13: 高三数学知识点总结
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,则有>1?;=1?;<1?.
概括为:作差法,作商法,中间量法等.
3.不等式的性质
(1)对称性:a>b?;
(2)传递性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可开方:a>b>0?(n∈N,n≥2).
复习指导
1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
(1)倒数性质:①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,则
①真分数的性质:<;>(b-m>0);
篇14:高三数学知识点总结
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q
回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
篇15:高三数学知识点总结
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;
(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数
1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法
3、复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;
2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;
3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。
篇16:高三数学知识点总结
1.等差数列的定义
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.
2.等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.
3.等差中项
如果A=(a+b)/2,那么A叫做a与b的等差中项.
4.等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).
(2)若{an}为等差数列,且m+n=p+q,
则am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
(5)S2n-1=(2n-1)an.
(6)若n为偶数,则S偶-S奇=nd/2;
若n为奇数,则S奇-S偶=a中(中间项).
注意:
一个推导
利用倒序相加法推导等差数列的前n项和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
两个技巧
已知三个或四个数组成等差数列的一类问题,要善于设元.
(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.
四种方法
等差数列的判断方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通项公式法:验证an=pn+q;
(4)前n项和公式法:验证Sn=An2+Bn.
注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.
篇17:高三数学知识点总结
高考数学必考知识点归纳必修一:
1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
高考数学必考知识点归纳必修二:
1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程
高考数学必考知识点归纳必修三:
1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:
1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:
1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考数学必考知识点归纳文科选修:
选修1--1:重点:高考占30分
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
选修1--2:
1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
高考数学必考知识点归纳理科选修:
选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分(一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
文档为doc格式