下面小编为大家整理了六年级数学的《体积和体积单位》优秀说课稿,本文共17篇,欢迎阅读与借鉴!
篇1:六年级数学的《体积和体积单位》优秀说课稿
一:总体说明
《体积和体积单位》这节课是在学生认识长方体和正方体,空间观念有了进一步发展的基础上教学的。本节课主要采取了小组活动的形式,来教学体积的意义和体积单位。教师先通过实验的方法帮助学生建立起体积的概念,使学生理解体积的含义,进一步建立空间观念。再让学生通过观察与感知,建立常用的体积单位观念,认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。最后让学生从教学活动中知道要计量一个物体的体积,就是看它含有多少个体积单位。
二:说教材
1、内容:《体积和体积单位》本节课内容,是在学生认识长方体和正方体,空间观念有了进一步发展的基础上教学的。主要内容是教学体积的意义和体积单位,教材先通过实验的方法帮助学生建立起体积的概念,再通过观察与感知,建立常用的体积单位观念,最后教材说明要计量一个物体的体积,就是看它含有多少个体积单位。
2、目标:通过《体积和体积单位》本节课的教学,(1)让学生知道体积的含义,进一步建立空间观念。(2)使学生认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。(3)知道计量一个物体的体积,就是看它含有多少个体积单位。
3.教学重点:掌握体积和体积单位的知识,培养学生的动手能力。
4.教学难点:建立1立方厘米`1立方分米和1立方米的空间观念。
5.教学准备:烧杯、石块、体积单位、课件。
三:教学策略
1.采用故事导入法激发学生的学习兴趣。
2.采用实验法和自学法发挥学生的实践能力和自主学习能力。
3.采用小组学习的方法,培养学生的协作能力。
4.采用学生动手操作实验的方法,培养学生的创新能力。
四:教学过程
(一)导入:
1.听《乌鸦喝水》的小故事。
2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的新课题《体积和体积单位》。(出示课题)
(二)探究新知
1、建立体积概念。
师出示实验一,把小石块放入盛有水的烧杯中,你发现了什么?说明什么?请生读题,分组操作。
师:通过这个实验,你发现了什么?为什么?[说明:物体 占空间]{板书}。
师再出示实验二,把大小不同的两个石块分别放入盛有高度相同水的两个烧杯中,你又发现了什么?说明什么?请生读题,分组操作。
师:通过这个实验,
你发现了什么?它们水面上升的高度相同吗?这说明什么?(大的物体占的空间大,小的物体占的空间小)。[说明:通过2个实验培养学生的小组学习、协作能力,锻炼学生的动手操作能力。]
实物演示:橡皮、铅笔盒、书包。
师:观察这三个物体,哪个所占的空间比较大?哪个所占的空间比较小?
书包与讲桌相比,谁占的空间比较大?
引导学生得出:物体占空间有大小:{板书}。
生概括体积的定义:物体所占空间的大小叫做物体的体积。{板书}
生齐读。
师:桌上这三个物体,哪个体积最大?哪个体积最小?你知道体积比书包大的.物体吗?你知道体积比火柴盒小的物体吗?[说明:体积的意义十分抽象,学生难以理解。这里的第一个实验,让学生通过观察、思考、认识物体占有空间。再通过第二个实验,让学生形成空间有大小的鲜明表象,帮助学生理解体积的含义,便于建立体积的概念。]
2、教学体积单位。
师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,学生发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入体积单位的教学]
师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包含有几个这样的小正方体,就能准确地比出它们的大小。
请生数一数,告诉老师谁的体积比较大?
学生汇报(注意让学生说出数的方法)。
师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有体积单位。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。
请生读一读常用的体积单位有哪些。
出示自学要求,v自学课文15页内容。
v自学体积单位。用看一看(是什么形 体)、量一量(它的棱长是多少)、摸一摸(它有多大)、说一说(它的定义)、找一找(在日常生活中哪些物体的体积可以用这个体积单位来计量)的方法,小组之间开展讨论和交流。
请生分小组自学体积单位,进行讨论和交流。学生上台汇报自学成果。[说明:教师出示自学提纲,让学生以小组自学的形式开展讨论和交流,并让学生自我展示自学成果,极大地发挥了学生的主体意识和探究学习能力,发展学生的协作能力。]
师(小结)通过以上的学习,我们知道常用的体积单位有立方厘米、立方分米、立方米。并且知道1立方厘米、1立方分米、1立方米各有多大?
今后,我们在计量物体的体积时,就应根据实际情况来选用合适的体积单位
3.教学计量体积单位的方法。
师出示图。师:已知每个正方体的棱长是1厘米,它的体积是多少?这个长方体是由几个小正方体构成的?它含有多少个立方厘米?它的体积是多少?
请生说一说。
师(小结)计量一个物体的体积,要看这个物体含有多少个体积单位。
学生操作:
请你用4个1立方厘米的小正方体,摆成不同的长方体,它们的体积各是多少?还能摆成其它形状吗?它们的体积又是多少?[说明:这里的操作有两方面的作用:一是可以认识计量一个物体的体积,要看它含有多少个体积单位;二是可以通过摆小正方体看体积,为后面学习体积的计算做准备。]
4.反馈
( 哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?
(课本中练一练的作业)
[说明: 通过比较,有利于学生强化对长度、面积、和体积计量单位的认识,更好地构建认知结构]
(三)知识的应用
(四)、课堂总结:
师:学习了这堂课,你有哪些收获?
七、板书设计:
体积和体积单位
物体所占空间的大小叫做物体的体积
体积单位:立方厘米:棱长1厘米的正方体体积是1立方厘米。
立方分米:棱长1立方分米正方体体积是1立方分米。
立方米:棱长1立方米正方体体积是1立方米。
篇2:数学《体积和体积单位》的说课稿
一:总体说明:
《体积和体积单位》这节课是在同学认识长方体和正方体,空间观念有了进一步发展的基础上教学的。本节课主要采取了小组活动的形式,来教学体积的意义和体积单位。教师先通过实验的方法协助同学建立起体积的概念,使同学理解体积的含义,进一步建立空间观念。再让同学通过观察与感知,建立常用的体积单位观念,认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。最后让同学从教学活动中知道要计量一个物体的体积,就是看它含有多少个体积单位。
二:说教材
1、内容:《体积和体积单位》本节课内容,是在同学认识长方体和正方体,空间观念有了进一步发展的基础上教学的。主要内容是教学体积的意义和体积单位,教材先通过实验的方法协助同学建立起体积的概念,再通过观察与感知,建立常用的体积单位观念,最后教材说明要计量一个物体的体积,就是看它含有多少个体积单位。
2、目标:通过《体积和体积单位》本节课的教学,(1)让同学知道体积的含义,进一步建立空间观念。(2)使同学认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。(3)知道计量一个物体的体积,就是看它含有多少个体积单位。
3.教学重点:掌握体积和体积单位的知识,培养同学的动手能力。
4.教学难点:建立1立方厘米`1立方分米和1立方米的空间观念。
5.教学准备:烧杯、石块、体积单位、课件。
三:教学战略:
1.采用故事导入法激发同学的学习兴趣。
2.采用实验法和自学法发挥同学的实践能力和自主学习能力。
3.采用小组学习的方法,培养同学的协作能力。
4.采用同学动手操作实验的方法,培养同学的创新能力。
四:教学过程:
(一)导入:
1.听《乌鸦喝水》的小故事。
2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的新课题《体积和体积单位》。(出示课题)
(二)探究新知
1、建立“体积”概念。
师出示实验一,“把小石块放入盛有水的烧杯中,你发现了什么?说明什么?”请生读题,分组操作。
师:通过这个实验,你发现了什么?为什么?[说明:物体占空间]{板书}。
师再出示实验二,“把大小不同的两个石块分别放入盛有高度相同水的两个烧杯中,你又发现了什么?说明什么?”请生读题,分组操作。
师:通过这个实验,
你发现了什么?它们水面上升的高度相同吗?这说明什么?(大的物体占的空间大,小的物体占的空间小)。[说明:通过2个实验培养同学的小组学习、协作能力,锻炼同学的动手操作能力。]
实物演示:橡皮、铅笔盒、书包。
师:观察这三个物体,哪个所占的空间比较大?哪个所占的空间比较小?
书包与讲桌相比,谁占的空间比较大?
引导同学得出:物体占空间有“大小:{板书}。
生概括体积的定义:“物体所占空间的大小叫做物体的体积。”{板书}
生齐读。
师:桌上这三个物体,哪个体积最大?哪个体积最小?你知道体积比书包大的物体吗?你知道体积比火柴盒小的物体吗?[说明:体积的意义十分笼统,同学难以理解。这里的第一个实验,让同学通过观察、考虑、认识物体“占有空间”。再通过第二个实验,让同学形成“空间有大小”的鲜明表象,协助同学理解体积的含义,便于建立“体积”的概念。]
2、教学“体积单位”。
师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,同学发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]
师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包括有几个这样的小正方体,就能准确地比出它们的大小。
请生数一数,告诉老师谁的体积比较大?
同学汇报(注意让同学说出数的方法)。
师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。
请生读一读常用的体积单位有哪些。
出示自学要求,“v自学课文15页内容。
v自学体积单位。用看一看(是什么形体)、量一量(它的棱长是多少)、摸一摸(它有多大)、说一说(它的定义)、找一找(在日常生活中哪些物体的体积可以用这个体积单位来计量)的方法,小组之间开展讨论和交流。”
请生分小组自学“体积单位”,进行讨论和交流。同学上台汇报自学效果。[说明:教师出示自学提纲,让同学以小组自学的形式开展讨论和交流,并让同学自我展示自学效果,极大地发挥了同学的主体意识和探究学习能力,发展同学的协作能力。]
师(小结)通过以上的学习,我们知道常用的体积单位有立方厘米、立方分米、立方米。并且知道1立方厘米、1立方分米、1立方米各有多大?
今后,我们在计量物体的体积时,就应根据实际情况来选用合适的体积单位
3.教学“计量体积单位”的方法。
师出示图。师:已知每个正方体的棱长是1厘米,它的体积是多少?这个长方体是由几个小正方体构成的?它含有多少个立方厘米?它的体积是多少?
请生说一说。
师(小结)计量一个物体的体积,要看这个物体含有多少个体积单位。
同学操作:
请你用4个1立方厘米的小正方体,摆成不同的长方体,它们的体积各是多少?还能摆成其它形状吗?它们的体积又是多少?[说明:这里的操作有两方面的作用:一是可以认识计量一个物体的体积,要看它含有多少个体积单位;二是可以通过摆小正方体看体积,为后面学习体积的计算做准备。]
4.反馈
(哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?
(课本中练一练的作业)
[说明:通过比较,有利于同学强化对长度、面积、和体积计量单位的认识,更好地构建认知结构]
(三):知识的应用。
(四)、课堂总结:
师:学习了这堂课,你有哪些收获?
五、板书设计:
体积和体积单位
物体所占空间的大小叫做物体的体积
体积单位:立方厘米:棱长1厘米的正方体体积是1立方厘米。
立方分米:棱长1立方分米正方体体积是1立方分米。
立方米:棱长1立方米正方体体积是1立方米。
篇3:数学《体积和体积单位》的说课稿
一、教材分析
体积和体积单位是在学生认识了长方体和正方体的特征以及表面积计算的基础上进行教学的,是本单元教学的基础,是学生空间观念的的又一次发展,也为今后学习体积的计算做好了充分的知识铺垫。
二、基于本课教学内容在本单元的地位与作用及教材编排意图,我拟定这节课的教学目标为:
知识和能力目标:
1、理解体积的意义。
2、认识常用的体积单位。
3、能正确区分长度单位、面积单位和体积单位。
过程和方法目标:1、运用观察实验的方法理解体积的含义。
2、结合生活中的事物感知体积单位的大小。
情感态度和价值观目标:1、发展学生的空间观念,培养学生的思维能力。
2、渗透事物之间普遍联系的辩证唯物主义思想。
我说课的内容是人教版小学数学五年级下册第38、39页中体积和体积单位这一课。我要回答以下2个问题:1、体积和体积单位这一课时的重难点是什么?2、突破重难点的策略是什么?
我先回答第一个问题:体积和体积单位这一课时的重点:理解体积和体积单位的意义。教学难点:建立1立方厘米,1立方分米和1立方米的空间观念。
接下来我分三点来阐述确定这一课时重难点的依据。(一、是凸显三维空间本质属性的需要。二、是发展空间观念整体目标的需要。三、为避免学习后期因计算而淡化空间观念的问题)
一、是凸显三维空间本质属性的需要
第一点:原来知识结构里面:学生学习了线段的长度面的大小,建立了一维二维的空间观念,在第一学段学生通过学习习近平移,旋转、对称现象,学习描述物体相对位置的一些方法,从形的角度培养发展学生的三维空间,初步培养他们的空间观念。但本课时要学习的体积和体积单位是由一个具体的量来决定物体所占空间的大小,打破了原来的认知,从量的角度来培养发展学生的空间观念,可见,两者是有区别的,所以要揭示其本质属性。
二、是发展空间观念整体目标的需要。
第二点:《标准》把空间观念作为义务教育阶段数学学习内容的核心概念之一,把建立初步的空间观念作为数学思考方面的一个重要目标。学生由认识一维点线,到认识二维面,发展到认识三维空间体,是学生空间观念的一次飞跃。可见,教材在每一个学段都十分注重培养学生的空间观念。
三、为避免学习后期因计算而淡化空间观念的问题
第三点:在以往的教学中我们不难发现,学生刚接触体积时,对于什么是体积倒还能有一个模糊的表象,知道体积是物体所占空间的大小叫做物体的体积,即是由点线面组成的一个三维体。可是学到后来,当学生学习了体积的计算公式后,他就会套用长*宽*高的公式来计算体积,对体积的认识又回到原来的一维二维上,什么是体积?线段*线段*线段,因此,这一阶段学生往往因计算而将体积的表象模糊了。因此学生刚接触体积和体积单位时,理解他们的意义成了本节课学习的重点,同时为了避免出现学生为了解决问题而套用公式的现象,为后阶段学习计算公式的意义打下基础。
下面我回答第二个问题:突破本节课重点的策略分别是直观演示,实验操作,对比交流。突破本节课难点的策略分别是对比交流,迁移类推,举例,想象
下面介绍我什么时候使用这些策略,我是怎样使用这些策略,又是如何进行使用后的一个提炼。
一、运用直观演示,实验操作,对比交流理解体积的意义,突出重点。
1.直观演示,初步感知体积的意义
对于体积概念建立,我分二层进行教学:物体占有空间,物体占的空间有大
小。
这里我请学生观察自己和同桌的抽屉,说一说抽屉里有些什么?抽屉还能放些什么?能放多少?〔设计意图:这里通过引导学生直观演示,让学
生体验抽屉里有“空间”,物体是要占一定的空间的。将空间这一概念形象化,具体化,丰富学生的空间表象。〕
2.实验操作,深入理解体积的意义
出示两个杯子,盛满(有)同样多的水,分别放入大小不同的石头,看出水面上升的高度不同,让学生说一说一块石头占的空间大,另一块石头所占的空间小。由此让学生感知物体占的空间有大小。
3.对比交流,由感性认识上升到理性认识
实物书包、铅笔盒、橡皮让学生观察比较,说一说哪个物体占的空间大,哪个物体占的空间小,进一步感知物体所占空间是有大小的。对体积的感性认识上升到理性认识,即物体体积是指物体所占空间的大小。
二、运用迁移类推,举例想象建立1立方厘米,1立方分米和1立方米的空间观念,突破难点。
1.迁移类推,理解体积单位的意义
出示两个体积大小相近,但形状不同的铅笔盒,要求学生判断哪个铅笔盒的体积大。由于无法直接判断,我在这里引导学生回忆计量物体的长度和面积时,要用统一的长度单位和面积单位。学生自然会由前面的知识想到,计量物体的体积也要用统一的体积单位。引出常用的体积单位有立方厘米、立方分米和立方米,和体积单位的字母表示法。用迁移类推引出学习体积单位
〔设计意图:这里我采用直观演示,实验操作由“空间”到“物体要占空间”,再由“物体要占空间”到物体所占空间有大有小,理解体积的意义,通过知识的迁移类推帮助学生理解体积单位的意义,突破了本节课的教学重点〕
2.观察感知,对比交流,初步形成1立方厘米,1立方分米的表象
由于学生在平时对体积是1立方厘米、1立方分米的物体相对接触到比较多,先教学1立方分米和1立方厘米。我分别出示1立方分米和1立方厘米的正方体模型,让学生进行观察并感知1立方厘米和立方分米的空间大小。再同时出示这两个模型,进行一个对比交流,初步建立1立方厘米和1立方分米的空间观念。
3.游戏操作,想象举例,进一步建立1立方厘米,1立方分米,1立方米空间观念
我让学生闭上眼睛想一想,1cm3和1dm3有多大,在头脑中对1立方厘米
和1立方分米形成建模,并根据头脑中对1立方厘米和立方分米的表象用手指比划。举例生活中一些体积接近于它们的物体,如一颗蚕豆、手指尖的部分;一个粉笔盒,进一步巩固建立1立方厘米和一立方分米的空间观念
对于1立方米空间观念的建立,学生比划起来有一定的`困难。在这里我游戏操作的教学策略。我借助三把米尺,我让几个同学和我一起,在教室的一个墙角共同来做一个1立方米的空间。”为了进一步让学生感受1立方米的空间有多大,我让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?(这里学生的身高已经超过1米,我会在一旁引导他蹲下去一点,头部不超过米尺的高度,让学生初步感受1立方米的空间是与长宽高有关的,但这里不要做出解释,只是一个初步的感知)再让学生估一估1立方米的空间可放多少物品?”通过一个量的刻画感受1立方米的空间有多大。
学生空间观念的形成是建立在观察、感知、操作、思考、想象等基础之上的,特别是对于处在小学阶段的学生,直观演示,实验操作和观察思考是发展空间观念的必备策略之一。被动听讲和练习为主的方式,是难以形成空间观念的。
以上是我对体积和体积单位这一课时的重点难介绍以及突破重点的策略的简单阐述。
篇4:六年级数学下册《圆锥体积》说课稿
教学目标:
1.知识与技能目标
能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2.过程与方法
在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。
3.情感态度与价值感
在探索合作中感受教学与我生活的密切联系,让学生感受探究成功的快乐。
教学重点:
掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:
理解圆锥体积公式的推导过程及解决生活中的实际问题
学习者特征分析:
接受教育者是小学六年级的学生。
教学策略选择与设计:
(1)引导学生主动建构知识是新课标的重要理念,六年级的学生尽管具备了一定的逻辑思维能力,但感性知识对于他们来说还是非常重要的。因此,教学中通过引导学生通过自主探索、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”
(2)以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体的计算方法。
(3)问题解决为主的教学策略:通过演示、小组交流、动手操作、感念辨析等方式,本课从具体的学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。
教学资源与工具设计:
(1)每位同学准备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。直尺6把。
(2)教师自制的多媒体课件;
教学过程:
一、复习旧知,课前铺垫
1.怎样计算圆柱的体积?
指名回答,教师板书:圆柱体的体积=底面积×高。
2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正。
二、提出质疑,引入新课
圆锥有什么特征? 它的体积如何计算呢?
今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)
三、动手操作 ,获得新知
1. 探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱——(转化)——长方体
圆柱体积公式——(推导)——长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1) 提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底 等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3) 学生分组做实验。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下。
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.
小结:今后我们求圆锥体体积就用这种方法来计算。
(5)应用巩固
1.出示例题学生读题,理解题意,自己解决问题。
例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
学生完成后,进行小组交流。
你是怎样想的和怎样解决问题。(提问学生多人)
教师板书:
1/3 ×19×12=76(立方厘米)
答:它的体积是76立方米
2. 练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
3.出示例2:要求学生自己读题,理解题意思。
有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:3.14××1.5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思? 4.比较:例1和例2有什么地方不同?
(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。
四、综合练习,发展思维
1.一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
2.选择题。
每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )
立方米 3a立方米 9立方米
(2)把一段圆钢切削成一个的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米
6立方米 3立方米 2立方米
3.学生操作
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积?(小组讨论)
指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m.并板书出来,再比较怎样放体积的圆锥体。
五、课后小结,归纳知识
这节课你有什么收获?哪个同学、哪个小组学习?
六、作业布置,巩固新知
1、本节课后第3、4、5题。
2、回去观察你生活身边有哪圆锥物体?测量计算它们的体积。下节课交流汇报。
篇5:六年级数学下册《圆锥体积》说课稿
教学内容:
第25~26页,例2、例3及练习四的第3~8题。
教学目的:
1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
教学重点:
掌握圆锥体积的计算公式。
教学难点:
正确探索出圆锥体积和圆柱体积之间的关系
教具准备:
每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等
教学过程:
一、复习
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、新课
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.
(2)圆锥的'体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
组织学生实验分组合作学习
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )
学生叙述实验过程并总结结论,得出计算公式
板书:圆锥的体积= 1/3×圆柱的体积=1/3 ×底面积×高,
字母公式:V= 1/3Sh
2、教学练习四第3题
(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
3、巩固练习:完成练习四第4题。
4、教学例3.
(1)出示例3
已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)
四、巩固练习
1、做练习四的第7题。
学生先独立判断这三句话是否正确,然后全般核对评讲。
2、做练习四的第8题。
(1)引导学生学生思考回答以下问题
① 这道题已知什么?求什么?
② 求圆锥的体积必须知道什么?
③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?
(2)让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习四的第6题。
(1)指名学生先后回答下面问题
① 圆柱的侧面积等于多少?
② 圆柱的表面积的含义是什么?怎样计算?
③ 圆柱体积的计算公式是什么?
④ 圆锥的体积公式是什么?
(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。
五、课堂练习
1、填空
(1)圆锥体体积的计算公式( )
(2)等底等高的圆锥体是圆柱体体积的( ),圆柱体是圆锥体体积的()。
(3)等底等高的圆锥体体积是3立方厘米,圆柱体的体积是()。
(4)体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高()。
(5)体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是( )。
(6)等底等高的圆柱和圆锥,圆柱比圆锥的体积大( )。
2、判断
(1)圆柱体的体积一定比圆锥体的体积大 .
(2)圆锥的体积等于和它等底等高的圆柱体的1/3.
(3)圆锥体、正方体、长方体的体积都等于底面积×高。
(4)圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。
3、补充习题
(1)一堆煤成圆锥形,底面半径是1.5米,高是1.1米。这堆煤的体积是多少?如果每立方米的煤重约1.4吨,这堆煤有多少吨?
(2)一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?
(3)一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少?
(4)在一个底面半径是10cm的圆柱形水桶中装有水,把一 个底面半径为5cm的圆锥形铁锤浸没在水中,水面上升了1cm,试问铁锤的高是多少?
(5)等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米?
六、总结
这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?
教学反思:
从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的认识,而这一认识的形成,靠文字和观摩演示都是苍白无力的,它需要学生发自内心的需要,全身心的体验,使学生在实验中对自己的实验过程和结论进行对比和反思,悟出等底等高的必要性,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的具体含义。
篇6:数学六年级《圆柱的体积》说课稿
一、教学准备
1、教学内容
本节课是义务教育六年制小学数学课本第十二册第一单元第一小节第四课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2、本节课在教材中所处的地位和作用
《圆柱和圆锥》这一单元是在学习了长方体和立方体的基础上进入了小学里学习立体图形的最后阶段,这个单元知识的综合性和对学生的要求都比较高,化归和类比是常用的思想方法要进行总结,长方形正方形以及圆的基础知识都是本单元的认知基础。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
教材的编排特别注重让学生积极主动地实践研究,让学生在合作探究的过程中自主发现规律,先用想一想的思考,回忆圆面积公式推导过程,激活原先“化曲为直”的极限思想和“转化”的思想方法记忆储存,接着用较多的篇幅讲解切拼的过程,便于学生理解和感受转化的过程和极限思想,然后推导圆柱体积的计算公式,并抽象到字母公式。例题直接利用公式解决问题,试一试和练一练对方法进行了巩固,并有所变化,不同条件下求圆柱体积,完善认知结构。
二、说教学目标
根据新课程标准中对空间和图形的目标要求和对教材文本的分析理解,以及我对六年级学生的认知发展水品的认识,我从“知识能力”“过程方法”“情感态度”三个维度制订以下教学目标:
1、经历并理解圆柱体积公式的推导过程,掌握圆柱的体积公式并能应用公式正确地解决实际问题。
2、通过观察、猜测、操作、分析、比较、综合,建立初步的空间观念,并体会知识间相互“转化”的思想方法。
3、让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感。
圆柱的体积公式推导过程可以培养学生多方面的能力,这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的体积公式推导过程作为本节课的教学重点;而小学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,而本节课需要把圆柱体切割转化成长方体,我们却找不到某种材料做的圆柱体适合切割拼组,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学热点和分化点。
本节课采用的教具和学具为:圆柱体切割组合学具,课件,各小组自备所需演示用具。
三、说教法
本课教学时最大特点是从学生已有的知识水平和认识规律出发,运用迁移,类比猜想、实践演示、自主推导,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以一几个特点:
1、直观演示,操作发现
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生有丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2、巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3、运用迁移,深化提高
运用知识的迁移,培养学生利用旧知学习新能力,从而使学生主动学习,掌握知识,形成技能。
篇7:小学六年级数学说课稿《圆柱的体积》
人教版小学六年级数学说课稿《圆柱的体积》
一、说教材
1.教学内容
本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时,内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2.本节课在教材中所处的地位和作用
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
4.教学目标
(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。
(2)初步建立空间观念和逻辑推理能力。
(3)知道知识间是可以互相转化的。
二、说教法
从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:
1.直观演示,操作发现
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2.巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3.运用迁移,深化提高
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
三、说学法
课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法
1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
四、说教学过程
对本节课的教学,我们设计了以下几个环节,
(一)复习旧知识,为引入新知识作准备
1.求下面各圆的面积(口算),单位为厘米
(1)半径为1厘米;(2)直径为4厘米;(3)周长为62。8厘米。
2.什么叫做体积?怎样计算长方体的体积?
(二)导入新课,隐射教学目标
1.观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。
2.展示学习目标,学生认读目标
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。
(三)导入新课,实施教学目标
1.设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的'面积公式的推导过程,教师出示投影,帮助学生思考。
2.演示操作,揭示新知。
引导学生观察,沿着圆柱底面把圆柱切开,可以得到大小相等的16快。演示给学生看以后,在让学生动手操作,启发学生说出转化成我们熟悉的形体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?从而推导出圆柱体体积计算的公式,最后让学生说一说圆柱体计算公式的推动过程。并板书:圆柱体的体积=底面积·高
引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作 ——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我们主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3.运用。
出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。
篇8:小学六年级数学《圆锥的体积》说课稿
我说课的内容是小学数学(人教课标版)六年级下册第二单元第二节“圆锥的体积”。本课是在学习了第一课时《圆锥的认识》后通过比较圆柱和圆锥而得出圆锥的体积的计算方法。下面我将从教材、教法、学法、教学模式、三生培养五方面加以说明。
一、说教材
数学课程标准强调,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力情感态度等方面得到进一步的发展。“圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。是本单元的重点。通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。六年级是小学阶段的最后一个学年,学生掌握的数学知识有一定的基础,逻辑思维能力有了一定的发展,学生在接受程度上,分析问题的能力上,以及语言表达能力上都有较明显的提高,这为理解本节课的知识提供了有力的条件。但因学生之间个性差异很大,所以本节课的教学也存在一些障碍。
根据课程标准的要求,教材的编排特点,学生的实际情况我确定的教学目标是:
1、情感目标:培养学生的探索精神、合作意识。
2、知识目标:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,运用公式计算以及解决生活中的问题。
3、能力目标:培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。
重点:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。
难点:圆锥体积计算公式的推导过程。
关键:公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。
二、说教法
为了能够使学生在情境中学习数学,在活动中体验数学因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。
本节课把多媒体演示引进课堂,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。
三、说学法
教法和学法是相互联系的,“教”是为了更好地“学”,教学中充分体现出学生的主体作用,尽量让学生自己动手实践、自己想、自己说,想不到的,教师要从不同角度启发、引导学生去想,去发现。创设一定的问题情境,让学生的整个学习过程围绕着问题去观察,去讨论,去实验,去理解,去总结。
古人说:“授人之鱼,只供一餐所需;而给人之渔,终身受用不尽。”新课程要求学生不仅要“学会”,更要“会学”。本节课采用适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我利用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。
四、说教学模式
本节课运用了小学数学情境———探究式教学模式。
(一)、创设情境、揭示问题
所谓的创设情境,就是指教师要在上课开始创设一种能调动学生先前经验,促进学生思维参与的探究氛围。本节课我创设了两种冰淇淋,怎么样买更合算的情景。这样做的目的,不只在于激趣,主要是让学生逐步形成一种数学的眼光,在面对现实问题时能够主动寻求用数学的方式来解决。
(二)探究发现,建立模型
这是学生构建新知识的重要一步,要帮助学生通过观察、实践、探索、思考、交流等活动、解释解决问题的基本策略,建立基本的数学模型。
1、直观引入,直觉猜想
在教学中,我首先让学生回忆,以前学过哪些物体的体积的计算,接着猜测圆锥可能与哪个物体的体积有关?再猜测他们之间存在着什么样的关系?这一环节目的是是为了让学生把已有的知识信息与新知识建立联系,为学生调整认知结构,构建新知识奠定基础。
2、实验探索,发现规律
这一环节是合作学习,引导学生分小组做实验总结出等底等高的情况圆锥的体积是圆柱体积的三分之一,最后根据圆柱体积的计算方法,引导学生试着总结圆锥体积的计算公式。这样,学生亲身经历、体验了知识的形成过程,从而使学生的思维能力、动手操作能力,总结概括能力,与人合作的意识都得到了提高。
3、启发引导,推导公式
这一环节首先让学生根据圆柱体积的计算方式推导出圆锥体积的计算方法,然后引导学生说一说,sh各表示什么?为什么要乘三分之一。这样使学生能更深入的理解。整个这一环节我一直本着引导学生主动建构知识的重要理念,引导学生通过自主探索、合作交流、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”。
(三)、理解应用,强化体验
因为学生在探究发现、建立模型中创造的数学知识,发现的数学方法,要有一个内化的过程,为了关注每一个孩子这一环节我设计的四个层次的练习。
【基本练习】
首先解决情境中的问题,到底买哪一种冰淇淋合算。然后计算圆锥冰麒麟和圆柱冰淇淋的体积。在计算圆锥冰淇淋的体积时,允许学生有选择的完成,这样对学生进行数量上和难易程度上的开放,不但关注了学困生,也促进了尖子升和特长生的发展。
【变式练习】
是一组判断题
【应用练习】
让学生解决生活中的问题。能够使学生对所学的知识再一次深化理解,并同时培养学生解决生活中问题的能力。
【综合练习】
把一个圆柱加工成一个最大的圆锥形零件。求削去的体积。
这是一道思维拓展题。首先引导学生独立思考,然后再解决问题,最后得出结论。这样,不但注重了新知识的结构化,而且使学生对知识得到进一步的拓展和延伸。
这样学生在应用中充分理解,加深了体验,使新建立的数学知识得到进一步强化。从而实现人人学习有价值的数学,不同的人在数学上得到不同的发展。
(四)、总结归纳,提升经验
这一环节主要引导学生对本节课的知识进行系统的归纳、还对探究发现的过程、方法、经验、进行了梳理。
在本节课的课后我布置了一项实践性的作业,让学生用硬纸板做一个圆锥,圆柱。要求是,圆锥和圆柱的体积相等。
操作实践是一个手脑并用的过程,是培养技能技巧,促进思维发展的一种有效手段。更是一种让学生继续获取知识的延伸性学习活动,能够提高学生的学习技能;培养学生的求知欲;巩固所学知识,扩大知识领域,并且产生知识迁移;培养学生的合作意识;让学生明白学习既没有时间限制,又没有空间限制,以培养学生良好的学习习惯。
五、说三生培养
在整个教学过程中,我力求照顾全体学生的学习感受,因材施教。学困生学习最基本的内容,优等生在达到课程标准要求的基础上,适当扩大知识面,拓展了思维。在教学中,简单的问题留给学困生,有难度的留给优等生,实验操作环节以强带弱,最后分层次练习,基本练习和变式练习,主要是关注学困生,同时也促进了尖子生的发展。应用练习和思维拓展主要是关注尖子生和特长生。从而使不同的学生在本节课得到不同的发展。
总之,本节课,以教材为主源,教师为主导,学生为主题,训练为主线,思维为核心,为了每个孩子的发展为宗旨,让学生在情境中学习数学,在活动中体验数学,这样,既重视了知识的形成过程,又重视了学生的思维的发展过程,是每个孩子都在获得新知识的过程中,提高了能力发展了思维。
这次教学大赛的要求是同题同构,目的是共同提高。我们六年组三个数学老师在选课上,备课上,制作课件中,到后来写教案设计,说课材料,真的是做到了合作。虽然是我们精心的准备了,但在教学中还是出现了很多的遗憾。
1、多媒体课件的制作和运用不是尽善尽美。
2、在三生培养中,对差生的关注不是很到位。
3、课堂中有浪费现象,造成了教学时间的紧张。
4、在小组合作中,学生的参与程度还有待提高。
在今后的工作中,一定要多听课、多学习、多研究、多总结、多反思、使今后四十分钟的数学课堂每一分都有效。
篇9:小学六年级数学《圆锥的体积》说课稿
一、说教材
(一)、圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
(二)、教学目标
1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积
2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
(三)、教学重点、难点和关键
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
二、说教法
以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的.特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
三、说学法
1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。
2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。
四、说教学程序
(一)、导入课题
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。
回答:(1)已知底面积和高怎样求它的体积?(2)已知底面半径、直径或周长又怎样求它的体积?
这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积
(二)讲授新知
1、(1)引入新课
引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?
(2)教学圆锥体积公式
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V=1/3Sh。
第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
练习:
填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。
2、教学应用体积公式计算体积(电脑出示题目)
①基本练习。一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?(学生独立做在练习本上,教师行间巡视、指导,做完后集体订正)。
②变式练习。只列式不计算。将上题中的已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?
③小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以1/3,还要注意单位统一。
3、教学例3(出示例3)
例3:工地上有一些沙子,堆起来近似于一个圆锥,测得底面直径是4米,高是1.2米。这堆沙子大约有多少立方米?(得数保留两位小数。)
学生读题、想:要求这堆沙子大约有多少立方米,必须先求什么?(先分组讨论,再尝试练习,个别板演,然后集体评讲。)
通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。
4、操作练习。
让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。
(三)、巩固应用
1、做P27-28练习九的第3、4、7、8题,(学生练习,教师巡视,个别辅导,特别注意对学习有困难的学生的辅导。)
2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习)。
(四)全课总结,课外延伸。
让学生说说这节课的收获,还有什么不懂得的问题?并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样结尾,激发了学生到生活中继续探究数学问题的兴趣。
总之,本节课教学,学生变被动学习为主动获取,掌握了学习知识的方法,真正体现了陶行之先生所说的:“教正是为了不教”的教学思想.
篇10:数学六年级下册《圆柱的体积》说课稿
一、把握教材,目标定位
《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:
1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学的重点和难点:
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
二、把握学情,选择教法
(一)学情分析
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的'力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。
三、教学策略的选择。
现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。
四、基于以上构想,我确定本节课的教学程序为:
教师活动: 创设情境 协作指导 拓展延伸
学生活动: 操作感悟 自主探究 实践应用
具体为三个环节进行教学:
1. 直观演示,操作发现
让学生充分利用直观教具观察、比较、动手操作、讨论交流,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2. 巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3. 运用迁移,深化提高
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
现代课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法
1. 学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2. 学会利用旧知转化成新知,解决新问题的能力。
3. 学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
具体教学程序:
(一)、情景引入: 1、复习:大家还记得长方体、正方体的体积怎样求吗?让学生说出公式。出示圆柱形水杯。(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?
(2)你能想办法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
2、创设问题情景。
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。
(二)、新课教学:
设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?课件演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体课件演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。
根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我主要从以下几个方面着手:
(1) 引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2) 运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3) 充分利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4) 根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3. 运用。出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(三)巩固练习,检验目标
1.练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。
2.完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。
3.变式练习:已知圆柱的体积、底面积,求圆柱的高。
这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。
4.动手实践:让学生测量自带的圆柱体。
教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。
(四)总结全课,深化教学目标
结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。
本节课我采用的是图示式板书,这样能让学生清楚地看出圆柱体积公式的推导过程,以及两个形体间的密切联系,同时便于学生对于公式的记忆和理解。
篇11:六年级数学上册《体积和体积单位》的教学反思
苏教版六年级数学上册《体积和体积单位》的教学反思
核心提示:上课前,观摩了名师的这节课,对我感受颇深。数学教学要尽可能地接近学生的生活,让学生认识到生活中处处有数学,数学中也处处有生活的道理。教学时切忌把自己和学生都捆绑在教科书上,因此我在教学中十分注意,把教...
上课前,观摩了名师的这节课,对我感受颇深。数学教学要尽可能地接近学生的生活,让学生认识到生活中处处有数学,数学中也处处有生活的道理。教学时切忌把自己和学生都捆绑在教科书上,因此我在教学中十分注意,把教材内容与生活实践相结合,动手操作与实验观察相结合,努力培养学生用数学的意识解决实际问题的能力和创新精神。下面以《体积和体积单位》一节课的教学为例谈谈自己的教学体会。
一、故事引入,引发兴趣。
好的开始是成功的一半,从《乌鸦喝水》这一学生耳熟能详的故事导入,吸引了学生的注意,很自然地引入新课。引入阶段正处在一堂课的起始阶段,处理的是否恰当,直接影响到学生学习的情绪,以及思维的活跃程度。这样的设计,不但可提高学生的学习兴趣,激发求知的内驱力,而且可使所要学习的数学问题具体化,形象化,使学生在活动开始就处于情意高昂的学习状态。
接着用两次倒水的'实验,让学生观察发现到石头是确实是占据空间的,而且占据的空间是有大有小的,很自然地引出了体积的概念。
二、注重迁移,探究问题。
在引出体积单位的教学过程中,我没有直接告诉学生,而是注重学生的知识迁移,先回忆面积单位先分后数的比较方法,再让学生在讨论交流中,得出必需将两个长方体分成大小相等的小方块,引出了体积单位,突破难点。不过发现学生在数小正方体个数的时候有点困难,空间观念不够好。
三、尝试自学,理解问题
小学生对概念的掌握与他们的知识水平、生活经验有很大的关系。因此在教学体积单位时,采取尝试自学课本,理解体积单位,培养学生空间观念。①看书自学体积单位,以小组为单位,交流合作,②学生汇报学会的知识。③理解体积单位。
四、联系实际,解决问题
解决问题是对学生综合能力的考验,但体积单位比较抽象,因此,我引导学生列举生活中实例,激发学生欲望,让学生在活动中理解应用数学知识解决实际问题。如:找出1立方厘米,1立方分米的正方体。摸一摸、量一量、比一比,说一说等实践活动,学生真正是在亲身经历和体验下认识体积单位,从而在头脑中形成表象,有助于以后计算和估算物体的体积。这一环节中学生说到了很多身边哪些物体的体积约是1立方厘米,1立方分米,在1立方米的正方体中让学生依次进入,结果能容纳8个学生左右,学习气氛更是达到了高潮,教学效果良好,同时使学生真真切切地感受到数学与现实生活的密切联系,数学就在身边。这一教学培养了学生自学能力,小组合作交流能力及语言表达能力。同时也提高了学生参与尝试的兴趣。
五、个人反思。
个人上课的语言不够生动,关注学生的情感不够,对学生的回答未能作出非常适当的评价。这是节概念教学,语言必需精炼,严谨。我这方面还做得不够,以后自己一定继续在这方面加倍努力争取进步。同时,上了这节课,让我深深体会到,教好几何类概念课确实很有难度,要建立好学生的空间观念,必需从学生生活实际出发,列举生活中的例子。甚至要不断准备一些形象的教具,倒如,没有1立方厘米、1立方分米、1立方米的直观教具,单凭学生想象根本上是很难建立三个体积单位的空间观念的。在教学几何类概念课过程中要多以观察、比较、动手操作量一量、摸一摸等活动,为学生建立情感,形成表象。
篇12:《体积和体积单位》说课稿
一:总体说明:
《体积和体积单位》这节课是在同学认识长方体和正方体,空间观念有了进一步发展的基础上教学的。本节课主要采取了小组活动的形式,来教学体积的意义和体积单位。教师先通过实验的方法协助同学建立起体积的概念,使同学理解体积的含义,进一步建立空间观念。再让同学通过观察与感知,建立常用的体积单位观念,认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。最后让同学从教学活动中知道要计量一个物体的体积,就是看它含有多少个体积单位。
二:说教材
1、内容:《体积和体积单位》本节课内容,是在同学认识长方体和正方体,空间观念有了进一步发展的基础上教学的。主要内容是教学体积的意义和体积单位,教材先通过实验的方法协助同学建立起体积的概念,再通过观察与感知,建立常用的体积单位观念,最后教材说明要计量一个物体的体积,就是看它含有多少个体积单位。
2、目标:通过《体积和体积单位》本节课的教学,(1)让同学知道体积的含义,进一步建立空间观念。(2)使同学认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。(3)知道计量一个物体的体积,就是看它含有多少个体积单位。
3.教学重点:掌握体积和体积单位的知识,培养同学的动手能力。
4.教学难点:建立1立方厘米`1立方分米和1立方米的空间观念。
5.教学准备:烧杯、石块、体积单位、课件。
三:教学战略:
1.采用故事导入法激发同学的学习兴趣。
2.采用实验法和自学法发挥同学的实践能力和自主学习能力。
3.采用小组学习的方法,培养同学的协作能力。
4.采用同学动手操作实验的方法,培养同学的创新能力。
四:教学过程:
(一)导入:
1.听《乌鸦喝水》的小故事。
2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的新课题《体积和体积单位》。(出示课题)
(二)探究新知
1、建立“体积”概念。
师出示实验一,“把小石块放入盛有水的烧杯中,你发现了什么?说明什么?”请生读题,分组操作。
师:通过这个实验,你发现了什么?为什么?[说明:物体 占空间]{板书}。
师再出示实验二,“把大小不同的两个石块分别放入盛有高度相同水的两个烧杯中,你又发现了什么?说明什么?”请生读题,分组操作。
师:通过这个实验,
你发现了什么?它们水面上升的高度相同吗?这说明什么?(大的物体占的空间大,小的物体占的空间小)。[说明:通过2个实验培养同学的小组学习、协作能力,锻炼同学的动手操作能力。]
实物演示:橡皮、铅笔盒、书包。
师:观察这三个物体,哪个所占的空间比较大?哪个所占的空间比较小?
书包与讲桌相比,谁占的空间比较大?
引导同学得出:物体占空间有“大小:{板书}。
生概括体积的定义:“物体所占空间的大小叫做物体的体积。”{板书}
生齐读。
师:桌上这三个物体,哪个体积最大?哪个体积最小?你知道体积比书包大的物体吗?你知道体积比火柴盒小的.物体吗?[说明:体积的意义十分笼统,同学难以理解。这里的第一个实验,让同学通过观察、考虑、认识物体“占有空间”。再通过第二个实验,让同学形成“空间有大小”的鲜明表象,协助同学理解体积的含义,便于建立“体积”的概念。]
2、教学“体积单位”。
师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,同学发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]
师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包括有几个这样的小正方体,就能准确地比出它们的大小。
请生数一数,告诉老师谁的体积比较大?
同学汇报(注意让同学说出数的方法)。
师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。
请生读一读常用的体积单位有哪些。
出示自学要求,“v自学课文15页内容。
v自学体积单位。用看一看(是什么形 体)、量一量(它的棱长是多少)、摸一摸(它有多大)、说一说(它的定义)、找一找(在日常生活中哪些物体的体积可以用这个体积单位来计量)的方法,小组之间开展讨论和交流。”
请生分小组自学“体积单位”,进行讨论和交流。同学上台汇报自学效果。[说明:教师出示自学提纲,让同学以小组自学的形式开展讨论和交流,并让同学自我展示自学效果,极大地发挥了同学的主体意识和探究学习能力,发展同学的协作能力。]
师(小结)通过以上的学习,我们知道常用的体积单位有立方厘米、立方分米、立方米。并且知道1立方厘米、1立方分米、1立方米各有多大?
今后,我们在计量物体的体积时,就应根据实际情况来选用合适的体积单位
3.教学“计量体积单位”的方法。
师出示图。师:已知每个正方体的棱长是1厘米,它的体积是多少?这个长方体是由几个小正方体构成的?它含有多少个立方厘米?它的体积是多少?
请生说一说。
师(小结)计量一个物体的体积,要看这个物体含有多少个体积单位。
同学操作:
请你用4个1立方厘米的小正方体,摆成不同的长方体,它们的体积各是多少?还能摆成其它形状吗?它们的体积又是多少?[说明:这里的操作有两方面的作用:一是可以认识计量一个物体的体积,要看它含有多少个体积单位;二是可以通过摆小正方体看体积,为后面学习体积的计算做准备。]
4.反馈
( 哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?
(课本中练一练的作业)
[说明: 通过比较,有利于同学强化对长度、面积、和体积计量单位的认识,更好地构建认知结构]
(三):知识的应用。
(四)、课堂总结:
师:学习了这堂课,你有哪些收获?
五、板书设计:
篇13:《体积和体积单位》教案说课稿
一:总体说明:
《体积和体积单位》这节课是在学生认识长方体和正方体,空间观念有了进一步发展的基础上教学的。本节课主要采取了小组活动的形式,来教学体积的意义和体积单位。教师先通过实验的方法帮助学生建立起体积的概念,使学生理解体积的含义,进一步建立空间观念。再让学生通过观察与感知,建立常用的体积单位观念,认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。最后让学生从教学活动中知道要计量一个物体的体积,就是看它含有多少个体积单位。
二:说教材
1、内容:《体积和体积单位》本节课内容,是在学生认识长方体和正方体,空间观念有了进一步发展的基础上教学的。主要内容是教学体积的意义和体积单位,教材先通过实验的方法帮助学生建立起体积的概念,再通过观察与感知,建立常用的体积单位观念,最后教材说明要计量一个物体的体积,就是看它含有多少个体积单位。
2、目标:通过《体积和体积单位》本节课的教学,
(1)让学生知道体积的含义,进一步建立空间观念。
(2)使学生认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。
(3)知道计量一个物体的体积,就是看它含有多少个体积单位。
3.教学重点:掌握体积和体积单位的知识,培养学生的动手能力。
4.教学难点:建立1立方厘米`1立方分米和1立方米的空间观念。
5.教学准备:烧杯、石块、体积单位、课件。
三:教学策略:
1.采用故事导入法激发学生的学习兴趣。
2.采用实验法和自学法发挥学生的实践能力和自主学习能力。
3.采用小组学习的方法,培养学生的协作能力。
4.采用学生动手操作实验的方法,培养学生的创新能力。
四:教学过程:
(一)导入:
1.听《乌鸦喝水》的小故事。
2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的.新课题《体积和体积单位》。(出示课题)
(二)探究新知
1、建立“体积”概念。
师出示实验一,“把小石块放入盛有水的烧杯中,你发现了什么?说明什么?”请生读题,分组操作。
师:通过这个实验,你发现了什么?为什么?[说明:物体 占空间]{板书}。
师再出示实验二,“把大小不同的两个石块分别放入盛有高度相同水的两个烧杯中,你又发现了什么?说明什么?”请生读题,分组操作。
师:通过这个实验,
你发现了什么?它们水面上升的高度相同吗?这说明什么?(大的物体占的空间大,小的物体占的空间小)。[说明:通过2个实验培养学生的小组学习、协作能力,锻炼学生的动手操作能力。]
实物演示:橡皮、铅笔盒、书包。
师:观察这三个物体,哪个所占的空间比较大?哪个所占的空间比较小?
书包与讲桌相比,谁占的空间比较大?
引导学生得出:物体占空间有“大小:{板书}。
生概括体积的定义:“物体所占空间的大小叫做物体的体积。”{板书}
生齐读。
师:桌上这三个物体,哪个体积最大?哪个体积最小?你知道体积比书包大的物体吗?你知道体积比火柴盒小的物体吗?[说明:体积的意义十分抽象,学生难以理解。这里的第一个实验,让学生通过观察、思考、认识物体“占有空间”。再通过第二个实验,让学生形成“空间有大小”的鲜明表象,帮助学生理解体积的含义,便于建立“体积”的概念。]
2、教学“体积单位”。
师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,学生发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]
师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包含有几个这样的小正方体,就能准确地比出它们的大小。
请生数一数,告诉老师谁的体积比较大?
学生汇报(注意让学生说出数的方法)。
师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。
请生读一读常用的体积单位有哪些。
出示自学要求,“v自学课文15页内容。
v自学体积单位。用看一看(是什么形 体)、量一量(它的棱长是多少)、摸一摸(它有多大)、说一说(它的定义)、找一找(在日常生活中哪些物体的体积可以用这个体积单位来计量)的方法,小组之间开展讨论和交流。”
请生分小组自学“体积单位”,进行讨论和交流。学生上台汇报自学成果。[说明:教师出示自学提纲,让学生以小组自学的形式开展讨论和交流,并让学生自我展示自学成果,极大地发挥了学生的主体意识和探究学习能力,发展学生的协作能力。]
师(小结)通过以上的学习,我们知道常用的体积单位有立方厘米、立方分米、立方米。并且知道1立方厘米、1立方分米、1立方米各有多大?
今后,我们在计量物体的体积时,就应根据实际情况来选用合适的体积单位
3.教学“计量体积单位”的方法。
师出示图。师:已知每个正方体的棱长是1厘米,它的体积是多少?这个长方体是由几个小正方体构成的?它含有多少个立方厘米?它的体积是多少?
请生说一说。
师(小结)计量一个物体的体积,要看这个物体含有多少个体积单位。
学生操作:
请你用4个1立方厘米的小正方体,摆成不同的长方体,它们的体积各是多少?还能摆成其它形状吗?它们的体积又是多少?[说明:这里的操作有两方面的作用:一是可以认识计量一个物体的体积,要看它含有多少个体积单位;二是可以通过摆小正方体看体积,为后面学习体积的计算做准备。]
4.反馈
( 哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?
(课本中练一练的作业)
[说明:通过比较,有利于学生强化对长度、面积、和体积计量单位的认识,更好地构建认知结构]
(三):知识的应用。
(四)、课堂总结:
师:学习了这堂课,你有哪些收获?
七、板书设计:
篇14:五年级数学《体积单位》练习题
五年级数学《体积单位》练习题
一、在括号里填上适当的单位名称。
一瓶钢笔水的容积是60。
摩托车油箱的容积是8()。
一瓶农夫果园的容积是600()。
一块橡皮的体积约是8()。
一台录音机的体约是20()。
运货集装箱的`体约是40()。
二、连一连。
学校主席台的体积24立方厘米
书包的体积24立方米
碳素墨水盒的体积24立方分米
三、我能判断对。
(1)体积相等的两个长方体,表面积一定相等。()
(2)棱长1分米的正方体放在桌子上,这个正方体占地面积是1立方分米。()
四、走进生活。
1.一根长方体的钢材,它的长是6。5分米,宽是30厘米,高是10厘米,这根钢材的体积是多少立方厘米?
2.红星农场运来7200立方分米的沙子,把这些沙子铺在一个长24分米、宽20分米的沙坑里,能铺多厚?
3.一根铁丝长120厘米,现将这根铁丝焊接成一个正方体的模型。这个正方体的体积是多少立方厘米?
篇15:数学体积和体积单位教学设计
教案背景:
本课面向五年级学生关于数学科的学习。课前准备:多媒体课件和有关的体积单位的模型。还要准备一些相关的物品。
教学课题:
1.使学生理解体积的概念,了解常用的体积单位,对体积单位的大小形成比较明确的表象。
2.培养学生的比较、观察能力,扩展学生的思维,进一步发展学生的空间观念。教材分析:
教材先通过“乌鸦喝水”的故事引入,让学生在讨论交流中感悟物体占用空间。然后通过实验,让学生观察和比较,说明不同的物体所占空间的大小不同,从而引入体积的概念。教材通过迁移类推引出物体的单位来的。引导学生由长度单位和面积单位的学习,想到要比较长方体的体积也需要用统一的体积单位,并介绍了这些体积单位的字母表示法。在此基础上,通过观察活动建立体积单位的表象。
教学方法:
对体积单位的认识可以通过模型观察,再建立表象。通过做一做进行区分。
教学过程:
一、认识体积
1.激趣引入。
师:同学们,你们听过乌鸦喝水的故事吗?
生:听过。
师:谁愿意来看着图给大家讲一讲。
指名学生看图讲故事。(课件出示插图)
师:乌鸦是怎么喝到水的?
生1:乌鸦把石头放进瓶子,瓶子里的水就升上来了,这样乌鸦就喝到水了。师:为什么把石头放进瓶子,瓶子里的'水就升上来了?
引导学生说出石头占了水的空间,所以把水挤上来了。
2.实验证明。
师:石头真的占了水的空间吗?我们再来做个实验验证一下。
教师拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒入第二个杯子,让学生看会出现什么情况,为什么?
生1:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了水的空间,所以装不下了。
3.揭示体积。
师:对,第二个杯子装不下第一个杯子的水,是由于石头占了水的空间。同学们请大家用手在书桌的抽屉里摸一摸,说说有什么感觉。
生摸并说感觉。
师:请把书包放进抽屉,再用手摸一摸,现在又有什么感觉?
生1:手在抽屉里活动起来不方便了。
生2:手要从书包缝里才能放进去。
师:这是为什么?
生3:因为书包把抽屉的空间占了。
师:对,刚才石头把水挤上来,书包把抽屉的空间变小了,都说明物体占有一定的空间。那你们知道石头和书包谁占的空间大吗?
生4:书包占的空间比石头大,因为书包大,石头小。
师出示下面的图,问:你们知道这些物体哪个占的空间大?
学生回答后,师说明:物体都占有一定的空间,而且所占的空间有大有小。我们把物体所占空间的大小叫做物体的体积。(板书)
师:谁能说说什么是电视机的体积?什么是影碟机的体积?什么是手机的体积?
学生回答。
师:谁的体积大、谁的体积小呢?
生:电视机的体积最大,影碟机的体积第二大,手机的体积最小。师:你们是怎么知道的?
生:我是看出来的。
二、引出体积单位
师:有的物体可以通过观察来比较它们的体积大小,那下面两个长方体,你们能比较出大小吗?
生:不好比较。
教师用多媒体将它们分成大小相同的小正方体(如下图),问:现在你们能比较出它们的大小吗?
生1:能,左边的长方体比右边的体积大。
师:为什么?
生1:因为左边的长方体有16个小正方体,而右边的有15个,而且小正方体的大小相同,所以左边的比右边的大。
师:左边的长方体和右边的长方体中的小正方体不一样大,行不行?为什么?生:不行。因为小正方体大小不同,就不好比较。
师:为什么分成小正方体前不能直接比大小,分成小正方体后就能比较呢?引导学生说出:因为分成的每个小正方体的大小相同,这样就好比较了。师:所以要比较物体的体积大小,需要有一个统一的体积单位。在学习体积单
位前,我们先回想一下,长度单位是用什么来表示的?面积单位是用什么来表示的?
引导学生说出:长度单位是用线段来表示的,面积单位是用什么正方形来表示的。
师:体积单位应该用什么来表示呢?
学生讨论后,回答:应该用正方体来表示。
师:对,体积单位是用正方体来表示的。常用的体积单位有立方厘米、立方分米、立方米。(板书)
三、认识体积单位
师:请你们猜一猜1 cm3、1 dm3,是多大的正方体?
学生讨论后回答:我们想棱长是1 cm的正方体,体积是1 cm3;棱长是1 dm的正方体,体积是1 dm3。
师:这个猜想对吗?看看书上是怎样说的。
学生看书,证实自己的猜想是对的。
师:请同学们在自己的学具中找出1 cm3的正方体。
学生找到后,说一说自己是怎样找到的。
生:我是用尺量的,量出棱长是1 cm的正方体,它的体积就是1 cm3。师:请你们找找,周围有哪些物体的体积接近1 cm3。
生1:一个手指尖的体积近似于1 cm3。
生2:计算机键盘的按钮的体积近似于1 cm3。
师:请找出1 dm3的正方体,与1 cm3的正方体比较一下,看它的体积大多少,你能说出身边哪些物体的体积大约是1 dm3吗?
生3:一个拳头的体积大约是1 dm3。
生4:一个粉笔盒的体积大约是1 dm3。
师:1 m3有多大?
生:是棱长1 m的正方体。
师:你能想像出1 m3有多大吗?这里有3根1米长的木条做成的一个互成直角的架子,我们把它放在墙角,看看1 m3有多大,它和你想像的大小一样吗?师:大家估计一下,它大约能容纳几个同学?
生1:6个。
生2:10个。
验证(前排的12个同学钻到了正方体里。)
师:立方厘米、立方分米、立方米是常用的体积单位,要计量一个物体的体积,就要看这个物体中含有多少个体积单位。请同学们用4个1 m3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?
生:4 cm3。
师:为什么?
生1:因为它是由4个体积是1 cm3的小正方体摆成的。
师:(从粉笔盒的纸盒中拿出2盒粉笔)你能估计这个纸盒的体积是多少立方分米吗?
生:大约是2 dm3。
师:为什么?
生:因为刚才你从这个纸盒里拿出了两盒粉笔,而每盒粉笔大约是1 dm3,2盒粉笔就是2 dm3。
四、巩固练习
指导学生做第40页“做一做”的第1、2题。
五、小结(略)
六、课堂作业
指导学生完成练习七的第1~4题。
教学反思:
体积对学生来说是一个新概念。由平面图形到立体图形,是学生空间概念的一次发展,要通过表象建立深化认识,变抽象为形象。
篇16:小学数学《体积和体积单位》教案设计
小学数学《体积和体积单位》教案设计
教学内容:人教版小学数学第十册第3031页的内容。
教学目的:
1、通过实验观察,使学生理解体积的含义,认识常用的体积单位:立方米、立方分米、立方厘米。
2、使学生知道计量物体的体积,就要看它所含体积单位的个数。
3、使学生初步了解体积单位与长度单位、面积单位的区别和联系。
4、通过学生对体积意义的探索,发展学生的空间观念,培养学生的推理能力。
教学重点:使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的大小。
教学难点:学生对体积和体积单位概念的理解。
教具准备:盛有红色墨水的玻璃杯两只,用绳捆着的大小石块各一块,1立方分米、1立方厘米的实物各一个,1立方米的框架一个。
教学过程:
一、初步感知,导入课题
1、感知课本。
(1)请同学们拿出朝夕相处的好朋友数学课本。问:根据近几天学习的知识,你能知道什么?你能量出什么,算出什么?
(2)请摸一摸它的长、宽和高,要计量长、宽、高分别是多少,用什么单位比较合适?再摸一摸它的封面,封面的大小就是它的什么,用什么单位计量比较合适?
2、信息激发。
(1)出示信息:数学课本的体积大约是248立方厘米。问:根据这条信息,你能知道什么?有什么不明白的问题?关于体积,你还想知道什么?
(2)揭示课题:体积(板书)
二、引导观察,讲解新课
(一)教学体积的概念。
1、回忆《乌鸦喝水》的故事。
师:还记得乌鸦喝水的故事吗?谁来说一说?
学生说完后,师问:,水面真的会升高吗?
师:看了这个故事,你发现了什么?
生1:我发现乌鸦非常善于动脑。
生2:我发现乌鸦往瓶子里填小石子,水面上升了。
师:为什么往瓶子里填小石子,水面就上升了呢?
生3:因为石头占了瓶子的一部分空间,把水挤上去了。(师板书:空间)
师:体积和空间之间到底有怎样的关系?让我们一起来做个实验研究研究。
2、实验演示,揭示概念。
(1)老师做实验:
拿一个盛水的红色玻璃杯,再把一个小石子投入杯中,请同学观察水面的情况,为什么会出现这种情况?水与原来相比有没有增减?为什么水面会升高?
(2)学生分组做实验:
用一只杯子装满细沙,然后倒出细沙,放入木块,再倒入细沙,会出现什么情况?为什么?
从上述两种情况说明:石子和木块都占一定的空间(板书:占空间)。
像我们每个人都占一定的空间,教室里每一件物品都占据一定的空间。
让学生举生活中占空间的例子。
(3)摸一摸,感觉谁占谁的空间。
师:请大家在书桌的抽屉里摸一摸,有什么感觉?把书包放进抽屉里再摸一摸,又有什么感觉?
生:第一次感觉抽屉里的'空间大一些,第二次感觉抽屉里的空间小一些。
师:为什么两次感觉会不一样呢?
生:因为书包占了抽屉的空间。
师:对!那么只把你的数学书放到桌斗里面,再摸一摸,与刚才放进书包相比,感觉怎样呢?
生:感觉比刚才的空间大了一些。
师:这说明了什么?
生:书包占的空间大,一本数学书占的空间小。
说明:物体所占的空间有大有小(板书:的大小)。
师:观察一下我们的教室,哪个物体占的空间最大?哪位同学占的空间最大。
师:我们的教室是一个较大的空间,课桌、讲台、教师、学生等占教室空间的一部分。请大家想像,走出教室会感到怎样?
生:空间更大了。
师:现在我们学习到这里,你能用自己的话来说一说什么是体积吗?
学生回答后,教室完善板书:(补充完整)
物体所占空间的大小就叫做物体的体积。
师:谁能说说什么是电视机的体积?你还能举出哪些物体的体积?
学生回答:像粉笔盒所占的空间就叫做它的体积;石块所占的空间的大小就是指石块的体积。
师:谁的体积大、谁的体积小呢?师:你们是怎么知道的?
生:我是看出来的。
(二)教学体积单位:
师:有的物体可以通过观察来比较它们的体积大小,那下面两个长方体,你们能比较出大小吗?
生:不好比较。
教师用多媒体将它们分成大小相同的小正方体(如下图),问:现在你们能比较出它们的大小吗?
生1:能,左边的长方体比右边的体积大。
师:为什么?
生1:因为左边的长方体有16个小正方体,而右边的有15个,而且小正方体的大小相同,所以左边的比右边的大。
师:如果左边的长方体和右边的长方体中的分的小正方体块不一样大,行不行?生:不行。因为小正方体大小不同,就不好比较。
师:所以要比较物体的体积大小,需要有一个统一的体积单位。在学习体积单位前,我们先回想一下,常用的长度单位有哪些?常用的面积单位有哪些?
师:那我们今天学习的体积的常用单位有哪些呢?请同学们打开课本39页。
(1)学生自学课本,出示下列思考题:
①常用的体积单位有哪些?
②1立方厘米、1立方分米、1立方米分别有多大?请举例说明。
(2)组织汇报交流:
师:1立方厘米有多大?怎样记住它?请具体说说,生活中有哪些物体的体积大约是1立方厘米?出示1立方厘米的小方块让学生观察,你知道了什么?哪些物体的体积比较适合用立方厘米用单位?
1立方分米有多大?怎样的正方体的体积是1立方分米?(出示1立方分米的正方体让学生感受其大小)你还见过哪些物体的体积大约是1立方分米?请用手势表示出1立方分米的大小。
1立方米有多大?怎样的正方体的体积是1立方米?出示1立方米的正方体框架,让学生钻一钻,具体感觉一下1立方米的正方体大约能容纳班内几个学生?举例说说生活中1立方米的物体。
请同学们闭上眼睛,再次感受一下1立方厘米、1立方分米和1立方米的大小,哪个比较大,哪个比较小,并用手势进行演示。
(三)练习:
①在括号里填上合适的单位名称。
1、一只电冰箱的体积大约是1.2( )。
2、一台电视机的体积大约是120( )。
3、一只手机的体积约是33( )。
4、一只火柴盒的体积是12( )。
5、我们五三班的教室的体积大约是280( )
②判断下面的单位是否合适?
1、一台家用计算机所占的空间约是15立方米。
2、小华口渴了,一口气就饮了1立方米的水。
3、在学雷锋活动中,同学们干劲特别高,两个人一次就抬了5立方厘米的土,另两人一次就抬了1立方米的铁。
4、粉笔盒的体积约是1立方分米。
(四)比较长度单位、面积单位和体积单位。
师:以前我们学习了长度单位、面积单位,今天我们又学习了体积单位,那么它们有什么不同呢?
学生操作:剪一条1分米长的线,用纸剪一个1平方分米的正方形,拿出1立方分米的模型。
引导学生讨论归纳三者的不同点,使学生知道:
长度单位是一条线段,面积单位是一个正方形,体积单位是一个正方体。
(五)计量物体的体积。
1、师:立方厘米、立方分米、立方米是常用的体积单位,要计量一个物体的体积,就要看这个物体中含有多少个体积单位。请同学们用4个1 cm3的小正方体任意摆成一个物体,你知道这个物体的体积是多少吗?
生:4 cm3。
师:为什么?
生1:因为它是由4个体积是1 cm3的小正方体摆成的。
师:如果改用12个1立方厘米的小正方体块来摆呢?
三、巩固练习,指导总结。
1.做书本练习七的13题。
2.通过今天这节课,你学到了哪些知识?
篇17:数学体积单位课后练习题
数学体积单位课后练习题
一、填空。
1、()叫做物体的体积。常用的体积单位有()、()、()。
2、棱长是1米的正方体,它的底面积是(),体积是()。
棱长是1分米的正方体,它的底面积是(),体积是()。
棱长是1厘米的正方体,它的底面积是(),体积是()。
3、单位大小的感知。
举例:1立方厘米的物体;1立方分米的物体;
1立方米的物体。
一个花圃的面积约是10();一瓶药水重60();
一个仓库的体积是125();一间教室的.面积约是48();
一堆沙的体积是1.98();一瓶墨水体积是约60();
微波炉的体积约是45()。
二、下面都是用棱长1厘米的小正方体拼成的立体图形。数出它们的体积是多少,填在()里。
()立方厘米
()立方厘米
()立方厘米
()立方厘米
文档为doc格式