【导语】下面是小编给大家带来二项式系数的性质教学反思(共15篇),一起来阅读吧,希望对您有所帮助。

篇1:《二项式系数性质》的教学反思
《二项式系数性质》的教学反思
本节课重点讲授了“二项式系数的性质”和“赋值法”。在教学手段上,采用的现代多媒体技术与传统板书相结合的方式,让学生得到听数学的视听享受,同时也让学生学习到实实在在的知识。在课例安排上,采用概念、例题、练习、思考四层教育法,全方位的巩固知识在学生头脑中的印象。一些例题或结论的变形更是开拓了学生的'视野,简单的数学史学知识也增强了学生的民族自豪感和学习数学的兴趣。
学生听课情况总体来说也是比较好的,这反映在以下几个方面:
一、回答问题积极。学生积极回答问题并且从回答的情况来看,很显然是经过深思熟虑的。
二、听课注意力集中。学生听课的表情告诉我,他们听课的程度——认真。
另外,28位来自全市个学校的听课教师和市教研室的老师给我的评语也说明了这一节课的成功。
公开课的机会是学校给我们的,它确实让我从中得到了益处——课堂语言的驾御能力;课堂氛围的调节能力;课堂教学的组织能力;组织知识结构的能力等等。
篇2:高二数学三角与二项式系数的性质的说课稿
高二数学三角与二项式系数的性质的说课稿
一、教学设计
——人教A版数学选修2-3第1章第3节第2课时
一、教材背景分析
1.教材的地位和作用
《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时. 教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.
本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处. 这一过程不仅有利于培养学生的思维能力、理性精神和实践能力,也有利于学生理解本节课的核心数学知识,发展其数学应用意识.
研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.
2.学情分析
知识结构:学生已学习两个计数原理和二项式定理,再让学生课前探究“杨辉三角”包含的规律,结合“杨辉三角”,并从函数的角度研究二项式系数的性质.
心理特征:高二的学生已经具备了一定的分析、探究问题的能力,恰时恰点的问题引导就能建立知识之间的相互联系,解决相关问题.
3.教学重点与难点
重点:体会用函数知识研究问题的方法,理解二项式系数的性质.
难点:结合函数图象,理解增减性与最大值时,根据n的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.
关键:函数思想的渗透.
二、教学目标
1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的'学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.
2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.
3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.
4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.
三、教法选择和学法指导
教法:问题引导、合作探究.
学法:从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想.
四、教学基本流程设计
五、教学过程
1. 展示成果话杨辉
课前开展学习活动:了解“杨辉三角”的历史背景、地位和作用,探究与发现“杨辉三角”包含的规律.
(1)学生从不同的角度畅谈“杨辉三角”,对它有何了解及认识.
(2)各小组展示探究与发现的成果——“杨辉三角”包含的一些规律.
【设计意图】引导学生开展课外学习,了解“杨辉三角”,探究与发现“杨辉三角”包含的规律,弘扬我国古代数学文化;展示探究与发现的杨辉三角的规律,为学习二项式系数的性质埋下伏笔.
2. 感知规律悟性质
通过课外学习,同学们观察发现了杨辉三角的一些规律,并且知道杨辉三角的第 行就是 展开式的二项式系数, 展开式的二项式系数具有杨辉三角同行中的规律——对称性和增减性与最大值.
【设计意图】寻找二项式系数与杨辉三角的关系,从而让学生理解二项式系数具有杨辉三角同行中的规律.
3. 联系旧知探新知
【问题提出】怎样证明 展开式的二项式系数具有对称性和增减性与最大值呢?
【问题探究】探究:(1) 展开式的二项式系数 , 可以看成是以 为自变量的函数 吗?它的定义域是什么?
(2)画出 和7时函数 的图象,并观察分析他们是否具有对称性和增减性与最大值.
(3)结合杨辉三角和所画函数图象说明或证明二项式系数的性质.
对称性:与首末两端“等距离”的两个二项式系数相等. .
增减性与最大值: ,所以 相对于 的增减情况由 决定.由 可知,当 时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当 的偶数时,中间的一项取得最大值;当 是奇数时,中间的两项 , 相等,且同时取得最大值.
【设计意图】教师引导学生用函数思想探究二项式系数的性质,学生画图并观察分析图象性质;运用特殊到一般、数形结合的数学思想归纳二项式系数的性质,升华认识;通过分组讨论、自主探究、合作交流,说明或证明二项式系数的对称性和增减性与最大值,提高学生合作意识.
4. 合作交流议方法
【继续探究】问题: 展开式的各二项式系数的和是多少?
探究:(1)计算 展开式的二项式系数的和( =1,2,3,4,5,6).
(2)猜想 展开式的二项式系数的和.
(3)怎样证明你猜想的结论成立?
赋值法:已知 ,
令 ,则 .
这就是说, 的展开式的各个二项式系数的和等于 .
元集合子集的个数(两个计数原理).
分类计数原理:
分步计数原理: 个2相乘,即 .
所以 .
【问题拓展】你能求 吗?
在展开式 中,令 ,
则得 ,
即 ,所以 ,
在 的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.
【设计意图】通过学生归纳猜想各二项式系数的和,引导学生验证猜想结论是否正确;同时为了突破利用赋值法证明二项式系数性质的难点,引导学生从模型化的角度出发,多角度的分析问题、探究问题、解决问题,将学生思维推向高潮,既加深学生对前后知识的内在联系的理解,又从深度和广度上让学生感受数学知识的串联和呼应.
5. 反馈升华拨思路
练1. 的展开式中的第四项和第八项的二项式系数相等,则 等于 .
练2. 的展开式中前 项的二项式系数逐渐增大,后半部分逐渐减小,二项式系数取得最大值的是第 项.
练3.已知 ,求:
(1) ;(2) .
【设计意图】促进学生进一步掌握二项式系数的性质,学会用赋值法解决问题,促进其有意识的运用.
6. 悬念小结再求索
【课堂小结】 通过本节课的学习,你有什么收获和体会(从数学和生活的角度)?还有什么疑问吗?
【课堂延伸】今天同学们展示了一些杨辉三角的规律,但是作为我国古代数学重要成就之一的杨辉三角还有更多有趣的规律,相信大家一定有极高的热情和严谨的态度去探究与发现杨辉三角的奥妙之处.
【课外活动】(研究性学习)
活动主题:杨辉三角中的奥妙.
活动目标:探究与发现杨辉三角中的更多奥妙.
活动方案步骤:查阅资料,收集信息;独立思考,发现规律,猜想证明;合作探究,小组讨论,形成初步结论;与指导老师及其他小组成员交流展示;撰写研究性学习报告.
【设计意图】通过课堂的整理、总结与反思,使学生更好的掌握主干知识,体会探究过程中渗透的数学思想方法,再次感受我国古代数学成就,激励自己努力学习.“杨辉三角”还有很多有趣的规律,让学生带着问题走进课堂,带着疑问离开教室,培养学生自主研修的习惯,提高学生探究问题、解决问题的能力.设计研究性学习活动,诱发学生创造性的想象和推理.同时教会学生如何开展研究性学习.
篇3:二项式定理教学反思
6月20日下午我和安阳实验中学高二(17)班的同学共同完成了本节课的课堂实录,感悟反思如下:
本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题DD探究”的教学模式,把整个课堂分为呈现问题、联系组合问题、总结规律、应用规律四个阶段。让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程。
本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律。在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫。再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依。
教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体。教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现解决一般问题的方法。教学中我特别注重区分系数与二项式系数及运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。
例1展开式中第三项的是______。
第三项的系数是______
第三项的二项式系数是______
例2(2)求展开式中x3的系数,则______。
解析:由通项公式,得,
由,解得。
本节课的亮点:
引入组合问题,为归纳项数,项得次数,项的形式及项的系数作了很好的铺垫,数学思想、方法和数学文化得到了较好的体现。引导学生运用计数原理来解决特征,为后续学习作准备。二项式系数的对称美,“特殊出发、发现规律、猜想结论、”的科学方法,都带给学生积极的情感体验和无尽的思考。
不足之处:
学生在数学课堂中的参与度不够。我认为,像这样面对新学生的录像课,难以操作。因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错。否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了。即使可以操作,自主、合作、探究也是走走过场,没有实际效果。语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究。
总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性。重视学生的参与过程,问题引导,师生互动。重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。
篇4:二项式定理教学反思
汾口中学 叶轶群
《二项式定理》这节内容我采用以知识点 “问题串”的形式引导学生自主探究的教学方法,在循序渐进中以小问题带动大问题,环环相扣,将知识点落实。而学生在自主讨论中,初步认识二项式定理是初中多项式乘法的继续,初步掌握展开式的规律,充分而有效地训练了学生的思维。
整节课在学生讨论探究中进行,通过一连串层层递进的问题,引导学生掌握展开式形成的规律,比如:(问题1:请在多项式中圈出能得到(a+b)4展开式中的项a4 b0的单项式a:(a+b)4 =(a+b)(a+b)(a+b) (a+b)--------- 问题2:请在多项式中用不同颜色的笔标出得到(a+b)4展开式中的项a3 b的单项式a和b
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)------------ 问题3:请你用组合的`观点来探究(a+b)4 =(a+b)(a+b)(a+b) (a+b)展开式中的项a2 b2的系数) 以上三个问题由浅入深,由简单到复杂,引导学生体验(a+b)4展开式中的特殊项得来的过程,通过学生自己用笔动手圈注和问题“你是如何做到标注时不重复无遗漏的?”的引导,让学生自己体验的到这些特殊的项需要两个步骤:先取b再取a,进而可以轻而易举的把对特殊项的探究的方法转移到计数原理上来。然后马上引
导学生完成问题4:类比以上探究项a4b0和a3b 及a2b2构成规律的方法, 请你写出 (a+b)4 二项展开式的每一项(把展开式按照a的降幂,b的升幂进行排列)(a+b)4 = ____ 。
在这个过程中非常具有挑战性问题的引入能使学生产生新奇感,激发了学生的学习兴趣和积极性.进一步把这一研究方法推广到展开式的每一项,从而得到(a+b)4二项展开式,又把这一问题往前推进了一步,引导学生找出展开式的通项,进而推广到一般情形。
教学中我特别注重运用通项意识,凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。但也有意外出现,对于二项式定理的逆运用,上课过程中重视不够,以为学生在推导展开式的同时也能够推导它的逆公式,所以在上课过程中一笔带过,导致作业中的问题比较多,基于此,在另一个班级的教学中,我决定把这个知识点跟展开式的推导融为一体来落实知识点。
本节课的亮点:
1、从“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,带给学生积极的情感体验和无尽的思考.数学思想、方法和数学文化得到了较好的体现.
2、课堂小结顺其自然地引导学生把握知识之间的内在本质联系,引导学生用扩展、深化等方式提出新问题,并用问题链引向课外或后续课程。
3、掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。教材的探求过程将归纳推理与演绎推理
有机结合起来,教学过程中,学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发他们发现一般性问题的解决方法
4、本节课教学,我采用“问题DD探究”的教学模式,以“问题链”组织课堂教学,让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.
本节课不足之处:
1、我认为在师生互动环节中再多一些效果会更好。但是我认为这样面对学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课。
2、本节课教学过程中还不够生动有趣。正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,课本上先给出一个(a+b)4用组合知识来求展开式的系数的例子.然后推广到一般形式,再用数学归纳法证明,因为证明写得很长,上课时的板书几乎占了整个黑板,所以课必然上得累赘,学生必然感到被动.那么多的算式学生看都不及细看,记也感到吃力,又怎能发挥主体作用?
总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。
篇5:二项式定理教学反思
首先感谢市教育局各位专家领导给予高度评价,并提出宝贵意见和建议。你们的肯定将激励我在教育事业上勇往直前,我会走得更好,走的更远。你们的建议会让我不断的反省自己,改正自己,完善自己。反思后则奋进,存在问题就整改,发现问题则深思,找到经验就升华。我要牢记你们所说的话“应该向专家型教师学习,向这个方向努力!”
上班已有六年时间,带了两轮的高中数学,在知识方面我严格要求自己,勤思多问,“教然后而知困”,不断发现陌生的自己,促使自己拜师求教,书海寻宝,不断的提高自己的专业素质。在教学技能方面也是严格按照学校的要求多听课、多请教、多反思;备好每一堂课,上好每一堂课;课后做好反思,注意课堂中的每一个细节;同时也大胆的尝试和实践一些新的教学手段、思路和方法,形成和完善自己独有的教学风格。
学习的过程是新旧知识互相碰撞的过程,旧知识不断被新知识所补充所完善。通过学习者不断的思维,才能把新的知识内化,来完善原有的知识结构。对于数学教学而言,教会学生思维才是根本,无论教师的讲解多么精彩,思维活动过程是任何人无法替代的。
在本节课的教学设计中,我很好的把握了重点和难点,通过简单例子反复强调二项展开式的特点和通项公式的特点及功能,学生的理解很轻松。对于例题的选择也是结合近几年的高考特点由浅入深,总体的设计还比较满意。但在上课的过程中忽视了一个很重要的因素――学生。我班是一个文科普班,数学基础不是很好,虽然是复习课,但仍有部分学生跟没学过一样,我在讲课过程中语速过快,一部分学生没能跟上。因此在今后的教学中,一定要多关注学生的原有知识水平和个性差异,灵活机动地随机处理课堂上的问题,把学生出现的错误当成是一种珍贵的教学资源,并加以合理利用。同时也要认真观察学生的微妙变化和反应情况,随机的调整教课的速度,让每个学生都能消化吸收。今后我要在讲课中多下功夫,多收集好的教学方法,教案;多积累典型的例题;认真研究考试大纲,把握教学的重点和难点,上好每一堂课。在其他细节方面,我将以最快的速度去改进、完善。
最后再次感谢各位领导!我将争取早日成为一名优秀的数学教师。
篇6:二项式定理教学反思
下午在安庆一中高二(6)班上了一节数学展示课,课堂学生的反应和专家的点评,都让我受益匪浅,主要体会如下:
1、学生能机积极配合,情绪高涨。据了解,高二(6)班学生基础较好,整体素质较高。由于是新老师,学生不了解我的教学风格,开头几分钟,学生的积极性还没有完全调动起来,但随着时间的推进,课堂氛围不断进入高潮。在遇到疑难问题时,只要我稍加点拨,都能立即化解。特别是最后一道天津高考题,具有挑战性,需要较高的逆向思维水平,但一名学生在很短的时间内就看出了它的结构特点,作出了完整的回答,使学生和听课老师眼睛一亮。加上我及时总结的“数感、式感和图感”又让学生耳目一新,增添了课堂色彩。
2、数学思想、方法和数学文化得到了较好的体现。孙主任点评中的“课堂教学要有高贵和丰满的学科气质”,我认为对数学课堂来说,就是要体现数学思想、方法和数学文化,让数学课堂有“数学味”。课堂中,提到的数学的两重性“直觉与逻辑”,牛顿的“没有大胆的猜想就没有伟大的发现”,二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,反例C62就不是偶数等等,都带给学生积极的情感体验和无尽的思考。“真诚、深刻、丰富”是课堂永恒的追求。
3、基本技巧和基本方法可能没有很好落实。本节课的教学重点是二项式定理的探求过程,而简单的应用则次之。基于这种想法,我在引导发现定理上花的时间较多,证明过程多媒体详细展示,但最后没有点到“还可以用数学归纳法证明”是一个疏忽。同时对将(p-q)7展开这种问题没有书写示范,以致不少学生书写不规范或弄错,板演的学生就有好几处错误,我也没有详细板书订正。我想,好在还有第二节课的加强,先让学生对此内容有点兴趣,再去强化运算的正确性也不迟。
4、课堂上如何放手让学生自主学习。多位专家评课中提到数学课堂上如何放手让学生自主学习,这也是新课程大力倡导的。我认为,像这样面对新学生的展示课,难以操作。因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错。否则,对于有一定难度的数学课,在课堂上2先自主、合作、探究,再来答疑、解惑,就没有足够的时间了。即使可以操作,自主、合作、探究也是走走过场,没有实际效果。语文与数学有不同特点,在数学课堂上如何实施自主学习值得深入研究。
5、数学教师要不断提高专业水平和人文素养。范梅南有一句名言:教学就是“即兴创作”,依托的是教师的文化底蕴和精神修养。对数学教师来说,我认为是专业水平和人文素养。专业水平可以帮助你确定有梯度的思维目标,创设有价值的思维情景;人文素养可以帮助你确定良好的情感目标,营造积极的情感情景。速度、效果、体验是判别有效课堂的三要素,其中就蕴涵着对学生探索精神、创新精神的唤醒和弘扬,创新能力的发展和提升,创造型人格的生成与确立。数学教师要多读点文学作品,打造有诗意的数学课堂。 反思一:二元一次方程组的解法教学反思
“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位。通过本节课的教学,使学生会用代入消元法和加减消元法解二元一次方程组,了解“消元”思想。
教学后发现,大部分学生能掌握二元一次方程组的解法,教学一开始给出了一个二元一次方程组。提问:含有两个未知数的方程我们没有学习过怎样解,那么我们学过解什么类型的方程?答:一元一次方程。提问:那可怎么办呢?这时,学生通过交流,教师只要略加指导,两种方法自然得出,这其中也体现了化归思想。有个别同学在选择方法上:是用代入法还是加减法,很犹豫,解答起来速度较慢。这时,教师通过让学生对未知数系数为一的方程组,与未知数系数都不为一的方程组的对比,自行体会出如何选择解方程组的方法。
在课堂上设置小组交流这一环节,交流的内容有对新知识的探究、对问题的理解、计算方法及体会、学生相互纠错等。同时,要避免满堂交流,没有目的的交流,教师要给予必要的引导,让学生有价值有目标的交流,关注每个学生的参与情况,并给以指导。通过学生学习小组交流,增强了每个学生的参与意识,同时通过解释、推断和对自己思想进行口头和书面的表达加深理解,学生之间的合作交流,不仅是使学生获取必要的学科知识,对于提高每个学生的口头表达能力及数学语言的规范及交际能力、合作意识的培养起到了很大的作用。
本堂课最大的特点是,利用一个方程组引出了两种解法,直观对比,并归纳总结出化归思想,使学生在脑子中直接形成了知识网络和解题思想,取得了较好的效果。但是,仍然需要练习进行巩固提高。
反思二:二元一次方程组的解法教学反思
解二元一次方程组的基本思路是消元,即消去一个未知数,转化成一元一次方程求解。消元的方法是代入法和加减法,平时,学生都是循规蹈矩,按部就班地用代入法或加减法解一次方程组。而实际上二元一次方程组系数间的特点是丰富多彩的,消元的方法也很多。在牢牢掌握两种基本消元方法之后,再进行探索特殊方程组特殊的解法,将能大大开阔学生的思路,激活学生的思维。
于是在学习了代入法和加减法消元之后,我设计了这节探究课。本节课实际上是一节复习课,通过对几种类型题进行探究后,让学生知道代入法和加减法的作用不仅仅是消元,还能简化方程组,即使消元,也是灵活多变,技巧性很强的。启发学生把已经掌握的知识,经过再挖掘,不但能巩固已学知识,而且能获得许多的技巧,提高他们的思维能力。
首先我以两道古代应用问题的解决让学生先复习回顾二元一次方程组的两种解法,同时由第二道题所列的方程组引导学生学会观察方程组的特点通过加减法将方程组化简,再通过代入或加减法求方程组的解,学生反思解题带给自己的启示,不仅简化了方程组的解法,还拓展了解题思路,培养学生一题多解的能力。接下来的巧解难题和触类旁通都可以通过这种巧代入或巧加减将看似较复杂或较麻烦的问题简单化,调动了学生的学习兴趣,满足了学生的探究欲望,发挥了学生的主体作用。
反思本节课,我觉得有以下几点:
1、本节课灵活运用了多种教学方法,既有教师的讲解,又有学生的独立思考和讨论,调动了学生学习的积极性,充分发挥了学生的主体作用。
2、本节课还注重了数学思想方法在课堂中的渗透。拓宽了学生的知识面,培养了学生的发散思维能力和创新能力。
3、在整个教学教程中,由课题引入到问题解决至始至终向学生渗透数学应用意识,培养了学生应用数学的能力,揭示了数学源于生活,又高于生活。这样教学不仅使学生理解了学习内容,而且使学生掌握了学习的方法,更好地利用所学知识解决问题。
此外本节课还存在诸多的不足之处:
1.在提出问题的时候,学生的思考时间较少,只有程度较好的学生思考出来,大部分学生都还在思考中。
2.欠缺对“学困生”的关注,没能用更好的语言激发他们。
3.没能让每位学生都有足够的时间发表自己的观点。
4.没能进行很好的知识延伸和拓展。
5.还应更注重细节,讲究规范,强调反思。
反思三:二元一次方程组的解法教学反思
本节课是华东师大版七年级数学下册第七章《二元一次方程组》中第二节的第四课时,它是在学习了代入消元法和加减消元法的基础上进行学习的。能够灵活熟练地掌握加减消元法,在解方程组时会更简便准确,也是为以后学习用待定系数法求一次函数、二次函数关系式打下了基础,特别是在联系实际,应用方程组解决问题方面,它会起到事半功倍的效果。
我所任教的初一(2)班学生基础比较好,他们已经具备了一定的探索能力,也初步养成了合作交流的习惯。大多数学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于七年级的乡镇中学的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨和引导。因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
本课时充分利用了学生原有生活经验中的替代思想,迁移到数学中,形成消元思想。通过生活事例让学生亲身经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,让学生在实践中体验、理解和掌握数学知识,使知识的发现过程融于有趣的活动中。待学生通过巩固练习积累感性经验后,又将加减法程序化,归纳出解题步骤,使之更具操作性,促进学生由方法向技能的转化。本节课的亮点是重视知识的发现过程,在教学过程中,通过设置适当的问题情境,给学生有充分的从事数学活动的时间与空间,让他们积极参与、自主探索,整个课堂教学时时处处立足于让学生先看、先思、先做、先说,符合新课改的以学生为本的理念。将设未知数列一元一次方程的求解过程与二元一次方程组相比较,可让学生在复习旧知的同时,新知识得以掌握。
篇7:二项式定理教学反思
二项式定理是初中学过的多项式乘法的继续,是排列组合知识的具体运用,定理的证明是计数原理的应用。
本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程。
本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依。
教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体.教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现解决一般问题的方法.教学中我特别注重运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。
本节课的亮点:引入作了项数问题,明确每一项的很好的铺垫,数学思想、方法和数学文化得到了较好的体现.引导学生运用计数原理来解决特征,为后续学习作准备.二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的`科学方法,二项式指数推广到负整数指数,有没有三项式定理,都带给学生积极的情感体验和无尽的思考。
不足之处:学生在数学课堂中的参与度不够.我认为,像这样面对新学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了。即使可以操作,自主、合作、探究也是走走过场,没有实际效果. 语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究。
总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。
篇8:二项式定理教学反思
首先感谢市教育局各位专家领导给予高度评价,并提出宝贵意见和建议。你们的肯定将激励我在教育事业上勇往直前,我会走得更好,走的更远。你们的建议会让我不断的反省自己,改正自己,完善自己。反思后则奋进,存在问题就整改,发现问题则深思,找到经验就升华。我要牢记你们所说的话“应该向专家型教师学习,向这个方向努力!”
上班已有六年时间,带了两轮的高中数学,在知识方面我严格要求自己,勤思多问,“教然后而知困”,不断发现陌生的自己,促使自己拜师求教,书海寻宝,不断的提高自己的专业素质。在教学技能方面也是严格按照学校的要求多听课、多请教、多反思;备好每一堂课,上好每一堂课;课后做好教学反思,注意课堂中的每一个细节;同时也大胆的尝试和实践一些新的教学手段、思路和方法,形成和完善自己独有的教学风格。
学习的过程是新旧知识互相碰撞的过程,旧知识不断被新知识所补充所完善。通过学习者不断的思维,才能把新的知识内化,来完善原有的知识结构。对于数学教学而言,教会学生思维才是根本,无论教师的讲解多么精彩,思维活动过程是任何人无法替代的。
在本节课的教学设计中,我很好的把握了重点和难点,通过简单例子反复强调二项展开式的特点和通项公式的特点及功能,学生的理解很轻松。对于例题的选择也是结合近几年的高考特点由浅入深,总体的设计还比较满意。但在上课的过程中忽视了一个很重要的因素——学生。我班是一个文科普班,数学基础不是很好,虽然是复习课,但仍有部分学生跟没学过一样,我在讲课过程中语速过快,一部分学生没能跟上。因此在今后的教学中,一定要多关注学生的原有知识水平和个性差异,灵活机动地随机处理课堂上的问题,把学生出现的错误当成是一种珍贵的教学资源,并加以合理利用。同时也要认真观察学生的微妙变化和反应情况,随机的调整教课的速度,让每个学生都能消化吸收。今后我要在讲课中多下功夫,多收集好的教学方法,教案;多积累典型的例题;认真研究考试大纲,把握教学的重点和难点,上好每一堂课。在其他细节方面,我将以最快的速度去改进、完善。
最后再次感谢各位领导!我将争取早日成为一名优秀的数学教师。
篇9:二项式定理教学反思
下午在安庆一中高二(6)班上了一节数学展示课,课堂学生的反应和专家的点评,都让我受益匪浅,主要体会如下:
1、学生能机积极配合,情绪高涨。据了解,高二(6)班学生基础较好,整体素质较高。由于是新老师,学生不了解我的教学风格,开头几分钟,学生的积极性还没有完全调动起来,但随着时间的推进,课堂氛围不断进入高潮。在遇到疑难问题时,只要我稍加点拨,都能立即化解。特别是最后一道天津高考题,具有挑战性,需要较高的逆向思维水平,但一名学生在很短的时间内就看出了它的结构特点,作出了完整的回答,使学生和听课老师眼睛一亮。加上我及时总结的“数感、式感和图感”又让学生耳目一新,增添了课堂色彩。
2、数学思想、方法和数学文化得到了较好的体现。孙主任点评中的“课堂教学要有高贵和丰满的学科气质”,我认为对数学课堂来说,就是要体现数学思想、方法和数学文化,让数学课堂有“数学味”。课堂中,提到的数学的两重性“直觉与逻辑”,牛顿的“没有大胆的猜想就没有伟大的发现”,二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,反例C62就不是偶数等等,都带给学生积极的情感体验和无尽的思考。“真诚、深刻、丰富”是课堂永恒的追求。
3、基本技巧和基本方法可能没有很好落实。本节课的教学重点是二项式定理的探求过程,而简单的应用则次之。基于这种想法,我在引导发现定理上花的时间较多,证明过程多媒体详细展示,但最后没有点到“还可以用数学归纳法证明”是一个疏忽。同时对将(p—q)7展开这种问题没有书写示范,以致不少学生书写不规范或弄错,板演的学生就有好几处错误,我也没有详细板书订正。我想,好在还有第二节课的加强,先让学生对此内容有点兴趣,再去强化运算的正确性也不迟。
4、课堂上如何放手让学生自主学习。多位专家评课中提到数学课堂上如何放手让学生自主学习,这也是新课程大力倡导的。我认为,像这样面对新学生的展示课,难以操作。因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错。否则,对于有一定难度的数学课,在课堂上2先自主、合作、探究,再来答疑、解惑,就没有足够的时间了。即使可以操作,自主、合作、探究也是走走过场,没有实际效果。语文与数学有不同特点,在数学课堂上如何实施自主学习值得深入研究。
5、数学教师要不断提高专业水平和人文素养。范梅南有一句名言:教学就是“即兴创作”,依托的是教师的文化底蕴和精神修养。对数学教师来说,我认为是专业水平和人文素养。专业水平可以帮助你确定有梯度的思维目标,创设有价值的思维情景;人文素养可以帮助你确定良好的情感目标,营造积极的情感情景。速度、效果、体验是判别有效课堂的三要素,其中就蕴涵着对学生探索精神、创新精神的唤醒和弘扬,创新能力的发展和提升,创造型人格的生成与确立。数学教师要多读点文学作品,打造有诗意的数学课堂。
篇10:碱及其性质教学反思
碱及其性质教学反思
从该课的准备到结束,在赵老师的督促,中心组李老师、纪老师的指导和办公室老师的帮助下,这节研究课顺利圆满的完成了。回顾这一过程,我在这次备课、讲课、评课中学到了很多东西,在课堂教学、思路设计、教学方法等方面都有很大收获,同时也看到自己有很多不足的地方,为了探究自己在教学过程中存在的问题,使以后的教学更有效,及时的采取改进措施。现我对本节课进行以下几方面的反思:
一、本节课的设计思路
本节课分三个重要探究环节——碱的物理性质、化学性质和复分解反应,教学通过学生熟悉的一些生活现象和熟悉的物质创设问题情景,把学生组织起来,迅速融入到教学情境中,使学生的思维和活动都是从“疑”开始,靠疑推动学生,使学生学会提出问题—实验探究—讨论交流—得出结论的思路。本节课我以“冬天为什么给树木刷石灰”创设情境引入课题,然后让学生通过实验观察总结出碱的物理性质,演示两个实验“头发在热的氢氧化钠中的变化”“鸡爪在浓氢氧化钠中的变化”,以生活中常见的物质在碱中的变化,加强学生对碱的腐蚀性的认识,其中部分内容学生可阅读课本自学完成,不作为重点讲解,但强调了一些基础知识必须记住。接着进入碱的化学性质环节,碱的化学性质是重点也是难点,我先从前面已经学过的知识入手,使学生回顾所学总结出碱与指示剂反应、与酸反应的化学性质,这样设计易于学生掌握理解,从已知循序渐进的过度到未知,提出二氧化碳与石灰水能反应,那么二氧化碳与氢氧化钠也反应吗?来引导学生设计证明二氧化碳与氢氧化钠反应的实验,可以激发学生学习兴趣,培养学生思维能力,为以后的实验设计打下基础。至此可总结出碱的第三条性质,然后启发还能与哪些物质反应?培养学生学会选取物质的方法,进入学生动手实验探究,通过分析反应现象和书写化学方程式,总结第四条化学性质,引导学生归纳出碱都具有这些化学性质的原因。至此这个重难点就解决了。由学生观察化学方程式的特点直接给出复分解反应的定义、条件以及适应的范围,让学生掌握这种基本反应类型。最后师生总结这节课的知识点,让学生形成知识结构,做达标检测,检测这节课学生的掌握情况并巩固所学知识。
二、本节课的成功之处:
本节课体现了李沧区目标导学的教学模式,注重从学生熟悉的日常事物着手来创设学习情景,教师积极引导学生去发现问题,充分发挥以学生为主体、教师为主导的教学理念,通过“提出问题(发现问题)→实验探究→得出结论”这一系列活动来认识物质的性质,分析现象后得出结论,激发学生积极主动地去探究、去学习,培养了学生科学的学习态度,使其真切地体验到探究学习的乐趣,从而收到了良好的教学效果。在学法指导中,注重让学生理解实验的目的,为什么去做实验,要得到什么样的结果,让学生解释现象、归纳结论,培养了学生分析归纳问题的能力,教师不但要教会学生知识,而且还要教会学生怎样去学知识,就是所说的“授之以鱼不如授之以渔”,使学生目标明确,记忆深刻。教学手段上多样性,让学生通过自学课本,掌握基础性知识,通过实验探究掌握技能性知识,通过小组讨论解决问题,不但培养学生动手能力,还加强了学生自主合作学习的意识,让学生真正的成为学习的.主体。为了更好的引起学生的学习兴趣和探究欲,我创新了实验,增加了课本上没有的实验。作为教师明确学生的已有知识很重要,我在教授碱的化学性质时,注重从学生已有的知识循序渐进的引导,在设计实验上给学生很好的引导和充足的时间思考,不但提高了课堂效率,也加强了学生思维能力的培养。另外,本节课我充分利用信息资源,对知识深挖掘,对这方面的知识做了深入的分析,考虑到学生间的差异性,在选择练习题上不断筛选和改进,体现了针对性和层次性,在落实过程中,真正做教师导、学生学,并且注意倾听学生的不同意见,充分发挥学生的主动性,让学生自己分析解决问题。只有通过正确引导才能使各种表象上升为规律,使各种感性认识逐步转化为理性认识,从而掌握各类创新方法。
三、本节课的不足之处:
通过评课和自身的认识,在这节课中,我总结了有以下不足之处:
1、在引入课题时,从生活现象走入化学,而在结束时没有体现从化学走向生活的思路,课堂设计前后不呼应。
2、在做演示实验时,操作不够规范,影响学生的实验操作规范性的认识。
3、课堂语言不成熟,不够简洁清晰,说的多反而显的课堂繁杂,不应该怕学生不会而多作解释,这样就禁锢了学生的思维。
4、在上课各个知识环节的连接上比较生硬,在时间控制上把握不准确,导致后面内容学习的有些仓促,一些巩固练习没有完成。
5、对学生情况的了解不够,没有很好的落实学生的掌握情况。
四、本次教学活动对我的启发:
1、教师无论在课堂还是课后都要善于思考,理论与实践相结合,多点对自己的教学进行反思和总结,不断修正自己的教学方法,树立正确的教学观念,与时俱进。
2、增加对学生的了解,多和学生沟通和交流,接收学生在学习化学上存在的疑问等有效信息,有针对性地进行教学。同时也能增加师生的感情,令课堂气氛愉快,促进师生互动,增大教学效果。
3、提高化学用语的表述能力,提高化学教师的专业素养。多留意教学上的细节方面,给学生打下扎实的化学基础。
4、多媒体的使用要恰当:注意课件,板书,视频,实验之间的平衡。不要过渡依赖多媒体,忽视实验的重要性;也不要太过注重传统教学模式,忽视多媒体的作用。
5、教师结合科学发展的现实向学生说明随着科学研究的不断深入,对物质的了解也会更加细致,从而激发学生对科学的向往,激发学生自觉学习的动力。
总之,通过这一节课,在老师们的指导下,使我自己提高了许多。多谢老师及领导给了我这一次锻炼的机会。相信,有了领导和老师们的指导,有了我自身的努力,我会快速的成长起来,成为一名优秀的人民教师!
篇11:《等腰三角形性质》教学反思
本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现,通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。
通过本节课的教学要求学生掌握等腰三角形的性质定理1、2、3,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力。而等腰三角形的性质定理是本课的重点,等腰三角形“三线合一”性质的运用是本课的难点
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
首先我用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活,紧接着进入第二个环节。在本章的开始已经学习了三角形的分类,并且认识了等腰三角形,为了更好地学好本节课,让学生画一个等腰三角形,指出其各部分的名称,然后让学生猜测等腰三角形除了两腰相等以外它还具有哪些性质?猜想形成不成熟的结论∠B=∠C,那么,我们如何来证明呢?为学生提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就像数学家那样发现问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度,通过引导,学生容易想到可添加辅助线构造全等三角形来加以证明。通过这样一个过程既培养了学生动口、动手、动脑的能力,也使本节课的难点得以突破,最后师生共同完成证明过程,定理得证,从而由感性认识上升到了理性认识。
性质得出后再引导学生观察。既然△ABC≌△ACD,那么∠BAD、∠CAD,BD与CD、AD与BC有什么关系呢?让学生自己去发现、去联想,能充分地发挥学生主观能动性。通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。
学完定理,我出示了一组练习,集中学生的注意力,同时为了突出重点,我设计了具有变式性的练习,通过口答、抡答形式来完成,既培养了学生的语言表达能力,又发挥了学生的主体地位,激发了学习兴趣,活跃了课堂气氛。
课堂教学,一是注重引入激发兴趣,二是注重教学过程,重视方法,三是注重概括总结,首先我让学业生总结本节课你都学到了哪些知识哪些解题方法、学习方法,然后教师对肯定学生的积极性,在今后的学习中继续发扬,让学生带着成功感走出课堂。
作业必做题面向全体学生,注重基本知识的巩固,选做题面向学有余力的同学,培养他们产生学好数学的长久愿望。总之,在整个教学过程中,我遵循着“教师为主导,学生为主体,训练为主线”的原则,在课上的每个环节中通过各种媒体,各种手段,始终注重兴趣的激发,培养学生学习的热情,让他们在轻松愉快中学习知识。
总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动了学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。
篇12:等腰三角形性质教学反思
等腰三角形性质教学反思
优点:本人在等腰三角形性质(第三课时)的教学中,采用我们学校数学组的教学方法,一、让学生自主学习,二、小组交流,三、教师点拨四、拓展提高,五、当堂检测。力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的.问题在答问过程中还不时得到本人的提醒,这样导致的结果是难于发现学生真实的思维过程。“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度。但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。五步教学法的本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。
不足:令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。而在探索问题的关键时候,本人也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。还有八年级学生级分化严重,有一部分学生上课什么也不想做!
教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。
篇13:《对数函数及其性质》教学反思
一、教材分析
本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.
二、学情分析
大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统
一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.教具及软件运行环境说明 教具采用多媒体,黑板等形式展开
信息技术设备设置:通过借助计算机多媒体呈现指数函数与对数函数图像 应用环境及软件的说明:软件为在windows下运行的matlab7.0
三、设计思路
学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,利用几何作图软件运行各种指数函数及对数函数,通过比较/类比等方法使学生对对数函数的认识更加深刻。教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的
.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.
四、教学目标
1、知识与技能,理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.
2、过程与方法,通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一.
3、情感态度与价值观,通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的科学意识.
五、重点与难点
重点 :(1)对数函数的概念;(2)对数函数的性质.难点 :(1)对数函数与指数函数之间的关系.
六、过程设计及师生互动
(一) 复习导入
(1)复习提问:什么是指数函数?指数函数的图象和性质如何?
学生回答,并用课件展示 指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理 解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的 反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
(二) 讲授新课 (1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函
数
y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数 让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。 (2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如 何画对数函数的图象呢
让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以 根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。 教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我 们利用两种方法画对数函数的图象。
h(x)?log2x,f(x)?log3x,方法一(描点法)首先列出x,y(q(x)?logx,g(x)?logx)
1123值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,
8···,请计算对应的y 然后在坐标系内描点、画出它们的图象.方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再
演
示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和
性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。 (3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养 学生的创新能力有帮助学生易于接受易于掌握,而且利用表格,可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质, 认识两个函数的内在联系提高学生对函数思想方法的认识和应用意识。
(三) 巩固练习P42-P45
(四)纳小结强化思想
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从 三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
课后反思:美好的时光总是短暂的请学生总结自己有何收获和体验,并交流。
七、教学评价方案
课堂教学是教学过程的中心环节,是教师和学生进行教学活动的主要形式,为了促进课堂教学改革,提高课堂教学质量,特制定本课堂教学评价方案: (1)、教学目标评价
教师能针对所教内容,结合《课程标准》科学、准确地设计教学目标,做到:
、目标明确,符合学生实际。目标的设置不可过高或过低。
2、“三维目标”全面、具体、适度,有可操作性,并能使知识目标,能力目标、情感、态度、价值观目标有机相融,和谐统一。
量化评价标准每项5分,总计10分。 (2)、教学内容评价
1、教师能准确把握所教学科内容的重点、难点,教授内容正确。
2、教学内容紧密联系学生的生活实际,激发学生去积极思维。
3、教师能从教学实际出发,转变教材观念,对教材进行科学有效的整合,以促进学生的学习,不唯教材,创新适用教材。
量化评价标准:第
1、2项各4分,第3项2分,总计10分。 (3)、教师行为评价
1、课堂上教师作为学生学习的组织者,是否能够有效地组织学生进行学习;作为学生学习的指导者,是否对学生的学习指导得有法、到位。培养了学生良好的学习习惯;是否创造了生动有趣的教学情境来诱发学生学习的主动性;作为学生学习的引导着,是否成为学生和课本之间的桥梁纽带,在教学活动中,发挥了自己的聪明才智和应有的作用;作为学生学习的合作者,是否能和学生一起学习,探究、倾听、交流。
2、教师能以学生为主体,重视知识的形成过程,重视学生学习方法的培养,重视学生的自学能力、实践能力,创新能力的发展。
3、课堂上能营造宽松、民主、平等的学习氛围,教态自然亲切,对学生学习的评价、恰当、具体、有激励性。
4、能够根据教材的重点、难点之处,精心设计问题,所提出的问题能针对不同层次的学生,问题的提出,恰到好处。能启发学生思考,促进学生知识的构建,并能给学生留有充分思考的时间,同时注重学生的“问题”意识,引导学生主动提出问题。
5、根据教学内容和学生实际,恰当地选择教学手段,合理运用教学媒体。
、课堂上,教师的讲解语言准确简练,示范操作规范,板书合理适用,教学有一定的风格和艺术性。
量化评比标准:第1项8分;第2项5分;第3项2分;第4项4分;第
5、6项各3分,总计25分。 (4)、学生行为评价
主要针对学生在课上的学习状态来评价。
1、看学生的学习状况,学生学习的主动性是否被激起,能积极地以多种感观参与到学习活动之中,精神振奋,有强烈的求知欲望。
2、看学生的参与状态,学生参与学习活动中的数量、广度和深度是衡量主体地位发挥的主要标志,学生要全员参与,有效参与。
3、看学生的学习方式。是否由被动学习变为主动学习,是否由个体学习到主动合作学习;是否由接受性学习变为探究性学习。
4、看学生在自主、合作、探究学习上的表现。 学生在学习过程中,是否全身心地投入、是否发现问题,提出问题,积极解决问题,是否敢于质疑,善于合作、主动探究并有实效,是否围绕某一问题彼此间能交流、讨论、倾听,提出有效建议。
5、看学生学习的体验与收获。 学生在学习过程中,90%以上的学生能够相互交流知识、交流、体会,交流情感由自悟——觉悟——感悟——醒悟,在获取丰富知识的同时形成了一定的学习能力。
量化评价评价标准:第1项8分;第2项3分;第3项6分;第4项8分;第5项2分;第6项8分,总计35分。 (5)、教学效果评价
1、看教学目标达成度如何,教师是否高度关注学生的知识 与能力、过程与方法、情感态度价值观的全面发展。
2、看教学效果的满意度,学生在教师的指导下,积极主动参与,90%以上的学生掌握了有效的学习方法,获得了知识,发展了能力,有积极的情感体验。
3、看课堂训练题设计,检测效果好。
量化评价标准:第1项4分;第2项7分;第3项4分。总计15分。 (6)、教学特色评价
教师在教学方式、方法上,知识的生成点上,教学机智与智慧上的闪光点,有不同寻常之处。
评价标准:具备上述中的某一点或几点评价。
分数:2---5分。
八、教学反思
在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化。注意知识前后的衔接及联系,形成知识框架,其次要了解学生认知规律,知识水平,以便因材施教,再次要处理好课堂教学中教师的教和学生的学的关系。 1 要有明确的教学目标 2 要能突出重点、化解难点 3 要善于运用现代化教学手段 4 根据具体内容,选择恰当的教学方法 5 关爱学生,及时鼓励
6 充分发挥学生主体作用,调动学生的学习积极性
篇14:《对数函数及其性质》教学反思
一、教材分析
本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.
二、学情分析
大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统
一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.
三、设计思路
学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.
四、教学目标
1、理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.
2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想. .
3、通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一.
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识.
五、重点与难点
重点 :(1)对数函数的概念;(2)对数函数与指数函数的相互转化.难点 :(1)对数函数概念的理解;(2)对数函数性质的理解.
六、过程设计
(一) 复习导入
(1)复习提问:什么是对数函数?如何求反函数?指数函数的图象和性质如何? 学生回答,并用课件展示 指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理 解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的 反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
(二) 讲授新课 (1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函数 y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。 设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数 让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。 (2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如 何画对数函数的图象呢
让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以 根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。 教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我 们利用两种方法画对数函数的图象。
方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,8···,请计算对应的y 然后在坐标系内描点、画出它们的图象.
方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再演 示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。 (3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养 学生的创新能力有帮助学生易于接受易于掌握,而且利用表格,可以突破难点。 由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质, 认识两个函数的内在联系提高学生对函数思想方法的认识和应用意识。
(三) 巩固练习1.求下列函数的定义域:
(1)y?log(5?x)(2x?3)
(2)y?logax2(3)y?lg(4?x)
2.利用单调性比较下列两个数的大小
loga?12931loga?129
32(四)纳小结强化思想
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从 三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
课后反思:美好的时光总是短暂的请学生总结自己有何收获和体验,并交流。
篇15:不等式性质教学反思
不等式的性质是不等式变形的依据,也是探索解不等式方法的基础,学生掌握好本节内容是学好本章内容的关键;本节课的内容蕴含着丰富的数学思想,是培养学生类比、化归、数形结合等数学思想的良好素材。学生经历不等式性质的探索过程,体现了学生的主体性地位,充分发挥了学生学习的主动性,对学生掌握不等式的性质打下了基础;会解简单的一元一次不等式,并能在数轴上表示出解集,体会化归思想和数形结合思想;通过类比等式的性质,降低了学生学习不等式性质的难度,也为学生理解不等式的性质提供条件,初步培养类比和数形结合的思想方法。在不等式性质的探究过程中使学生经历类比、猜想、观察、归纳、比较的探究过程和启发式教学方式;利用多媒体,增强了不等式的对比的视觉效果,激发了学生的学习兴趣,帮助学生形象直观的发现规律,辅助对教学重点的突出。
本节课的开始并没有直接提问什么叫不等式,什么叫不等式的解集,而是让学生自己说出一些简单的不等式及其解集;在不等式性质教学过程中也是通过学生自主探究归纳总结出性质,改变了以教室为中心的思想观念。在“试一试”这一环节也没有先直接给出完整的解法而是让一个学生板演后发现问题才纠正补充完整。总的来说,这节课进行的还比较顺利,但是在学生探究不等式性质时,仅仅观察了给出的几个例子,而没有让学生再用其他的不等式或换其他的数加以验证,给学生留的空间太小,致使学生在对不等式的性质的认可、理解、记忆上出现了问题,以至于在做练习时不能准确熟练的'说出是运用了什么性质,再者板书可能有些简单。今后要扬长避短,不断转变观念,改进教学。
文档为doc格式