欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

加法结合律课件

时间:2022-06-06 08:27:06 其他范文 收藏本文 下载本文

以下是小编收集整理的加法结合律课件,本文共15篇,仅供参考,希望对大家有所帮助。

加法结合律课件

篇1:三下数学《加法结合律》课件

三下数学《加法结合律》课件

教学目标:

1.引导学生探究和理解加法交换律、结合律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、主题图引入

观察主题图,根据条件提出问题

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

等等。

引导学生观察主题图

教师根据学生提出的问题板书。

二、新授

练习本上用自己的方法列出综合算式,解答黑板上问题。

教师巡视,找出课堂上需要的答案,找学生板演。

学生观察第一组算式,发现特点。

引导学生观察第一组算式,总结出:

40+56=56+40

试着再举出几个这样的例子。

根据学生的举例,进行板书。

通过这几组算式,你们发现了什么?

学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。

教师根据学生的小结,板书。

你能用自己喜欢的`方式表示出加法交换律吗?

板书:a+b=b+a

学生用多种形式表示。

符号表示:△+☆=☆+△

引导学生观察第二组算式,总结出:

(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。

学生继续观察几组算式。

出示:

(69+172)+28

69+(172+28)

155+(145+207)

(155+145)+207

通过上面的几组算式,你们发现了什么?

学生总结观察到的规律。

教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。

学生用自己喜欢的方式表示加法结合律。

符号表示:(△+☆)+○=△+(☆+○)

教师板书:

(a+b)+c=a+(b+c)

学生根据这两个运算定律,举一些生活中的例子。

三、巩固练习

P28/做一做

P31/4、1

四、小结

学生小结本节课学习的加法的运算定律。

今天这节课你们都有什么收获?

你能把这些运用于以后的学习中吗?

五、作业:P31/3

篇2:加法结合律

加法结合律

教学内容

六年制小学数学第七册第24页

教学目标

1.学生能用自己的话,口述加法结合律。

2.能运用加法结合律,进行简单的运算。会用字母表示加法结合律。

3.领会“形成问题一提出假设一验证假设一形成规律的解决思路,培养探索精神。

教学准备

投影仪、自制投影片。

教学过程

(一)形成疑问,提出问题

1.教师出示准备题:37+26+63、37+(26+63),学生计算出得数。

2.比较两式题的.异同。

同:加数相同,得数相同。

异:运算顺序不同。

再一题:59+38+732和59+(38+732),得数会相同吗?(相同)

3.讨论:刚才的两个例子说明了什么?

学生回答的情况可能有如下两种:

A、不能用文字概括,而结合具体式题说出结合律。

教师引导:

①几个数相加?(三个,且加数相同)

②分别先算了什么?(前两数,后两数)

③结果如何?(得数相同即和不变)

B、基本能用文字概括出结合律。

教师适当引导。

4.教师根据学生回答,板书猜想。

问题:这个猜想正确吗?

猜想是从准备题中归纳出来的,是否正确,还有待于我们去验证它。

(二)验证猜想,形成规律

1.我们要验证我们的猜想是正确的,可以通过计算其他式题来证明。

       (13+8)+5

女生完成

3024+(73+6)

              13+(8+5)

男生完成

3024+73+6

汇报答案:得数相同,符合猜想。

2.上述两题符合猜想,可能是偶然。请同学们自己来找一找符合猜想的式题。

学生自由举例,小组交流结果。汇报结果,找到许多式题符合猜想。

3.能证明猜想正确,还有我们身边的一些生活实例。

请同学们用多种方法解例2:

张老师上午到书店买书用去27元,又到文具店买圆珠笔用去18元;下午去文具店买圆珠笔用去12元。他一共用去几元?

A、口头列式:(27+18)+12     27+(18+12)

B.分别说说先求什么,再求什么?

C.判断,得数会相同吗?(相同)

D、计算结果。得出(27+18)+12=27+(18+12)(板书)

4.揭题:

从式题到生活实例,都符合我们的猜想,同时也证明了猜想的正确。这就是我们今天学习的“加法结合律”

教师板书:加法结合律

书上又是怎么说的呢?看书

5、小结:

(1)       学生根据板书口述结合律。

(2)       学生尝试用三个不同的字母(a、b、c)来表示结合律。

(三)使用规律,巩固新知

学习加法结合律的最终目的是为了用。

1、  口头回答□里填几?

(15+12)+5=15+(12+□)

(243+146)+54=243+(□+54)

4037+(25+44)(4037+25)+□

a+(b+c)=(a+□)+c

2、  练习

五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)

(1)       说说解答思路。

(2)       列式解答,加深对结合律的理解。

3、  简便计算。

(1)       投影显示:273+352+648

64+36+81+19

(2)       交流方法及计算结果。

运用加法交换律,结合律进行加法的简便计算,我们将在下节课中具体展开。

4、  发展练习:

22+23+24+25+26+27+28=(       )

(四)反思过程,学会方法。

1、  学了这节课,你有什么收获?

2、  关于学习方法。

(五)作业:《作业本》

篇3:加法结合律

教学目标

(一)使学生理解并掌握加法结合律.

(二)使学生理解和掌握加法交换律与加法结合律的异、同点,及其特点.

(三)能正确、灵活地应用加法交换律和加法结合律进行简便运算.

(四)培养学生分析推理的能力.

教学重点和难点

使学生理解并掌握加法结合律,能正确、灵活地应用加法运算定律使计算简便,这是教学的重点,引导学生通过讨论,计算从而自己发现并总结出加法结合律的过程是学习的难点.

教学过程 设计

(一)复习准备

1.口答.

(1)根据运算定律在下面的( )里填上适当的数.

46+( )=75+( ) ( )+38=( )+59

24+19=( )+( ) a+67=( )+( )

要求学生说出根据什么运算定律填数.

(2)根据每组第一个算式直接说出第二个算式的结果.

632+85=717 304+215=519

85+632=( ) 215+304=( )

2.板演:

四年级一班有48人,二班有50人,四年级一共有多少人?

3.在多位数加法竖式计算中,已经学过一种简便算法,如

引导学生回忆说明,从个位加起,先把每个数位上可以凑成“10”的两个数加起来,再和另一个数相加.

(二)学习新课

1.新课引入.

教师指出:刚才那种计算方法实际上就是应用加法结合律.那么什么叫做加法结合律呢?这就是我们今天要研究的课题.(板书课题:加法结合律)

教师指出,如果把刚才板演题再加上一个条件“三班有49人”,就是我们今天要研究的例2.出示例2.

四年级一班有48人,二班有50人,三班有49人.四年级一共有多少人?

学生读题后,明确已知条件和问题、师生共同画出线段图.

让学生用两种方法,独立做在本上.

板书:(48+50)+49 48+(50+49)

=98+49 =48+99

=147(人) =147(人)

答:四年级一共有147人.

提问:

(1)这两种解法有什么不同点?

启发学生说出:第一种解法是先把一班、二班的人数加起来,再加上三班的人数,也就是先把48和50相加,再加上49;第二种解法是先把二班、三班的人数加起来,再加上一班的人数,也就是先把50和49相加,再和48相加.

(2)这两种解法有什么相同点?

启发学生说出两种解法的计算结果相同.

(3)这两个算式有什么关系?

通过比较明确这两个算式是相等的关系,因此可以写成.

(48+50)+49=48+(50+49)

(4)观察下面两组算式,每组的两个算式有什么样的关系?○里应填什么?

(32+40)+19○32+(40+19)

(75+25)+40○75+(25+40)

启发学生明确:每组的两个算式是相等的关系,○里应填上“=”.

(5)继续观察这三个等式,它们有什么共同的特点?等号左边算式和等号右边算式各有什么共同点?

在小组讨论的基础上归纳:

①这三个等式中,每组算式两边都有三个加数,加数不一样.

②三个等式中,等号左边算式加的顺序相同,都是先把前两个数相加,再同第三个数相加.

③三个等式中,等号右边的算式加的顺序也相同,都是先把后两个数相加,再同第一个数相加.

(6)那么等号左、右两边加的顺序一样吗?它们的和怎样呢?(不变)

引导学生总结发现的规律.

教师明确:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.这一规律就叫做加法结合律.

(7)怎样用比较简单的形式表示加法结合律呢?如果用字母a,b,c表示三个加数,那么加法结合律的字母公式是什么?

学生阅读课本第49页结论.

板书: (a+b)+c=a(b+c)

3.教学加法结合律和加法交换律的异同点及它们的特点.

教师启发学生讨论:在加法运算中,加法交换律和加法结合律有什么异同点?从而得出

相同点:加法交换律和加法结合律都是加法的运算定律.其计算结果――和不变.

不同点:加法交换律是变换了加数的位置,如a+b=b+a;加法结合律不改变加数的位置,而改变了加数的运算顺序,如a+b+c=(a+b)+c=a+(b+c).

特点:

应用加法交换律改变加数的位置后,计算时仍要按照从左到右的顺序依次计算;应用加法结合律改变运算顺序后,要先算小括号里面的,再算括号外面的.

4.教学加法结合律的应用.

在加法中应用运算定律可以使计算简便.

(1)教学例3:计算480+325+75.

提问:

这道题怎么算比较简便?为什么?应用了什么运算定律?

在讨论的基础上明确,因为375和25相加能得整百数(400),再算480+400比较简便,这里应用了加法结合律.

板书:

(2)教学例4.

计算325+480+75怎样算简便?应用了什么定律?

启发学生想出325和75相加可以得到整百,先用加法交换律交换480和75的位置,再计算325加75,这里又应用了加法结合律.

板书:

(3)比较例3、例4在应用运算定律方面有什么不同?

在比较中使学生明确,例3只应用了加法结合律,而例4是先用加法交换律把75和480交换位置,再应用加法结合律把325和75相加才能使计算简便.

教师概括:

在加法中应用加法运算定律进行简便计算,有时要用到交换律,有时要用到结合律,有时既要用到交换律还要用到结合律.无论如何应用,在计算时为使计算简便应考虑,哪些数相加可以得到整十、整百、整千的数,要先用加法交换律把这些数移在一起,再应用加法结合律把这些数结合起来先算,最后求这几个数的`和.

练一练

完成课本第50页“做一做”的题目.说明怎样算简便,用了什么运算定律.

提问:

过去哪些知识应用了加法结合律?

例如,做口算加法36+48,通过讨论使学生明确,把36+48先改写成36+(40+8),然后算(36+40)+8这就是应用了加法结合律.

(三)巩固反馈

1.根据运算定律在下面的□里填上适当的数.

369+258+147=369+(□+147)

(23+47)+56=23+(□+□)

654+(97+a)=(654+□)+□

2.下面哪些等式符合加法结合律?

a+(20+9)=(a+20)+9 15+(7+b)=(20+2)+b

(10+20)+30+40=10+(20+30)+40

3.用简便方法计算下面各题.

91+89+11 78+46+154

168+250+32 85+41+15+59

(四)作业

练习十一第8~10题.

课堂教学设计说明

学生过去对加法结合律有过一些感性认识,本节课主要是通过学生熟悉的事例,采用不同的方法解答后,进行一系列的比较,把感性认识上升到理性认识,从而抽象概括出加法结合律.

新课分为三部分.

第一部分学习例2,通过一系列的启发、讨论,逐步总结出加法结合律.

第二部分通过比较加法结合律和加法交换律的相同点和不同点,使学生进一步理解这两个运算定律,并掌握它们的特点.

第三部分学习应用加法运算定律使计算简便.通过计算让学生懂得加法应用了什么定律,怎样应用的定律.只有真正理解定律的意义,才能做到灵活运用.

本节课的练习目的明确.围绕重点使学生在理解两个运算定律的基础上,进行简便运算.

板书设计

篇4:加法结合律

例 2 四年级一班有48人,二班有50人,三班有49人,四年级一共有多少人?

(48+50)+49=98+49=147(人)

48+(50+49)=48+99=147(人)

答:四年级一共有147人.

(48+50)+49=48+(50+49)

(32+40)+19 32+(40+19)

(75+25)+40 75+(25+40)

三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.这叫做加法结合律.

(a+b)+c=a+(b+c)

加法交换律和加法结合律

相同点:计算结果――和不变

不同点:

应用加法交换律改变加数位置后,仍按从左到右顺序计算.

应用加法结合律改变运算顺序后.要先算( )里面的,再算( )外面的.

例3

例4

篇5:《加法结合律》教案设计

《加法结合律》教案设计

设计说明

本节课在教学设计上主要突出以下几点:

1.加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后加法的第二个运算定律。学好加法结合律,对于加法的简便计算,提高运算速度和准确程度都有很大的帮助。创设连贯的生活情境,让学生体会到数学知识来源于生活。

在生活情境下学习知识,可以使学生感受到数学知识在生活中应用的广泛性。因此,加法结合律的教学同样在李叔叔骑车旅行的'情境下进行,让学生根据笔记本上记录的三天行程的数据提出要解决的现实问题。在这一过程中,使学生充分感受到数学知识来源于生活。

2.调动已有的学习经验,自主发现规律。

因为本内容的学习是在刚刚学习了加法交换律的基础上进行的,所以引导学生迁移运算定律学习经验是学好本内容的基本策略。教学中,利用情境引导学生理解两种运算顺序的意义,在比较运算意义和计算结果的基础上得到等式,并请学生根据此等式的特点,举一些例子,对此类等式的特点展开讨论,然后初步小结得到加法结合律的内容。

课前准备

教师准备 多媒体课件 课堂活动卡

学生准备 学情检测卡

教学过程

⊙复习导入

1.根据加法交换律填空。

20+34=(  )+20

36+(  )=64+(  )

a+700=(  )+(  )

2.下面的算式哪些符合加法交换律?

(1)230+270=300+200

(2)60+80+40=60+40+80

(3)48+d=d+48

师:上节课我们学习了加法交换律,知道了两个数相加,交换加数的位置,和不变。那么加法还有没有其他运算定律呢?这些运算定律又有什么用途呢?这节课我们就来学习加法结合律。(板书课题:加法结合律)

设计意图:通过复习加法交换律,唤起学生对已有知识的回顾,同时激发学生探究加法的另一个重要运算定律――加法结合律的兴趣。

⊙探究新知

1.教学例2。

出示例2:李叔叔第一天骑了88 km,第二天骑了104 km,第三天骑了96 km。这三天李叔叔一共骑了多少千米?

师:这道题中已知什么,求什么?你能列出综合算式吗?列式后与同桌交流。(如果学生没有给出第二种算法,教师引导学生讨论:还有不同的算法吗?)

方法一 (88+104)+96

=192+96

=288(km)

方法二 88+(104+96)

=88+200

=288(km)

师:观察这两个算式,说一说它们分别先求什么,再求什么。小组内交流,然后汇报。

预设

生1:方法一先求第一天和第二天一共骑了多少千米,再和第三天所行的路程相加,从而求出这三天李叔叔一共骑了多少千米。

生2:方法二先求第二天和第三天一共骑了多少千米,再和第一天所行的路程相加,从而求出这三天李叔叔一共骑了多少千米。

师:这两个算式的结果相同,可以用什么符号连接?

(88+104)+96○88+(104+96)

预设

生:可以用“=”连接。

2.以小组为单位展开探究活动。

(1)出示课堂活动卡,学生以小组为单位展开探究。

(2)以小组为单位汇报。

篇6: 加法结合律教案

教学目标:

1.理解和掌握加法结合律,并应用加法结合律使计算简便。

2.培养观察、归纳、概括的潜力。

教学重点:理解并掌握加法结合律。

教学难点:加法结合律的推导。

教学过程:

一、复习导入

20+34=+()

36+()=64+()

A+700=+

二、新授

1.出示准备题:

37+26+63、37+(26+63)

59+38+732和59+(38+732)

讨论:比较两式题的异同。刚才的两个例子说明了什么?

2.上述两题贴合猜想,可能是偶然。请同学们自己来找一找贴合猜想的式题。

(学生自由举例,小组交流结果。汇报结果,找到许多式题贴合猜想。

3.能证明猜想正确,还有我们身边的一些生活实例。

请同学们用多种方法解决问题:李叔叔骑车旅行第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,这三天李叔叔一共骑了多少千米?

三、小组展示

1.学生先汇报

A.口头列式:

(88+104)+96

88+(104+96)

B.分别说说先求什么,再求什么?

C.决定,得数会相同吗?(相同)

D.计算结果。得出(88+104)+96=88+(104+96)

2.提问:以上几个加法算式中,每个算式等号的左边和右边有什么相同和不同的地方?

3.用字母表示加法结合律。

(1)谁能用符号(任意选3个符号)表示加法结合律?如:(□+△)+○=□+(△+○)

(2)如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢?

三、练习

1.下面哪些等式贴合加法结合律?

a+(20+9)=(a+20)+9

15+(7+b)=(20+2)+b

(10+20)+30+40=10+(20+30)+40

2.简便计算。

273+352+648

64+36+81+19

3.五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)

板书设计:

加法结合律

37+26+63=37+(26+63)

59+38+732=59+(38+732)

(88+104)+96

88+(104+96)

加法结合律:(a+b)+c=a+(b+c)

篇7:《加法结合律》说课稿

【学习内容】加法结合律。教科书第57页。

【文本分析】

加法结合律是《运算律》单元第一课时的第二个例题,这节课的教学内容包括加法交换律和加法结合律。这节课是在学生经历了一系列关于四则运算的学习后,对于运算律有了一定的感性认识的基础上,进一步通过一些实例来引导学生进行概括。而加法结合律则是在学习了加法交换律的基础上展开的。本课的教学重点在于让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。但概括运算律则是本课的教学难点。

教学重点:使学生理解并掌握加法结合律,能用字母来表示加法结合律。

教学难点:使学生经历探索加法结合律的过程,发现并概括出运算定律。

【学习目标】

1、让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。

2、通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法结合律的过程,进行比较和分析,发现并概括出运算律。

3、让学生用符号和字母表示出发现的规律,抽象、概括出运算律,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

4、通过学生积极参与规律的`探索、发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

【导学过程】

教学加法结合律。

1、初步感知

课的开始出示例题图,通过解决“参加活动的一共有多少人?”得出一个等式,让学生有一个初步的感知,为接下来进一步进行加法结合律的研究做好铺垫。

(28+17)+23=28+(17+23)

接下来,再出示两组算式,请学生算一算每组两道算式的结果是多少?○里应该填什么符号?积累感性认识的素材。

(45+25)+13○45+(25+13);(36+18)+22○36+(18+22)

2、观察、思考、交流

陶行知先生提出了“六大解放”的主张: 解放小孩子的头脑、解放小孩子的双手、解放小孩子的嘴、解放小孩子的空间、解放小孩子的时间及把小孩子的双手、嘴、空间和时间都解放出来。“让学生能够自己去探索、自已去辨析、自己去历练,从而获得正确的认识和熟练的能力。”

“发生认识论”的创立者皮亚杰认为知识、智力的个体发生离不开认识主体的自主活动。只有当学生的能动性充分发挥时,他的聪明才智才能充分表现出来,教学质量才有真正提高的可能。

这个“学生十分钟”的环节我们设计让同学们在学案的指导下自主进行观察、思考和交流。这样设计基于两点原因:一是学生前面已经有了一系列关于四则运算学习的基础,积累了大量的感性认识,具备了探究的知识基础;二是在加法交换律的学习中,学生已经有了一定学习运算律的经验,掌握了一些探究运算律的方法,具备了探究的能力基础。

基于以上两点,我们把加法结合律的探究放手给学生,让学生在学案的指导下独立开展探究活动。

学案中我们设计了以下几个环节:

(1)观察

每组的两道算式有什么相同的地方?有什么不同的地方?

这三组算式有什么共同的特点?

(2)仿写

照样子再写出一组这样的式子,填在上面的横线上。

(3)发现规律

从这些例子中发现了什么规律?再用自己喜欢的方式表示在下面的横线上。

在最后交流的环节,我设计了两个层次:一是小组交流,希望在这个环节中能够充分发挥优生的作用,让学生教学生,同时由于前面有充分的思考时间,学习能力较弱的学生也有话可说,而不是只能做一个听众;二是全班交流,这段时间仍然是交给学生的,代表小组发言的孩子主讲,把他们小组的讨论进行汇报,再由其他的孩子进行纠正和补充,全面调动学生的眼、耳、脑,达到最佳的教学效果。

篇8: 加法结合律教案

加法结合律

教学目标

(一)使学生理解并掌握.

(二)使学生理解和掌握加法交换律与的异、同点,及其特点.

(三)能正确、灵活地应用加法交换律和进行简便运算.

(四)培养学生分析推理的潜力.

教学重点和难点

使学生理解并掌握,能正确、灵活地应用加法运算定律使计算简便,这是教学的重点,引导学生透过讨论,计算从而自己发现并总结出的过程是学习的难点.

教学过程设计

(一)复习准备

1.口答.

(1)根据运算定律在下面的(里填上适当的数.

46+(=75+

(+38=(+59

24+19=(+

a+67=(+(

要求学生说出根据什么运算定律填数.

(2)根据每组第一个算式直接说出第二个算式的结果.

632+85=717304+215=519

85+632=215+304=(

2.板演:

四年级一班有48人,二班有50人,四年级一共有多少人?

3.在多位数加法竖式计算中,已经学过一种简便算法,如

引导学生回忆说明,从个位加起,先把每个数位上能够凑成“10”的两个数加起来,再和另一个数相加.

(二)学习新课

1.新课引入.

教师指出:刚才那种计算方法实际上就是应用.那么什么叫做呢?这就是我们这天要研究的课题.(板书课题:)

教师指出,如果把刚才板演题再加上一个条件“三班有49人”,就是我们这天要研究的例2.出示例2.

四年级一班有48人,二班有50人,三班有49人.四年级一共有多少人?

学生读题后,明确已知条件和问题、师生共同画出线段图.

让学生用两种方法,独立做在本上.

板书:(48+50)+4948+(50+49)

=98+49=48+99

=147(人)=147(人)

答:四年级一共有147人.

提问:

(1)这两种解法有什么不同点?

启发学生说出:第一种解法是先把一班、二班的人数加起来,再加上三班的人数,也就是先把48和50相加,再加上49;第二种解法是先把二班、三班的人数加起来,再加上一班的人数,也就是先把50和49相加,再和48相加.

(2)这两种解法有什么相同点?

启发学生说出两种解法的计算结果相同.

(3)这两个算式有什么关系?

透过比较明确这两个算式是相等的关系,因此能够写成.

(48+50)+49=48+(50+49)

(4)观察下面两组算式,每组的两个算式有什么样的关系?○里应填什么?

(32+40)+19○32+(40+19)

(75+25)+40○75+(25+40)

启发学生明确:每组的两个算式是相等的关系,○里应填上“=”.

(5)继续观察这三个等式,它们有什么共同的特点?等号左边算式和等号右边算式各有什么共同点?

在小组讨论的基础上归纳:

①这三个等式中,每组算式两边都有三个加数,加数不一样.

②三个等式中,等号左边算式加的顺序相同,都是先把前两个数相加,再同第三个数相加.

③三个等式中,等号右边的算式加的顺序也相同,都是先把后两个数相加,再同第一个数相加.

(6)那么等号左、右两边加的顺序一样吗?它们的和怎样呢?(不变)

引导学生总结发现的规律.

教师明确:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.这一规律就叫做.

(7)怎样用比较简单的形式表示呢?如果用字母a,b,c表示三个加数,那么的字母公式是什么?

学生阅读课本第49页结论.

板书:(a+b)+c=a(b+c)

3.教学和加法交换律的异同点及它们的特点.

教师启发学生讨论:在加法运算中,加法交换律和有什么异同点?从而得出

相同点:加法交换律和都是加法的运算定律.其计算结果DD和不变.

不同点:加法交换律是变换了加数的位置,如a+b=b+a;不改变加数的位置,而改变了加数的运算顺序,如a+b+c=(a+b)+c=a+(b+c).

特点:

应用加法交换律改变加数的位置后,计算时仍要按照从左到右的顺序依次计算;应用改变运算顺序后,要先算小括号里面的,再算括号外面的.

4.教学的应用.

在加法中应用运算定律能够使计算简便.

(1)教学例3:计算480+325+75.

提问:

这道题怎样算比较简便?为什么?应用了什么运算定律?

在讨论的基础上明确,因为375和25相加能得整百数(400),再算480+400比较简便,那里应用了.

板书:

(2)教学例4.

计算325+480+75怎样算简便?应用了什么定律?

启发学生想出325和75相加能够得到整百,先用加法交换律交换480和75的位置,再计算325加75,那里又应用了.

板书:

(3)比较例3、例4在应用运算定律方面有什么不同?

在比较中使学生明确,例3只应用了,而例4是先用加法交换律把75和480交换位置,再应用把325和75相加才能使计算简便.

教师概括:

在加法中应用加法运算定律进行简便计算,有时要用到交换律,有时要用到结合律,有时既要用到交换律还要用到结合律.无论如何应用,在计算时为使计算简便应思考,哪些数相加能够得到整十、整百、整千的数,要先用加法交换律把这些数移在一齐,再应用把这些数结合起来先算,最后求这几个数的和.

练一练

完成课本第50页“做一做”的题目.说明怎样算简便,用了什么运算定律.

提问:

过去哪些知识应用了?

例如,做口算加法36+48,透过讨论使学生明确,把36+48先改写成36+(40+8),然后算(36+40)+8这就是应用了.

(三)巩固反馈

1.根据运算定律在下面的□里填上适当的数.

369+258+147=369+(□+147)

(23+47)+56=23+(□+□)

654+(97+a)=(654+□)+□

2.下面哪些等式贴合?

a+(20+9)=(a+20)+915+(7+b)=(20+2)+b

(10+20)+30+40=10+(20+30)+40

3.用简便方法计算下面各题.

91+89+11

78+46+154

168+250+32

85+41+15+59

(四)作业

练习十一第8~10题.

课堂教学设计说明

学生过去对有过一些感性认识,本节课主要是透过学生熟悉的事例,采用不同的方法解答后,进行一系列的比较,把感性认识上升到理性认识,从而抽象概括出.

新课分为三部分.

第一部分学习例2,透过一系列的启发、讨论,逐步总结出.

第二部分透过比较和加法交换律的相同点和不同点,使学生进一步理解这两个运算定律,并掌握它们的特点.

第三部分学习应用加法运算定律使计算简便.透过计算让学生懂得加法应用了什么定律,怎样应用的定律.只有真正理解定律的好处,才能做到灵活运用.

本节课的练习目的明确.围绕重点使学生在理解两个运算定律的基础上,进行简便运算.

板书设计

例2四年级一班有48人,二班有50人,三班有49人,四年级一共有多少人?

(48+50)+49=98+49=147(人)

48+(50+49)=48+99=147(人)

答:四年级一共有147人.

(48+50)+49=48+(50+49)

(32+40)+1932+(40+19)

(75+25)+4075+(25+40)

三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.这叫做.

(a+b)+c=a+(b+c)

加法交换律和

相同点:计算结果DD和不变

不同点:

应用加法交换律改变加数位置后,仍按从左到右顺序计算.

应用改变运算顺序后.要先算(里面的,再算(外面的.

篇9:加法结合律练习题

加法结合律练习题

加法结合律练习题

1. 根据加法运算律填空。

99+201=201+    +78= +22

x+ =133+x  △+ = +

160+(39+40)=160+ +39

129+(a+71)= a+ +

2. 填一填。

(1)如果用a和b分别表示两个加数,那么加法交换律可表示为____________。

(2)如果用a,b和c分别表示三个加数,那么加法结合律可以表示为______________。

3. 根据加法运算律在 里填上合适的数。

28+ =45+

(163+ )+15= +(75+ )

+28= +a

a+( +b)=( +50)+

4. 计算下面各题,并用加法交换律进行验算。

56+79   109+78  876+132

5.重点难点,一网打尽。

6. 怎样算简便就怎样算。

65+29+71    143+(57+26)

99+(38+101)  158+67+142

135+267+65  11+12+13+39+38+37

17+18+19+20+21+22+23

20+21+22+23+24+25+26+27+28

7. 下面的等式符合加法的`运算律吗?(符合的在后面的括号里画“”。)

(1)253+A=A+253(  )

(2)139+72+25=39+(75+25)(  )

(3)a-b=a-b(  )

(4)560+210=210+650(  )

(5)147+(53+B)=(147+53)+B(  )

(6)B+C+D=B+(C+D)(  )

8.举一反三,应用创新,方能一显身手!

(1)从入口经猛兽馆到出口有几条不同的路线?最短的是多少米?

(2)你还能提出哪些数学问题?并解答。

第1课时

1. 略

2. (1)a+b=b+a (2)(a+b)+c=a+(b+c)

3. 45 28 75 163 15 a 28 50 a b

4. 135 187 1008  5、略

6. 165 226 238 367 467 150 140 216

7. (1) (2) (3) (4) (5) (6)

8. (1)6条 503+214=717(米) (2)略

篇10:加法结合律教学设计

学习内容:人教版义务教育课程标准实验教科书四年级下册数学第29 页例2 《加法结合律》。

教材分析:例2 是通过解决实际问题来总结结合律。并且可以用加法运算定律进行简便计算。例2 采用图画表示题意,教材在分析学生解决问题的两种算法中,可以得出加法结合律。

学情分析:例2 教学时放手让学生自主合作学习,通过观察比较得出加法结合律。

学习目标:1 、学习加法结合律。

2 、准确地运用两种运算定律进行简便运算。

3 、培养学生观察能力、概括能力和语言表达能力。

学习重难点:1 、掌握加法结换律。

2 、在解决实际问题中体会两种运算定律的作用。

学习时数:一课时

学具准备:小黑板、情境图。

学习流程:

一、 自主预习:

预习例2 、例3.

二、 知识链接:69 + 27 =( )+( ) 155 +45 =+()

三、 情境导入:

同学们你们还记得上节课我们学过的李叔叔骑自行车旅行的事吗?这节课我们一起来看看李叔叔在旅行途中遇到哪些问题?这三天一共骑了多少米?请看小黑板。(出示小黑板)

四:自学辅导:

1、 明确自学内容:

请同学们仔细读题、理解题意,想办法解决这道数学问题,小组内交流算法,看哪个小组想出的办法多。

2、 自主学习:

认真思考独立解决,写在练习本上。

3、 合作交流:

小组长组织组员交流自主学习收获,总结解决问题的几种方法。

4、 展示辅导:

个小组推荐成员向大家展示本组学习成果,师辅导对新知的认识。()(教师板书算式)比较下面两组算式,你会有什么发现?(小黑板出示)155 +(145 +207 )()(155 + 145 )+207

(49 + 172 )+ 28 ()49 +(172 +28 )

五、自主检测:

1、 明确自学内容:425 + 14 + 18675 + 168 +125

2、 自主合作检测:独立完成,组内交流。

3、 汇报检测结果:小组汇报检测结果

4、 运用规律独立写算式25 +49 +75 =()+()+()

六、交流收获:

1 、通过本节课的学习你有什么收获?

2 、同学们准确地算出了李叔叔三天一共骑了多少千米?看来,学习数学真的很有用,可以帮助我们解决生活中的问题,以后,我们要更加努力,学好数学,正当小数学家。

篇11:加法结合律教学设计

教学目标:

1、理解并掌握加法结合律,并能够用字母表示,初步感受应用加法结合律可以使一些计算简便,发展应用意识。

2、经历探索加法结合律的过程,发展学生的分析、比较、抽象、概括能力,渗透符号意识。

3、感受数的运算与日常生活的密切联系,获得探究的乐趣和成功的体验,初步形成独立思考、合作交流的意识和习惯。

学习目标:

1、理解并掌握加法结合律

2、能用符号表示加法结合律。

3、会运用加法结合律进行简便计算。

学习任务:

1、理解并掌握加法结合律。

2、能用符号表示加法结合律。

3、会运用加法结合律进行简便计算。

教学重点:经历运算律的探索过程,发现规律,概括规律

教学准备:课件

教学流程:

一、激情导入

1、导入课题:口算下面两题50+70+30  240+105+95

说说你是怎样算的,针对先算70+30和105+95提出质疑:这样算对吗?有什么依据吗?这节课我们就来学习加法结合律。板书课题:加法结合律

2、明确目标:出示学习目标,齐读一次。

3、效果预期:关于加法计算,我们已经有了那么多的经验,这些经验能帮助我们很好的认识加法结合律。

二、民主导学

任务一、认识加法结合律

1、任务呈现:

(1)、出示例2主题图,学生说图上的信息并提问,学生对提出的题进行解答,师引导学生研究问题“这三天一共骑了多少千米?”请学生自己尝试列式,并想想为什么这样列式,教师巡视指导。学生回答,教师有意识地板书,并说出自己的想法。

(88+104)+96=288(千米)  88+(104+96)  88+104+96  104+96+88

再针对这两个算式开展研究:(88+104)+96   88+(104+96)

(2)、猜一猜:这两个式子相等吗?怎样证明?

观察思考:比较两个算式,什么变了?什么没变?

通过这两个式子,你作什么猜想?怎样证明你的想法?

2、自主学习

小组合作探究,按照任务要求认真完成。

3、展示交流

说说你有什么猜想?怎样证明你的想法?

学生自己归纳出“三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。”

任务二、能用符号表示加法结合律。

1、任务呈现:你会用符号表示加法结合律吗?

2、自主学习:独立完成。

3、展示交流:展示学生的各种表示方法,重点介绍图形表示法和字母表示法。

任务三、会运用加法结合律进行简便计算。

1、任务呈现:你会用加法结合律进行简便计算吗?

出示题组,请学生独立完成。

A、用简便方法计算下面各题。

(1)32+93+68   (2)154+46+79+121

B、你能在( )里填上合适的数吗?

96+35=35+(45+36)+64=45+( + )

560+(140+70)=( + )

2、自主学习:独立完成。

3、展示交流。

三、检测导结

1、出示检测题,要求8分钟内独立完成。

①、你能在横线上填出合适的数吗?

(45+36)+64=45+(36+□)

(72+20)+□=72+(20+8)

560+(140+70)=(560+□)+□

②、你能把得数相同的算式连一连吗?

⑴ 72+16  A、( 75+25)+48

⑵ 45+(88+12)   B、 16+72

⑶ 75+(48+25)   C、(45+88)+12

2、出示正确答案,同桌互相检查,指出其中的错误并改正。

3、反思总结:你有什么新的收获?有什么想和大家交流一下吗?

让学生回顾今天所学的内容,并将其内化为自己的知识。

四、板书设计:

篇12:数学加法结合律练习题

数学加法结合律练习题精选

一、下面的算式分别运用了什么运算定律。(7分)

76×18=18×76( ) 30×6×7=30×(6×7)( )

a×b=b×a( ) (a×b)×c=a×(b×c)( )

125×(8×40)=(125×8)×40( ) ▲×=×▲( )

5×4×25×2=(5×2)×(4×25)( )

二、根据乘法运算定律填上合适的数。(6分)

12×32=32× 108×75= × 24×5= ×24

60×25)× =60×( ×8) 3×4×8×5=(3×4)×( × )

35×a= ×35 ○×□=□× b×125×8=b×( × )

三、列竖式计算,并用乘法交换律验算。(12分)

32×18= 29×33= 69×11=

四、怎样简便就怎样算。(75分)

49×40×25 (25×115)×4 8×9×125

125×50×8×4 125×(8×40) 5×4×25×2

25×7×4×3 16×25×125 32×125

125×88 38×5×4 125×72

5×(19×2) 4×(25×9) 32×25

篇13:加法结合律课后练习题

加法结合律课后练习题

1.你能在 里填上合适的数或字母吗?

28+37=37+ A+45=45+

45+85+67= +(85+ )

A+(27+B)=( + )+B

2.下面的等式各用了加法的什么运算律?

65+18=18+65运用了

37+54+46=37+(54+46)运用了

28+(72+65)=(28+72)+65运用了

73+84+27=(73+27)+84运用了和

3.计算下面各题,并用加法交换律进行验算。

347+168 638+74

4.先算一算,再比一比,那道算式的计算比较简便?

(37+98)+63 98+(37+63)

5.你能很快找出那两个方框上的数的'和是100吗?连一连。

智力冲浪:

小华出了一道题考小明:计算98+998+9998+2×3,聪明的小明想了想,马上说出了正确答案。你知道小明是怎么算的吗?

篇14:《加法结合律》教学设计

教材简析:

加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后的加法第二个运算定律,学好加法结合律,对于加法的简便运算,提高计算速度和准确程度很有帮助。

教学目的:

1.使学生理解和掌握加法结合律,并应用结合律使计算简便。

2.培养学生观察、归纳、概括能力以及思维灵活性。

3.对学生进行“具体问题具体分析”的辨证唯物主义的教育。

教学重点:理解并掌握加法结合律。

教学难点:加法结合律的推导。

教学过程

一、激情导入

1、导入课题:口算下面两题50+70+30 240+105+95

说说你是怎样算的,针对先算70+30和105+95提出质疑:这样算对吗?有什么依据吗?这节课我们就来学习加法结合律。板书课题:加法结合律

2、明确目标:出示学习目标,齐读一次。

3、效果预期:关于加法计算,我们已经有了那么多的经验,这些经验能帮助我们很好的认识加法结合律。

二、民主导学

任务一、认识加法结合律

1、任务呈现:

(1)、出示例2主题图,学生说图上的信息并提问,学生对提出的题进行解答,师引导学生研究问题“这三天一共骑了多少千米?”请学生自己尝试列式,并想想为什么这样列式,教师巡视指导。学生回答,教师有意识地板书,并说出自己的想法。

(88+104)+96=288(千米) 88+(104+96) 88+104+96 104+96+88

再针对这两个算式开展研究:(88+104)+96 88+(104+96)

(2)、猜一猜:这两个式子相等吗?怎样证明?

观察思考:比较两个算式,什么变了?什么没变?

通过这两个式子,你作什么猜想?怎样证明你的`想法?

2、自主学习

小组合作探究,按照任务要求认真完成。

3、展示交流

说说你有什么猜想?怎样证明你的想法?

学生自己归纳出“三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。”

任务二、能用符号表示加法结合律。

1、任务呈现:你会用符号表示加法结合律吗?

2、自主学习:独立完成。

3、展示交流:展示学生的各种表示方法,重点介绍图形表示法和字母表示法。

任务三、会运用加法结合律进行简便计算。

1、任务呈现:你会用加法结合律进行简便计算吗?

出示题组,请学生独立完成。

A、用简便方法计算下面各题。

(1)32+93+68 (2)154+46+79+121

B、你能在( )里填上合适的数吗?

96+35=35+(45+36)+64=45+( + )

560+(140+70)=( + )+

2、自主学习:独立完成。

3、展示交流。

三、检测导结

1、出示检测题,要求8分钟内独立完成。

①、你能在横线上填出合适的数吗?

(45+36)+64=45+(36+□)

(72+20)+□=72+(20+8)

560+(140+70)=(560+□)+□

②、你能把得数相同的算式连一连吗?

⑴ 72+16 A、( 75+25)+48

⑵ 45+(88+12) B、 16+72

⑶ 75+(48+25) C、(45+88)+12

2、出示正确答案,同桌互相检查,指出其中的错误并改正。

3、反思总结:你有什么新的收获?有什么想和大家交流一下吗?

让学生回顾今天所学的内容,并将其内化为自己的知识。

四、板书设计:

加法结合律

(88+104)+96 88+(104+96)

=192+96 =88+200

=288 =288

(88+104)+96 = 88+(104+96)

(a+b)+c=a+(b+c)

篇15:加法结合律教学设计

加法结合律教学设计

教学目标:

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点:

让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。

教学难点:

概括运算律,尝试用字母表示

教学过程:

一、探索加法交换律

1、看谁填得又对又快?

96+35=35+( ) 204+( )=57+204

23+( )=15+( ) ( )+257=( )+63

2、观察与发现

提问:仔细观察这6个算式,你发现了什么?

3、猜测与尝试

是不是所有的加法算式,加数交换位置以后,结果都相等呢?

4、生活中的应用

图示:

图中的小朋友在干什么?从图中你了解到了什么?能提出数学问题吗?我们选择一个:跳绳的有多少人?

【预测:学生通常会列出28+17这样的算式,如果出现了17+28,让学生评议是否正确?28+17表示什么?17+28表示什么?】

5、用自己的话说说你的发现

【预测:学生的说法可能不够简练和准确,教师用肢体、表情等引导学生说清楚,再归纳】

教师小结:类似这样的`等式能写完吗?虽然咱们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,那就是——交换加数的位置,和不变,这就叫做加法交换律。

6、用字母表示加法交换律

教师:在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。

7、加法交换律的应用之一:验算

加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?

加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。

二、探索加法结合律。

1.运用加法交换律使计算简便

出示例题:回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)

学生独立完成,要求列出综合算式。

展示(选择有代表性的几种进行展示):

28+17+23 28+17+23 28+17+23

=45+23 =17+23+28 =28+(17+23)

=68(人) =40+28 =28+40

=68(人) =68(人)

【预测:以上三种不同的算法,学生做出前两种应该没有问题。至于第三种,学生能够想到,能运用小括号使计算简便,一并观察探索研究。】

2、探索加法结合律

28+17+23

思考,如果不使用加法交换律调整加数的位置,有没有办法先计算17+23呢?

【预测:学生能很快想到,使用小括号,可以改变原有的运算顺序,使计算简便。】

指明一位学生板演。

3、猜测规律,举例验证。

这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。

4、归纳什么叫加法结合律

学生观察,教师提问:计算28+17+23,按照四则运算法则,应该先算什么?(指明学生回答)

继续提问:可是我们发现,先算17+23,可以得到一个整十数,再跟28相加,计算就会简便的多,所以我们选择先把后两个数相加,这样的话,结果会不会改变呢?

归纳小结:先把前两个数相加,或者先把后两个数相加,结果不变,这就叫做加法结合律。

5、用字母表示加法结合律

鼓励学生尝试用字母表示加法结合律。

6、巩固与练习

你能在方框内填出合适的数吗?

(45+36)+64=45+(36+)

(72+20)+=72+(20+8)

560+(140+70)=(560+)+

【预测:学生急于尝试刚学到的运算定律,可能只是急着填数,而忽略了计算结果。教师在充分肯定学生的练习正确之时,多提一个要求:现在你能马上算出它们的结果了吗?】

三、课堂练习

1、你能把得数相同的算式连一连吗?

(1)72+16 A.(75+25)+48

(2)45+(88+12) B.16+72

(3)75+(48+25) C.(45+88)+12

(4)(84+68)+32 D.84+(68+23)

【预测:第四个算式和D选项算式是连不上的,因为其中的一个加数32在D选项中改成23了。但是定势会使大部分学生想当然地连上了。也会有少数学生能及时发现问题。放手让学生自己去发现,去争论,去甄别。】

集体订正后,教师小结。

2、拓展练习

水果店运进四筐苹果,分别重45千克、63千克、37千克、55千克,水果店这次一共运进多少千克苹果?

四、课堂小结

原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课继续研究!

加法结合律课件

加法结合律教学设计

加法结合律的教学设计

数学教案-课题二:加法结合律和简便算法

比例尺课件

设计课件

丑小鸭课件

分子生物学课件

动能定理课件

音乐欣赏课件

《加法结合律课件(锦集15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档