欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

初二数学实数教学设计

时间:2022-06-20 10:50:15 其他范文 收藏本文 下载本文

下面是小编为大家带来的初二数学实数教学设计,本文共14篇,希望大家能够喜欢!

初二数学实数教学设计

篇1:初二数学实数教学设计

一、教材分析:

本节课选自浙教版七年级上册第三章第二节(3.2实数)。目标是让学生经历无理数的产生过程;了解无理数、实数的概念,了解实数的分类;知道实数与数轴上的点一一对应;理解相反数、绝对值、数的大小比较法则同样适用于实数。

在中学阶段,大多数问题是在实数范围内研究的。本节课是在学生学习了平方根、立方根以后,接触过如“《3.2实数》教学设计”、“π”等具体的无理数的基础上,引入无理数的概念,使数从有理数扩展到实数,对今后数学学习有着非常重要的意义,是进一步学习方程、复数、函数等知识的基础,同时也是学习自然科学等学科所不可缺少的。

二、教学设计:

本课的教学设计遵循新课程教学理念,以建构主义理论为指导,积极落实新课程理念。倡导“合作与探究学习”,充分调动学生学习的主动性、积极性,让学生成为课堂学习的主人,注重学生情感、态度、价值观的培养,在教学设计中,既要关注学生的认知水平,又要关注学生的可挖掘潜能情况。

基于以上的认识,在本课的设计过程中充分体现了“数学源于生活又服务于生活”,非常重视直观形象的教学方法。新课引入中利用正方形的边长及面积之间的关系回顾平方根及算术平方根的知识并顺势引入面积是a时正方形的边长是多少?为后面的《3.2实数》教学设计  的得出做好铺垫,之后利用“剪一剪,拼一拼”让学生在动手实践中得出《3.2实数》教学设计 ,进而借助EXCEL工作表来探索 《3.2实数》教学设计 到底有多大?发现 《3.2实数》教学设计 原来是一个无限不循环小数,从而给出无理数的概念结合前面学过的有理数将数的范围进一步扩充到了实数。这里多媒体技术的恰当运用充分扩大了课堂的容量。之后利用练习得出“实数与数轴上的点一一对应”的关系,让学生体会到“做中学”的乐趣。整堂课让学生在认可,理解,探讨中感受概念与性质的由来和应用。在教学过程中,学生始终是问题的发现者和解决者,而教师始终是学生学习的组织者、引导者。因此,在本节课的教学设计上,具备了如下特色:

特《3.2实数》教学设计色一:问题的设置源于生活、贴近生活,充分给予学生动手实践发现问题的机会,让学生时刻感受“做中学”的乐趣。

特色二:在设计理念和思路上。本节课突出课程设计的矛盾统一性,内容设计层层递进,在内容上以“温故知新→合作探究(动手剪一剪,拼一拼)→探索发现(借助EXCEL工作表)→发现归纳→小试牛刀→大显身手(练习拔高,发现性质)→实践发现→知识拓展→小结分享”作为流程,,使整节课一气呵成。

特色三:在教学模式和组织形式上。突出学生的主体地位,课堂中,以学生的独立思考,动手实践,合作探究为主。尤其在对《3.2实数》教学设计 的大小探索时借助EXCEL工作表使得计算时能够随机灵活让无理数概念的得出更为自然,顺利,突破了本节课的重难点。利用数学课堂对学生的合作探究能力,思维创新及良好数学素养的形成起到了较好的作用。

三、亮点与反思:

通过动手实践操作,师生互动交流探究,教给学生学习数学的切实方法,精心设问,设置悬念,适时、适度采用激励性语言,提高学生学习积极性,使学生主动、愉快地参与到教学的全过程中来,从而较好地完成实数概念的建构,达到教学目标。在教学过程中,充分发挥学生的主观能动性,让学生动手、动脑、动口,培养学生阅读质疑,以及抽象概括等思维方法。

采用计算机辅助教学手段显示在数的发展历史上曾作出过巨大贡献的科学家的图片,让学生在数学中看到人的存在,培养人文主义精神,也让学生了解数学发现的过程,同时营造了良好的课堂教学氛围。运用多媒体演示剪拼动态过程有利于数形结合,体现直观性。借助EXCEL工作表来探索《3.2实数》教学设计 到底有多大?有利于激趣质疑,增大课堂教学容量,提高课堂教学效率。利用投影进行集体交流,及时反馈信息。

1.数学周长教学设计

2.数学教学设计步骤

3.数学教学设计推荐

4.日历中的数学 教学设计

5.初二英语优秀教学设计

6.奥运中的数学教学设计

7.数学教学设计模板

8.章建跃:教学设计与好数学教学

9.小学数学学科教学设计

10.数学广角鸽巢问题教学设计

篇2:数学实数复习教学设计

数学实数复习教学设计

一、知识疏理,形成体系。(课前要求学生对本章知识进行总结)

师:本章的主要内容是开方运算。下面,我们以组为单位小结一下本章的知识点。

生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系。

开方包括开平方与开立方。通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根。依据这一思路,我们画出的知识结构图是:

师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?

生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要。因此我们是这样总结的`:

师:同样是开方运算,算术平方根,平方根,立方根有哪些区别和联系呢?

生:比较算术平方根,平方根,立方根的概念和性质,我们总结出了如下表的区别与联系。

师:同学们总结的非常好!不仅全面而且重点突出。下面我们针对刚才总结的内容做几道练习。

二、强化基础,巩固拓展。(也可以由学生提出典型薄弱题型进行讲解)

1.求下列各数的平方根:

(1) ;(2) ;(3) .

师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根。

生:

(1)是求 的平方根;

(2)是求16的平方根;

(3)是求 的平方根。

由学生独立完成。

2.x取何值时,下列各式有意义。

(1) ; (2) ;

(3)

师: 在什么情况下有意义?

生:对于 ,必须满足a≥0,它才有意义,所以被开方数必须是非负数。

(1)4+x≥0;

(2)4+x ≥0;

(3)2x-1取任意实数。

师:如何求出x的范围呢?

生:我们讨论后,得出如下结论:

(1)x≥4;

(2)不论x取什么实数,x ≥0,4+x ≥0,即x的取值范围是:x为全体实数。

(3)2x-1取任意实数,即x的取值范围是全体实数。

3.已知:|x-2|+ =0,求:x+y的值。

师:认真审题,考虑一下所给的这些数有什么特点。

生:|x-2|和 都是非负数。

师:两个非负数的和可能是0吗?

生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0.

由学生独立完成。

师:哪些数为非负数呢?

生:实数a的绝对值,表示为|a|,|a|是非负数;实数a的平方,表示为a2,a2是非负数;非负实数a的算术平方根表示为 , 是非负数。

师:非负数有什么特点?

生:(1)几个非负数的和仍为非负数;

(2)若几个非负数的和为0,则每一个非负数都必须为0.

4.掌握规律

那么:0.17201的平方根是多少呢?师:同学们仔细观察这道题,你发现了什么规律?如果是立方根呢?

由学生自己观察归纳。

三、查缺补漏,归纳提升。

1.通过今天的探究学习,你们有哪些收获?

2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零。此性质在解题时经常会被用到。

3.对于本章的内容你还有那些疑问?

篇3:实数 教学设计

实数 教学设计

§13.3实数(初中数学8年级)

1.所在班级情况,学生特点分析

班额较大,学生在数学基础水平,数学理解能力、运算能力、应用能力等方面差异较大;

学习习惯差、方法差是直接原因。多数学生在数学学习过程中,由于缺乏良好的学习习

惯,不能认真地听课。缺乏正确的数学学习方法,仅仅是简单的模仿、识记。上课时,学习思

维迟延,跟不上教师的思路。平时学习中不注意对基础知识(定理、定义、公式等)的理解和

记忆,从而导致在解题时,缺乏条理和依据,造成解题思路的“乱”和“怪”。心理压力较大,

不敢去请教,怕被人认为“笨”,于是,数学便成了学习上的一只拦路虎。

2.教学内容分析

从《数学课程标准》看,关于数的内容,第三学段主要学习有理数和实数,它们是“数与

代数”领域的重要内容。对于有理数和实数,本套教课书安排3章内容,分别是7年级上册第1章

“有理数”,8年级上册第13章“实数”和9年级上册第21章“二次根式”。本章是在有理数的

基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的

运算,进一步认识实数的运算。

本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。通过本章的学习,

学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论

的,学习本章之后,将在实数范围内研究问题。虽然本章的内容不多,篇幅不大,但在中学数学

中占有重要的地位,本章内容不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基

础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。

3.教学目标

4.教学难点分析

5.教学课时

2课时

6.教学过程

第1课时

教学目标:了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;

了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算

教学重点:实数的意义和实数的分类;实数的运算法则及运算律

教学难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算

教学过程:

一、创设情景,导入新课

试一试 学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类.

试一试

1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?

动手试一试,说说你的发现并与同学交流.

(结论:上面的有理数都可以写成有限小数或无限循环小数的形式)

可以在此基础上启发学生得到结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.

2、追问:任何一个有限小数或无限循环小数都能化成分数吗?

二、合作交流,解读探究

探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?

我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即

归纳任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数

观察通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数,

也是无理数

结论有理数和无理数统称为实数

试一试把实数分类

总结1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,

有些表示无理数

当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;

反过来,数轴上的每一个点都是表示一个实数

1、 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大

讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?

总结数 的相反数是 ,这里 表示任意一个实数。一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0

三、应用迁移,巩固提高

例1把下列各数分别填入相应的集合里:

四、总结反思,拓展升华

小结1、什么叫做无理数?

2、什么叫做有理数?

1、 有理数和数轴上的点一一对应吗?

2、 无理数和数轴上的点一一对应吗?

3、 实数和数轴上的点一一对应吗?

五、课堂跟踪反馈

六、作业

必做:课本第86页习题第1、2、3题;

选做:课本第87页习题第7题

第2课时

教学目标:

1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;

2、学会比较两个实数的大小;了解在有理数范围内的运算及运算法则、运算性质等在实数范围内仍然成立,

能熟练地进行实数运算;在实数运算时,根据问题的要求取其近似值,转化为有理数进行计算;

3、通过学习“实数与数轴上的点的一一对应关系”,渗透“数学结合”的数学思想。

教学难点:对“实数与数轴上的点一一对应关系”的'理解知识重点:实数与数轴上的点一一对应关系

教学过程

一、创设情景,导入新课

复习导入:1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律

2、用字母表示有理数的加法交换律和结合律

3、平方差公式、完全平方公式

4、有理数的混合运算顺序

二、合作交流,解读探究

自主探索 独立阅读,自习教材

总结 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,

而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。在进行实数的运算时,

有理数的运算法则及运算性质等同样适用。

讨论 下列各式错在哪里?

三、应用迁移,巩固提高

例1 为何值时,下列各式有意义?

五、课堂跟踪反馈

六、作业

必做:课本第87页习题第4、5、6、7题;

选做:课本第87页习题第9题

8.课堂练习见教学过程

9.作业安排 见教学过程

10.附录(教学资料及资源)

八年级人教版教材

八年级人教版教材全解

八年级数学教师教学用书

11. 自我问答

波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”

“学东西的最好途径是亲自去发现它”“学生在学习中寻求欢乐”.在本节课的教学设计

中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生学习数学的积极性和

学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,

说说自己的发现并与同学交流结论,在交流中尝试得出结论:任何一个有理数都可以写成

有限小数或无限循环小数的形式.进一步地提出问题:任何一个有限小数或无限循环小数

都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一定的标准进

行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该创造条件,让

学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着找出三个无理数

来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极主动地参与到数学

学习过程中,亲自体验知识的形成过程.

篇4:实数数学初二上册教案

实数北师大版数学初二上册教案

●过程与方法目标

在探究、合作活动中,发展学生探究能力和合作意识.

●情感与价值观要求

通过对公式的逆运用,感受数学的严谨性以及数学结论的确定性.

教学重点

两个公式的`逆运用.

教学难点

灵活地运用公式进行实数运算.

教学准备:教材、课件、电脑.电脑软件:Word,Powerpoint.

教学过程

第一环节:复习引入(2分钟,引导学生复习旧知,导入新课,学生思考解答)

内容:复习算术平方根的概念,并提出问题:下面正方形的边长分别是多少?

2.6实数:同步测试

1.与数轴上的点一一对应的数是( ).

A.整数B.有理数C.无理数D.实数

2.下列叙述中,不正确的是( ).

A.绝对值最小的实数是零

B.算术平方根最小的实数是零

C.平方最小的实数是零

D.立方根最小的实数是零

3.下列说法中①有理数包括整数、分数和零; ②无理数都是开方开不尽的数;③不带根号的数都是有理数;④带根号的数都是无理数;⑤无理数都是无限小数;⑥无限小数都是无理数.正确的个数是( ).

A.0个B.1个C.2个D.3个

4.下列说法中,正确的是( ).

A.任何实数的平方都是正数

B.正数的倒数必小于这个正数

C.绝对值等于它本身的数必是非负数

D.零除以任何一个实数都等于零

《2.6实数》课时练习含答案

4.如果一个实数的平方根与它的立方根相等,则这个数是( )

A.0 B.正整数C.0和1 D.1

答案:A

解析:解答:0的平方根是0,0的立方根还是0,故只有0的平方根和它的立方根相等

分析:考察特殊数的平方根和立方根,注意0的平方根和立方根.

5.有下列说法正确的是:( )

A无理数就是开方开不尽的数;B无理数是无限不循环小数;

C带根号的数都是无理数D无限小数都是无理数

答案:B

解析:解答:根据无理数的定义可以判断,无理数是无限不循环小数;A选项中无理数不仅仅包含开方开不尽的数,还包括如等的数;C选项带根号的数不一定都是无理数;D选项中无限循环小数不是无理数;故答案选B

分析:考察算术平方根的计算.

篇5:初二数学教学设计

一、教学目标

1、让学生通过对的图形创造、观察、思考、猜想、验证等过程,体会勾股定理的产生过程。

2、通过介绍我国古代研究勾股定理的成就感培养民族自豪感,激发学生为祖国的复兴努力学习。

3、培养学生数学发现、数学分析和数学推理证明的能力。

二、教学重难点

利用拼图证明勾股定理

三、学具准备

四个全等的直角三角形、方格纸、固体胶

四、教学过程

(一) 趣味涂鸦,引入情景

教师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮老师完成一幅涂鸦,你能按要求完成吗?

(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形。

(2)再分别以这个三角形的三边向三角形外作3个正方形。

学生活动:先独立完成,再在小组内互相交流画法,最后班级展示。

(二)小组探究,大胆猜想

教师:观察自己所涂鸦的图形,回答下列问题:

1、请求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系?

面积边长

第Ⅰ个正方形

第Ⅱ个正方形

第Ⅲ个正方形

2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。

3、与小组成员交流探究结果?并猜想:如果直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系?

4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法?

学生活动:先独立思考,再在小组内互相交流探究结果,并猜想直角三角形的三边关系,最后班级展示。

(三)趣味拼图,验证猜想

教师:请利用四个全等的直角三角形进行拼图。

1、你能拼出哪些图形?能拼出正方形和直角梯形吗?

2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?如果可以,请写下自己的推理过程。

学生活动:独立拼图,并思考如何利用图形写出相应的证明过程,再在组内交流算法,最后在班级展示。

(四)课堂训练 巩固提升

教师:请完成下列问题,并上台进行展示。

1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的对边分别为a,b,c

已知a=6,b=8.求c.

已知c=25,b=15.求a .

已知c=9,a=3.求b.(结果保留根号)

学生活动:先独立完成问题,再组内交流解题心得,最后上台展示,其他小组帮助解决问题。

(五)课堂小结,梳理知识

教师:说说自己这节课有哪些收获?请从数学知识、数学方法、数学运用等方向进行总结。

(六)课外涂鸦,延伸课堂

(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形;

(2)再分别以这个三角形的三边为直径向三角形外作三个半圆,这三个半圆的面积之间有什么关系?看看又会有什么新的数学发现?

17.1.1 《勾股定理》教学反思

勾股定理的探索和证明蕴含着丰富的数学思想和数学方法,是培养学生良好思维品质的最佳载体。它以简洁优美的图形结构,丰富深刻的内涵刻画了自然界的和谐统一的关系,是数形结合的完美典范。著名数学家华罗庚就曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。为让学生通过对这节课的学习得到更好的历练,在教学时,特别注重从以下几个方面入手:

一、注重知识的自然生发。

传统的教学中,教师往往喜欢压缩理论传授过程,用充足的时间做练习,以题代讲,搞题海战术。但从学生的发展来着,如果压缩数学知识的形成过程,不讲究知识的自然生发,学生获取知识的过程是被动的,形成的体系也是孤立的,长此以往,学生必将错过或失去思维发展和能力提高的机遇。在这节课上,不刻意追求所谓的进度,更没有直接给出勾股定理,而是组织学生开展画一画、看一看、想一想、猜一猜、拼一拼的活动,学生在活动思考、交流、展示中,逐渐的形成了对知识的自我认识和自我感悟。这样做不仅能帮助学生牢固掌握勾股定理,更重要的是使学生体会用自己所学的旧知识而获取新知识过程,使他们获得成功的喜悦,增强了学生主动性,同时他们的思维能力在知识自然形成的过程中不断发展。

二、注重数学课上的操作性学习

操作性学习是自主探究性学习有效途径之一,学生通过在实践活动中的感受和体验,有利于帮助学生理解和掌握抽象的数学知识。在这节课上,首先让学生动手画直角三角形,得出研究题材,然后又让学生利用四个直角三角形拼一拼,验证猜想。这样充分的调动了学生的手、口、脑等多种感官参与数学学习活动,既享受了操作的乐趣,又培养了学生的动手能力,加深了对知识的理解。

三、注重问题设计的开放性

课堂教学是教师组织、引导、参与和学生自主、合作、探究学习的双边活动。这其中教师的“引导”起着关键作用。这里的“引导”,很大程度上靠设疑提问来实现。在教学实践中,问题设计要具有开放性。因为开放性问题更有利于培养学生的创造性思维、体现学生的主体意识和个性差异。本节课在设计涂鸦直角三角形时,安排学生在方格纸上任意涂鸦一个直角三角形;在设计拼图验证环节时,安排学生任意拼出一个正方形或直角梯形,有意没指定画一个具体边长的直角三角形和正方形,就是不想对学生的思维给出太多的限制条件,给出更多的想象和创造空间。虽然探究的时间会更长,但这更符合实际知识的产生环境,学生只有在这样的环境下进行创造、发现和磨练,能力素养才会得到更有效的历练。

四、注重让学生经历完整的数学知识的发现过程。

新《数学课程标准》在关于课程目标的阐述中,首次大量使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词,就是要求在数学学习的过程中,让学生经历知识与技能形成与巩固过程,经历数学思维的发展过程,经历应用数学能力解决问题的过程,从而形成积极的数学情感与态度。教学从学生感兴趣的涂鸦开始,再经历观察、分析、猜想、验证的全过程,让学生充分的经历了完整的数学知识的发现过程,使学生获得对数学理解的同时,在知识技能、思维能力以及情感态度等多方面都得到了进步和发展。

如果有机会再上这节课,我想我会投入更多的精力对学生可能会给出的答案进行预想,以便在课堂上给予学生更多的启迪,让他们走的更远。一堂课,虽已结束,但对于生命课堂的领悟这条路,还有很长的路要走,我将继续上下求索,做学生更好的支点。

篇6:初二数学教学设计

教学设计思想

新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

教学目标

知识与技能

1.知道什么是二次根式,并会用二次根式的意义解题;

2.熟记二次根式的性质,并能灵活应用;

过程与方法

通过二次根式的概念和性质的学习,培养逻辑思维能力;

情感态度价值观

1.经历将现实问题符号化的过程,发展应用的意识;

2.通过二次根式性质的介绍渗透对称性、规律性的数学美。

教学重点和难点

重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;

难点:确定二次根式中字母的取值范围。

教学方法

启发式、讲练结合

教学媒体

多媒体

课时安排

1课时

教学过程设计

一、引入

1.什么叫平方根、算术平方根?

2.用带有根号的式子填空,看看写出的式子有什么特点:

(1)如图21.1-1,要做一个两条直角边的长分别是7cm和4cm的三角尺,斜边的长应为

学习目标1、进一步体会通过建立方程解决实际问题的意义和方法2、进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力知识准备无盖的长方体是如何制作的?增长率你是如何理解的?

学习内容:

一、情境创设一块长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5㎝,容积是500㎝3的无盖长方体容器。求这块铁皮的长和宽。

二、探索活动如何设未知数?如何找出表达实际问题的相等关系?这个问题中的相等关系是什么?

一般情况下,应设要求的未知量为未知数;应从题中寻找未知数所表示的未知量与已知量之间的等量关系;这个问题的等量关系是长宽高=容积与长=宽2。

三、典型例题例1、某商店6月份的利润是2500元,要使8月份的利润达到3600元,这两个月利润的月平均增长的百分率是多少?

分析:如果设这两个月的利润平均月增长的百分率是x,那么7月份的利润是2500(1+x)元,8月份的利润是2500(1+x)2元。

篇7:初二数学实数思维导图

初二数学实数思维导图汇总

实数的完备有序域

实数集合通常被描述为“完备的有序域”,这可以几种解释。

首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 , 将更大)。所以,这里的“完备”不是完备格的意思。

另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。

这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。

“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 的子域。这样 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。

实数的基本定理

实数系的基本定理也称实数系的完备性定理、实数系的连续性定理,这些定理分别是确界存在定理、单调有界定理、有限覆盖定理、聚点定理、致密性定理、闭区间套定理和柯西收敛准则,共7个定理,它们彼此等价,以不同的形式刻画了实数的连续性,它们同时也是解决数学分析中一些理论问题的重要工具,在微积分学的各个定理中处于基础的地位。7个基本定理的相互等价不能说明它们都成立,只能说明它们同时成立或同时不成立,这就需要有更基本的定理来证明其中之一成立,从而说明它们同时都成立,引进方式主要是承认戴德金公理,然后证明这7个基本定理与之等价,以此为出发点开始建立微积分学的一系列概念和定理。在一些论文中也有一些新的等价定理出现,但这7个定理是教学中常见的基本定理。

一、上(下)确界原理

非空有上(下)界数集必有上(下)确界。

二、单调有界定理

单调有界数列必有极限。具体来说:

单调增(减)有上(下)界数列必收敛。

三、闭区间套定理(柯西-康托尔定理)

对于任何闭区间套,必存在属于所有闭区间的公共点。若区间长度趋于零,则该点是唯一公共点。

四、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理)

闭区间上的任意开覆盖,必有有限子覆盖。或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。

五、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理)

有界无限点集必有聚点。或者说:每个无穷有界集至少有一个极限点。

六、有界闭区间的序列紧性(致密性定理)

有界数列必有收敛子列。

七、完备性(柯西收敛准则)

数列收敛的充要条件是其为柯西列。或者说:柯西列必收敛,收敛数列必为柯西列。

注:只有充要条件的命题才能称之为“准则”,否则不能称为“准则”。

以上7个命题称为实数系的基本定理。实数系的7个基本定理以不同形式刻画了实数的连续性,它们彼此等价。在证明中,可采用单循环证明的方式证明它们的等价性。它们之间等价性的证明可以参看《数学分析札记》。

在闭区间上连续函数的性质的证明中,实数系的基本定理是非常重要的工具,但是它们之间的等价性不能说明它们都成立,必须要有更基本的定理来证明其中之一成立,从而以上的命题都成立,进过反复仔细琢磨,问题就归结为实数的引入问题了。如在菲赫金哥尔茨的《微积分学教程》 中,可以用实数的连续性来推出确界定理,在华东师范大学数学系编的《数学分析(上册)》(第四版)中就通过实数十进制小数形式推出确界定理,这也说明了建立实数系的严格定义的重要性。从逻辑上,应该是先建立了实数,有了实数的定义之后,再得出实数系的基本定理,从而能够在实数域上建立起严格的极限理论,最后得到严格的微积分理论,但数学历史的发展恰恰相反,最先产生的是微积分理论,而严格的极限理论是在19世纪初才开始建立的,实数系的基本定理已经基本形成了之后,19世纪末实数理论才诞生,这时分析的算数化运动才大致完成。

篇8:八年级数学《实数》教学反思

人教版八年级数学《实数》教学反思

学生要学习的数学知识,是经过前人的筛选和整理了的,但对于他们来说仍是全新的、未知的。这就需要教师通过对学习内容的重新设计,启发学生去思考,引导学生去探究,使学生在一定的条件下,经过自身的学习活动,把新的知识纳人原有的认知结构,进行重组、整合,构建新的认知结构。这就是建构主义的教学观。

本教学设计在这方面力求得到体现。另外还体现了以下几个特点:

①符合学生的认知规律。本设计以复习上节课旧知识引人,然后采用先尝试的方法合作讨论书本P84的“思考题”。对于概念的建立采用从具体到抽象、从理论到实践的.过程,对于方法的探索采用从特殊到一般的思想;

②体现了自主学习、合作交流的新课程理念。对于例题的处理,改变了传统的教学模式,采用了“尝试―交流―讲评―讨论”的方式,充分发挥学生的主体性、参与性。对于用估算的方法求方程的解时,同样采用了“尝试―发现―归纳”的方式。

③重视数学思想方法与算法算理的渗透,这也是新课程的一个特点。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等),通过让学生不断回顾有理数的相反数、绝对值、混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力。

④在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙述)实数范围内的相反数、绝对值含义,以及实数范围内的混合运算法则。

⑤ 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议。

篇9: 七年级数学《实数》教学反思

本节课是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识,因此本节的作用十分重要。

在研究的过程中,利用“两边夹逼”的方法得到它是一个无限不循环小数。给了无理数的概念后,让学生举出几个无理数,以巩固无理数的概念。然后从有理数的分类引导他们对实数进行分类。将数从有理数的范围扩充到实数范围后,有理数的所有运算法则和运算律都适用于实数。

反思:

1、对于学生对无理数概念的理解估计不足。对于一种新的概念(或问题),要考虑到学生的思维水平,他们不一定会按照我们的方式去思考,这就往往容易会出现与我们预计结果相差很远,甚至相背离的'情况。在今后的教学中备学生时应着重考虑学生可能出现的这样或那样的情况,在教学手段和教学方法上应力求做到更新,以吸引学生的注意力,达到最佳效果。

2、数在数轴上的表示是难点,特别是利用几何作图在数轴上表示,学生掌握的不是很好。对教学的重难点的把握和突破上还得下点功夫。

3、课堂巩固练习太少,双基知识和基本技能没得到很好的训练。

篇10:实数的数学教学反思

实数的数学教学反思

实数的教学内容较多,如何进行课堂教学的预设,我在课前进行了很长时间的准备,体会到:备好一课,功夫不少。我认为应从以下几方面做一些探讨:

一、在解题的方法规律处反思。

“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。通过例题的层层变式,培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。

二,在学生易错处反思。

学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!

(1)计算常出现哪些方面的错误?

(2)出现这些错误的原因有哪些?

(3)怎样克服这些错误呢?可让同学们各抒己见,针对各种“病因”开出有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、以及速度两个方面都有极大的提高。

三、在情感体验处反思

因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求的`综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。

篇11: 七年级数学《实数》教学反思

本节是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围,从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学具有重要意义。

第一课时主要是实数的概念,我采用自学的方式,自学提纲如下:

1、任何一个有理数都可以写成_______或_______的形式,反过来,任何有限小数或无限循环小数也都是_______。

2、_______________________________叫做无理数。

3、无理数有多少个?

4、________和_______统称为实数。

5、实数按定义分为_______和_______。

实数按性质分为_______、_______和_______。

6、每个有理数都可以用_______来表示。

每个无理数也都可以用有些表示_______,_______来表示。

数轴上的点有些表示_______,有些表示_______。

7、实数与_______是一一对应的。

一我的理解

翻到“实数”这一节内容时,浏览了一下,觉得内容比较多,一节课上很紧,把教材梳理一下,还是觉得分两课时上好些。第一课时实数概念,第二课时实数的有关概念。

二我的困惑

教科书上在数轴上表示了三个无理数,但是已知正方形的边长是1,求对角线长,涉及到了勾股定理学生还没有学到,只能告诉他们结果。

(三)我的反思

1、对于一种新的概念(或问题),要考虑到学生的思维水平,他们不一定会按照我们的方式去思考,这就往往容易会出现与我们预计结果相差很远,甚至相背离的情况。让学生回答的问题一定要自己十分清楚概念,思维过程,不要出现学生答不出来,你也不知道如何解释,或被学生反过来把你问住的情况。

2、注意教学的规范性。像1.010010001…(两个1之间多个0)是无理数,括号里的内容不能省略。

3、教学时应注意前后内容的联系,知识是一体的,在回顾时注重知识点本身,更要关注学习方法、思维方法,因为它们是相通的。

4、采取先学后教,自主探究,合作交流,讲练结合的方式,感觉还不错。

篇12:实数数学练习题

实数数学练习题

一、选择题

1.在3.14, , , ,这五个数中,无理数的个数是 ( )

A.1 B.2 C.3 D.4

2.一个数的平方是4,这个数的立方是 ( )

A.8 B.-8 C.8或-8 D.4或-1

3.下列说法正确的是 ( )

A. 的立方根是 B.-125没有立方根 C.0的立方根是0 D.

3.一个数的算术平方根的相反数是 ,则这个数是 ( )

A. B. C. D.

4.下列运算中,错误的有 ( )

① ; ② ;③ ; ④

A.1个 B.2个 C.3个 D.4个

5. 的平方根是 ( )

A.25 B.5 C.5 D.25

6.若 ,则a的值是 ( )

A. B. C. D.

7.已知平面直角坐标系中,点A的坐标是( , ),将点A向右平移3个单位长度,然后向上平移 个单位长度后得到点B,则点B的坐标是 ( )

A.( , ) B.( , ) C.( , ) D.(3, )

二、填空题

8. 的平方根是

9.已知 ,则x= ;y=

10.若 的整数部分为a,小数部分为b,则a= ,b=

11.写出- 和 之间的所有整数是

12.若5x+19的立方根是4,则2x+7的平方根是

13.某数的两个不同平方根为2a-1与-a+2,则这个数为

三、解答题

14.计算:

(1) (2)

15.求下式中x的值:

(1)9(x-1)2=64; (2)

16.已知2x-1的平方根是6,2x+y-1的算术平方根是5,求2x-3y+11的`平方根.

17.已知x的两个不相等的平方根是2a+3和1-3a,y的立方根是a,求x+y的值.

18.物体从某一高度自由落下,物体下落的高度s与下落的时间t之间的关系可用公式 表示,其中g=10米/秒2,若物体下落的高度是180米,那么下落的时间是多少秒?

篇13:北师大版《实数》教学设计

教学目标:

知识与能力

1、了解无理数和实数的意义,能对实数按要求进行分类。

2、了解实数和数轴上的点一一对应,会用数轴上的点表示实数。

3、了解有理数范围内的运算法则、运算律、运算公式和运算顺序在实数范围内同样适用。

4、会进行实数的大小比较,会进行实数的简单运算。 过程与方法

1、通过计算器与计算机的应用,形成自觉应用的意识,从而能应用与实数有关的运算。

2、经历作图和观察的过程,掌握实数与数轴一一对应的关系。 情感与态度

1、感受数系的扩充,通过自主探究,感受实数与数轴上点的一一对应的关系,体验数形结合的优越性,发展学生的类比与归纳能力。

2、学生经历数系扩展的过程,体会到数系的扩展源于社会实际,又为社会实际服务的辩证关系。 教学重难点及突破 重点

1、了解实数的意义,能对实数进行分类;

2、了解数轴上的点与实数一一对应,并能用数轴上的点来表示无理数。 难点

1、用数轴上的点来表示无理数;

2、能准确无误地进行实数运算。 教学突破

通过让学生对比有理数和无理数的特点,总结无理数的概念,以加深对无理数的概念的记忆。同时,让学生动手作图,直观展现实数和数轴的一一对应关系。教学中通过回忆有理数的运算规则过渡到实数的运算,学生容易接受和掌握。 教学准备:直尺,圆规。 教学过程

一、创设情境,导入新课

1、小学学习阶段,我们学习了整数、分数和小数,均为整数,进入初一阶段,引入负数,从而把数的范围扩充到了有理数。下面 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?

3、1/4 2/5 1/3 学生计算后举手回答,教师将答案书写出来。 3=3.0 0.25 0.4

2、问题:你发现了什么?

学生回答:有理数都可以写成有限小数或者无限循环小数的形式(或任何有限小数或无限循环小数也都是无理数)。

问题:那我们前面所学的许多平方根和立方根都是无限不循环小数,那这些小数是不是有理数?

学生很自然的回答不是,从而引入新的数——无理数,把数扩充到实数范围也就顺利成章。

二、自主探索,领悟内涵

由前面我们知道,任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数;有理数和无理数统称为实数。分类如下: 整数 实数

有限小数或无限循环小数

有理数分为正有理数和负有理数,那么无理数呢?是无理数吗?

学生回答:可化为无限不循环小数,所以也只能化为无限不循环小数,可见与均是无理数。可知,无理数也有正、负之分,因此把正有理数、正无理数和在一起形成正实数,同样,负有理数、负无理数合在一起称为负实数,而0既不是正数也不是负数。从而得到实数的另一种分类方法: 正有理数 负有理数 0

三、拓展延伸,操作感知

探究1 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少? O1 学生之间互相交流、讨论,一段时间后请学生回答:点01的坐标是π。 肯定学生的回答,说明:无理数π可以用数轴上的点表示出来。 探索2 你能在数轴上找到表示的点,这说明一个什么问题? 学生讨论交流,并举手回答。教师肯定学生的表现,并总结:

每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点,有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。

四、练习巩固,应用提高

例1 整数有: { } 无理数有:{ } 有理数有:{ } 学生认真完成,并举手回答。根据学生的回答,适当讲解。

五、课堂总结,作业布置

1、什么叫做无理数?什么叫做有理数?

2、有理数和数轴上的点一一对应吗?无理数和数轴上的点一一对应吗?实数和数轴上的点一一对应吗?

P86-87习题14.3第

1、

2、3题; 板书设计: 实数

1、有理数和无理数统称为实数。

2、实数分类结构图(略)

3、实数与数轴上的点一一对应。 课后反思

本节课,结合前面的有理数,能使学生在给出的一些数中判断出哪些是有理数,哪些是无理数是本节难点,再通过多的举例练习,让他们找到判断的关键,达到了设计的目标。

篇14:北师大版《实数》教学设计

〖教学目标〗

(-)知识目标

1.了解有理数的运算法则在实数范围内仍然适用. 2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算. 3.正确运用公式 . 4.了解二次根式和最简二次根式的概念.

(二)能力目标

1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力. 2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.

(三)情感目标

通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。

时代在进步,科学在发展,只靠在学校积累的知识已远远不能适应时代的要求,因此在校学习期间应培养学生的能力,具备某种能力之后就能应付日新月异的新问题.其中类比的学习方法就是一种学习的能力,本节课旨在让学生通过在有理数范围内的法则,类比地学习在实数范围内的有关计算、,重要的是培养

这种类比学习的能力,使得学生在以后的学习和工作中能轻松完成任务. 〖教学重点〗

1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算. 2.发现规律:.并能用规律进行计算. 〖教学难点〗

类比的学习方法. 2.发现规律的过程. 〖教学方法〗 尝试法 〖教学过程〗

一、课前布置

自学:阅读课本P112~P113,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).

二、师生互动

(一)二次根式的理解:形如()的式子叫做二次根式 说明:1.被开方数大于0; 2. ()具有非负数的特性. 3.性质:一般地是a的算术平方根,于是有 ? 练习:

1.若有意义,则______ 2. (06泸州中考)要使二次根式有意义,字母x的取值必须满足的条件是() A. x≥1

B. x≤1

C. x>1

D. x<1 3.(06海淀)已知实数x,y满足,求代数式的值。 4.计算:(1); (2); ? 解:1.

2. A 3. 解:依题意

解得

当时,

4.解:(1); (2)。

(二)一起交流课本P112的“做一做”

[师生共析]在有理数范围内,可以进行加、减、乘、除和乘方运算,运算后所得到的数仍然是有理数。把数从有理数扩充到实数以后,在实数范围内不仅可以进行加、减、乘、除、乘方运算,而且正数和零可以进行开平方和开立方运算,负数可以进行开立方运算。即:正数和零的平方根是实数,任何一个实数的立方根是实数。

关于有理数的运算律和运算性质,在进行实数运算时仍然成立。 1.理解积的算术平方根的性质,必须注意:

(1)被开方数的每一个因子或因式必须是非负数,没有这个条件,性质不成立. (2)这个公式的作用是化简二次根式,如果被开方数中有的因式(或因子)能开得尽方,可以利用此公式及公式=a(a≥0),将这些因式(或因子)开出来,因此化简二次根式时,一般先将被开方数进行因式分解或因子分解. (3)积的算术平方根的性质对于当因子是三个或三个以上时仍然成立. 如:= ···(a≥0,b≥0,c≥0,d≥0). (4)积的算术平方根的性质反过来,就得到二次根式的乘法公式,即·=(a≥0,b≥0),运用这个公式可以进行简单的二次根式的乘法运算. 2. 二次根式的性质: =· (a≥0,b≥0), =(a≥0,b>0).

(三)利用性质化简

[师]利用你自学的知识,说一说什么样的二次根式需要化简

[生]被开方数中能分解因数.且有些因数能开出来.这时就需要对其进行化简. [生]被开方数中含有分母,需要化简,化简后被开方数中没有了分母. 如:

[师]如果被开方数中含有分母,要把分子分母同时乘以某一个数,使得分母变成一个能开出来的数,然后把分母开出来,使被开方数中没有了分母. (鼓励学生讲解教师提供的例题) 如:

巩固练习:

化简:(1); (2);(3);(4);(5);(6).

(四)最简二次根式

[师生共析]最简二次根式所满足的条件:

条件一,即为被开方数不含分母;条件二,即为被开方数的每一个因子或因式的指数都小于根指数. 要判断一个根式是否为最简二次根式,两个条件缺一不可.

(五)引导学生小结:

1.化二次根式为最简二次根式的方法: (1)如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简. (2)如果被开方数是整数或整式,先将它分解因子或因式,然后把能开得尽方的因子或因式开出来,从而将式子化简. 2. 二次根式的化简应注意以下问题:

(1)被开方数含有带分数,通常化成假分数. (2)被开方数是和、差的形式,应把它分解因式,化成积的形式. (3)根号内的分子或分母移到根号外时,应保留其对应的位置(即原来是分母的移到根号外后还是分母).

(4)在整个化简过程中应注意符号问题,特别是注意被开方数是非负数这个隐含条件. 练习:1 下列各式中哪些是最简二次根式?哪些不是?并说明理由. (1) ;(2) ;(3) ;(4);

(5);(6)(x≤0);(7)

本题考查最简二次根式的定义,解题思路是根据二次根式的定义逐个判断. 1.解

只有(3)、(5)、(6)是最简二次根式. 理由:

(1) 中的0.3不是整数,所以不是最简二次根式;

(2) 中的27x=32·3x,因数含有能开得尽方的因数,所以不是最简二次根式. (3) 的8a2b=(2a)2·2b,因式含有能开得尽方的因数,所以不是最简二次根式; (4) 中的a2+a4=a2(1+a2),因式含有能开得尽方的因数,所以不是最简二次根式; 总结

本题的易错点是误认为,不是最简二次根式,误认为是最简二次根式.

三、补充练习作业:P114习题 〖巩固练习〗

1. 下列各式:,,,,,, (a<),中是二次根式的有

. 2. x为何值时,下列各式在实数范围内有意义. (1);

(2);

(3).

3. 计算下列各式: (1)()2;

(2);

(3)(2)2.

〖答案提示〗

1.分析:本题考查二次根式的定义,解题思路是根据二次根式的定义去判断. 解

,,的根指数不是2,∴

它们不是二次根式. ∵

在中,被开方数-4<0,∴

不是二次根式. ∵

在中的被开方数2a-1有可能小于0,∴

不是二次根式. ∵

在中,被开方数4>0,∴

是二次根式. ∵

在=中被开方数(a+1)2≥0,∴

是二次根式. ∵

在中被开方数a2+2>0,∴

是二次根式. 总结

本题的易错点是忽视二次根式中被开方数是非负数的隐含条件,注意这个隐含条件是本题的解题关键. 2.解

(1)2x+3≥0,即x≥-. ∴

当x≥-时,有意义. (2)1-3x≥0,即x≤. ∴

当x≤时,有意义. (3)∵

x不论取何实数,总有(x-5)2≥0, ∴

x为任意实数,有意义. 3.分析:(1)由()2=a(a≥0)直接可得,(2)要注意应先计算,然后再求算术平方根,(3)根据积的乘方法则,这里2也要平方. 解

(1)()2=15; (2)==;

(3)(2)2=22×()2=4x. 总结

本题的易错点是第(3)小题的2不平方,错成(2)2=2x.

八、板书设计

课题 实数的运算 二次根式

利用性质化简

例2 二次根式性质

例1

最简二次根式

课堂练习

实数教学设计

数学实数教案

初二人教版数学教学设计

《实数》教学反思

七年级数学实数说课稿

人教版初二数学分式教学设计

人教版初二上册数学教学设计

《实数》教学课反思

新人教版初二数学上册教学设计

教学设计数学

《初二数学实数教学设计(精选14篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档