欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

初三数学说课稿

时间:2022-07-17 08:11:38 其他范文 收藏本文 下载本文

下面小编给大家整理了初三数学说课稿,本文共14篇,供大家阅读参考。

初三数学说课稿

篇1:初三数学说课稿

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。

教学目标

1.知识与技能

(1)理解二次根式的概念。

(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0)。

(3)掌握 ? = (a≥0,b≥0), = ? ;

= (a≥0,b>0), = (a≥0,b>0)。

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的'目的。

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

教学重点

1.二次根式 (a≥0)的内涵。 (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用。

2.二次根式乘除法的规定及其运用。

3.最简二次根式的概念。

4.二次根式的加减运算。

教学难点

1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用。

2.二次根式的乘法、除法的条件限制。

3.利用最简二次根式的概念把一个二次根式化成最简二次根式。

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1 二次根式 3课时

21.2 二次根式的乘法 3课时

21.3 二次根式的加减 3课时

教学活动、习题课、小结 2课时

21.1 二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用 (a≥0)的意义解答具体题目。

提出问题,根据问题给出概念,应用概念解决实际问题。

教学重难点关键

1.重点:形如 (a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“ (a≥0)”解决具体问题。

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , )。

问题2:由勾股定理得AB=

问题3:由方差的概念得S= .

二、探索新知

很明显 、 、 ,都是一些正数的算术平方根。像这样一些正数的算术平方根的式子,我们就把它称二次根式。因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0, 有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0)。

分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.

解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

例2.当x是多少时, 在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义。

解:由3x-1≥0,得:x≥

当x≥ 时, 在实数范围内有意义。

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时, + 在实数范围内有意义?

分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥- 且x≠-1时, + 在实数范围内有意义。

例4(1)已知y= + +5,求 的值。(答案:2)

(2)若 + =0,求a+b2004的值。(答案: )

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计。

3.课后作业:《同步训练》

第一课时作业设计

一、选择题 1.下列式子中,是二次根式的是( )

A.- B. C. D.x

2.下列式子中,不是二次根式的是( )

A. B. C. D.

3.已知一个正方形的面积是5,那么它的边长是( )

A.5 B. C. D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式。

2.面积为a的正方形的边长为________.

3.负数________平方根。

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时, +x2在实数范围内有意义?

3.若 + 有意义,则 =_______.

4.使式子 有意义的未知数x有( )个。

A.0 B.1 C.2 D.无数

5.已知a、b为实数,且 +2 =b+4,求a、b的值。

第一课时作业设计答案:

一、1.A 2.D 3.B

二、1. (a≥0) 2. 3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x= .

2.依题意得: ,

∴当x>- 且x≠0时, +x2在实数范围内没有意义。

3.

4.B

5.a=5,b=-4

21.1 二次根式(2)

第二课时

教学内容

1. (a≥0)是一个非负数;

2.( )2=a(a≥0)。

教学目标

理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简。

通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题。

教学重难点关键

1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用。

2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0)。

教学过程

一、复习引入

(学生活动)口答

1.什么叫二次根式?

2.当a≥0时, 叫什么?当a<0时, 有意义吗?

老师点评(略)。

二、探究新知

议一议:(学生分组讨论,提问解答)

(a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

(a≥0)是一个非负数。

做一做:根据算术平方根的意义填空:

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

( )2=a(a≥0)

例1 计算

1.( )2 2.(3 )2 3.( )2 4.( )2

分析:我们可以直接利用( )2=a(a≥0)的结论解题。

解:( )2 = ,(3 )2 =32?( )2=32?5=45,

( )2= ,( )2= .

三、巩固练习

计算下列各式的值:

( )2 ( )2 ( )2 ( )2 (4 )2

四、应用拓展

例2 计算

1.( )2(x≥0) 2.( )2 3.( )2

4.( )2

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题。

解:(1)因为x≥0,所以x+1>0

( )2=x+1

(2)∵a2≥0,∴( )2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴( )2=4x2-12x+9

例3在实数范围内分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2-3

分析:(略)

五、归纳小结

本节课应掌握:

1. (a≥0)是一个非负数;

2.( )2=a(a≥0);反之:a=( )2(a≥0)。

六、布置作业

1.教材P8 复习巩固2.(1)、(2) P9 7.

2.选用课时作业设计。

3.课后作业:《同步训练》

第二课时作业设计

一、选择题

1.下列各式中 、 、 、 、 、 ,二次根式的个数是( )。

A.4 B.3 C.2 D.1

2.数a没有算术平方根,则a的取值范围是( )。

A.a>0 B.a≥0 C.a<0 D.a=0

二、填空题

1.(- )2=________.

2.已知 有意义,那么是一个_______数。

三、综合提高题

1.计算

(1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

(5)

2.把下列非负数写成一个数的平方的形式:

(1)5 (2)3.4 (3) (4)x(x≥0)

3.已知 + =0,求xy的值。

4.在实数范围内分解下列因式:

(1)x2-2 (2)x4-9 3x2-5

第二课时作业设计答案:

一、1.B 2.C

二、1.3 2.非负数

三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6=

(4)(-3 )2=9× =6 (5)-6

2.(1)5=( )2 (2)3.4=( )2

(3) =( )2 (4)x=( )2(x≥0)

3. xy=34=81

4.(1)x2-2=(x+ )(x- )

(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )

(3)略

21.1 二次根式(3)

第三课时

教学内容

=a(a≥0)

教学目标

理解 =a(a≥0)并利用它进行计算和化简。

通过具体数据的解答,探究 =a(a≥0),并利用这个结论解决具体问题。

教学重难点关键

1.重点: =a(a≥0)。

2.难点:探究结论。

3.关键:讲清a≥0时, =a才成立。

教学过程

一、复习引入

老师口述并板收上两节课的重要内容;

1.形如 (a≥0)的式子叫做二次根式;

2. (a≥0)是一个非负数;

3.( )2=a(a≥0)。

那么,我们猜想当a≥0时, =a是否也成立呢?下面我们就来探究这个问题。

二、探究新知

(学生活动)填空:

=_______; =_______; =______;

=________; =________; =_______.

(老师点评):根据算术平方根的意义,我们可以得到:

=2; =0.01; = ; = ; =0; = .

因此,一般地: =a(a≥0)

例1 化简

(1) (2) (3) (4)

分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,

(4)(-3)2=32,所以都可运用 =a(a≥0)去化简。

解:(1) = =3 (2) = =4

(3) = =5 (4) = =3

三、巩固练习

教材P7练习2.

四、应用拓展

例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题。

(1)若 =a,则a可以是什么数?

(2)若 =-a,则a可以是什么数?

(3) >a,则a可以是什么数?

分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时, = ,那么-a≥0.

(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.

解:(1)因为 =a,所以a≥0;

(2)因为 =-a,所以a≤0;

(3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0

例3当x>2,化简 - .

分析:(略)

五、归纳小结

本节课应掌握: =a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展。

六、布置作业

1.教材P8习题21.1 3、4、6、8.

2.选作课时作业设计。

3.课后作业:《同步训练》

第三课时作业设计

一、选择题

1. 的值是( )。

A.0 B. C.4 D.以上都不对

2.a≥0时, 、 、- ,比较它们的结果,下面四个选项中正确的是( )。

A. = ≥- B. > >-

C. < <- d.-=“”> =

二、填空题

1.- =________.

2.若 是一个正整数,则正整数m的最小值是________.

三、综合提高题

1.先化简再求值:当a=9时,求a+ 的值,甲乙两人的解答如下:

甲的解答为:原式=a+ =a+(1-a)=1;

乙的解答为:原式=a+ =a+(a-1)=2a-1=17.

两种解答中,_______的解答是错误的,错误的原因是__________.

2.若│1995-a│+ =a,求a-19952的值。

(提示:先由a-≥0,判断1995-a的值是正数还是负数,去掉绝对值)

3. 若-3≤x≤2时,试化简│x-2│+ + .

答案:

一、1.C 2.A

二、1.-0.02 2.5

三、1.甲 甲没有先判定1-a是正数还是负数

2.由已知得a-2000≥0,a≥2000

所以a-1995+ =a, =1995,a-2000=19952,

所以a-19952=2000.

3. 10-x

21.2 二次根式的乘除

第一课时

教学内容

? = (a≥0,b≥0),反之 = ? (a≥0,b≥0)及其运用。

教学目标

理解 ? = (a≥0,b≥0), = ? (a≥0,b≥0),并利用它们进行计算和化简

由具体数据,发现规律,导出 ? = (a≥0,b≥0)并运用它进行计算;利用逆向思维,得出 = ? (a≥0,b≥0)并运用它进行解题和化简。

教学重难点关键

重点: ? = (a≥0,b≥0), = ? (a≥0,b≥0)及它们的运用。

难点:发现规律,导出 ? = (a≥0,b≥0)。

关键:要讲清 (a<0,b<0)= ,如 = 或 = = × .

教学过程

一、复习引入

(学生活动)请同学们完成下列各题。

1.填空

(1) × =_______, =______;

(2) × =_______, =________.

(3) × =________, =_______.

参考上面的结果,用“>、<或=”填空。

× _____ , × _____ , × ________

2.利用计算器计算填空

(1) × ______ ,(2) × ______ ,

(3) × ______ ,(4) × ______ ,

(5) × ______ .

老师点评(纠正学生练习中的错误)

二、探索新知

(学生活动)让3、4个同学上台总结规律。

老师点评:(1)被开方数都是正数;

(2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。

一般地,对二次根式的乘法规定为

? = .(a≥0,b≥0)

反过来: = ? (a≥0,b≥0)

例1.计算

(1) × (2) × (3) × (4) ×

分析:直接利用 ? = (a≥0,b≥0)计算即可。

解:(1) × =

(2) × = =

(3) × = =9

(4) × = =

例2 化简

(1) (2) (3)

(4) (5)

分析:利用 = ? (a≥0,b≥0)直接化简即可。

解:(1) = × =3×4=12

(2) = × =4×9=36

(3) = × =9×10=90

(4) = × = × × =3xy

(5) = = × =3

三、巩固练习

(1)计算(学生练习,老师点评)

① × ②3 ×2 ③ ?

(2) 化简: ; ; ; ;

教材P11练习全部

四、应用拓展

例3.判断下列各式是否正确,不正确的请予以改正:

(1)

(2) × =4× × =4 × =4 =8

解:(1)不正确。

改正: = = × =2×3=6

(2)不正确。

改正: × = × = = = =4

五、归纳小结

本节课应掌握:(1) ? = =(a≥0,b≥0), = ? (a≥0,b≥0)及其运用。

六、布置作业

1.课本P15 1,4,5,6.(1)(2)。

2.选用课时作业设计。

3.课后作业:《同步训练》

第一课时作业设计

一、选择题

1.若直角三角形两条直角边的边长分别为 cm和 cm,那么此直角三角形斜边长是( )。

A.3 cm B.3 cm C.9cm D.27cm

2.化简a 的结果是( )。

A. B. C.- D.-

3.等式 成立的条件是( )

A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1

4.下列各等式成立的是( )。

A.4 ×2 =8 B.5 ×4 =20

C.4 ×3 =7 D.5 ×4 =20

二、填空题

1. =_______.

2.自由落体的公式为S= gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.

三、综合提高题

1.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?

2.探究过程:观察下列各式及其验证过程。

(1)2 =

验证:2 = × = =

= =

(2)3 =

验证:3 = × = =

= =

同理可得:4

5 ,……

通过上述探究你能猜测出: a =_______(a>0),并验证你的结论。

答案:

一、1.B 2.C 3.A 4.D

二、1.13 2.12s

三、1.设:底面正方形铁桶的底面边长为x,

则x2×10=30×30×20,x2=30×30×2,

x= × =30 .

2. a =

验证:a =

= = = .

21.2 二次根式的乘除

第二课时

教学内容

= (a≥0,b>0),反过来 = (a≥0,b>0)及利用它们进行计算和化简。

教学目标

理解 = (a≥0,b>0)和 = (a≥0,b>0)及利用它们进行运算。

利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简。

教学重难点关键

1.重点:理解 = (a≥0,b>0), = (a≥0,b>0)及利用它们进行计算和化简。

2.难点关键:发现规律,归纳出二次根式的除法规定。

教学过程

一、复习引入

(学生活动)请同学们完成下列各题:

1.写出二次根式的乘法规定及逆向等式。

2.填空

(1) =________, =_________;

(2) =________, =________;

(3) =________, =_________;

(4) =________, =________.

规律: ______ ; ______ ; _______ ;

_______ .

3.利用计算器计算填空:

(1) =_________,(2) =_________,(3) =______,(4) =________.

规律: ______ ; _______ ; _____ ; _____ .

每组推荐一名学生上台阐述运算结果。

(老师点评)

二、探索新知

刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:

一般地,对二次根式的除法规定:

= (a≥0,b>0),

反过来, = (a≥0,b>0)

下面我们利用这个规定来计算和化简一些题目。

例1.计算:(1) (2) (3) (4)

分析:上面4小题利用 = (a≥0,b>0)便可直接得出答案。

解:(1) = = =2

(2) = = ×=2

(3) = = =2

(4) = = =2

例2.化简:

(1) (2) (3) (4)

分析:直接利用 = (a≥0,b>0)就可以达到化简之目的。

解:(1) =

(2) =

(3) =

(4) =

三、巩固练习

教材P14 练习1.

四、应用拓展

例3.已知 ,且x为偶数,求(1+x) 的值。

分析:式子 = ,只有a≥0,b>0时才能成立。

因此得到9-x≥0且x-6>0,即6

解:由题意得 ,即

∴6

∵x为偶数

∴x=8

∴原式=(1+x)

=(1+x)

=(1+x) =

∴当x=8时,原式的值= =6.

五、归纳小结

本节课要掌握 = (a≥0,b>0)和 = (a≥0,b>0)及其运用。

六、布置作业

1.教材P15习题21.2 2、7、8、9.

2.选用课时作业设计。

3.课后作业:《同步训练》

第二课时作业设计

一、选择题

1.计算 的结果是( )。

A. B. C. D.

2.阅读下列运算过程:

,

数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简 的结果是( )。

A.2 B.6 C. D.

二、填空题

1.分母有理化:(1) =_________;(2) =________;(3) =______.

2.已知x=3,y=4,z=5,那么 的最后结果是_______.

三、综合提高题

1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为 :1,现用直径为3 cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?

2.计算

(1) ?(- )÷ (m>0,n>0)

(2)-3 ÷( )× (a>0)

答案:

一、1.A 2.C

二、1.(1) ;(2) ;(3)

2.

三、1.设:矩形房梁的宽为x(cm),则长为 xcm,依题意,

得:( x)2+x2=(3 )2,

4x2=9×15,x= (cm),

x?x= x2= (cm2)。

2.(1)原式=- ÷ =-

=- =-

(2)原式=-2 =-2 =- a

21.2 二次根式的乘除(3)

第三课时

教学内容

最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算。

教学目标

理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式。

通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求。

重难点关键

1.重点:最简二次根式的运用。

2.难点关键:会判断这个二次根式是否是最简二次根式。

教学过程

一、复习引入

(学生活动)请同学们完成下列各题(请三位同学上台板书)

1.计算(1) ,(2) ,(3)

老师点评: = , = , =

2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_________.

它们的比是 .

二、探索新知

观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:

1.被开方数不含分母;

2.被开方数中不含能开得尽方的因数或因式。

我们把满足上述两个条件的二次根式,叫做最简二次根式。

那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式。

学生分组讨论,推荐3~4个人到黑板上板书。

老师点评:不是。

= .

例1.(1) ; (2) ; (3)

例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长。

解:因为AB2=AC2+BC2

所以AB= = =6.5(cm)

因此AB的长为6.5cm.

三、巩固练习

教材P14 练习2、3

四、应用拓展

例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:

= = -1,

= = - ,

同理可得: = - ,……

从计算结果中找出规律,并利用这一规律计算

( + + +…… )( +1)的值。

分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的。

解:原式=( -1+ - + - +……+ - )×( +1)

=( -1)( +1)

=-1=

五、归纳小结

本节课应掌握:最简二次根式的概念及其运用。

六、布置作业

1.教材P15习题21.2 3、7、10.

2.选用课时作业设计。

3.课后作业:《同步训练》

第三课时作业设计

一、选择题

1.如果 (y>0)是二次根式,那么,化为最简二次根式是( )。

A. (y>0) B. (y>0) C. (y>0) D.以上都不对

2.把(a-1) 中根号外的(a-1)移入根号内得( )。

A. B. C.- D.-

3.在下列各式中,化简正确的是( )

A. =3 B. =±

C. =a2 D. =x

4.化简 的结果是( )

A.- B.- C.- D.-

二、填空题

1.化简 =_________.(x≥0)

2.a 化简二次根式号后的结果是_________.

三、综合提高题

1.已知a为实数,化简: -a ,阅读下面的解答过程,请判断是否正确?若不正确,请写出正确的解答过程:

解: -a =a -a? =(a-1)

2.若x、y为实数,且y= ,求 的值。

答案:

一、1.C 2.D 3.C 4.C

二、1.x 2.-

三、1.不正确,正确解答:

因为 ,所以a<0,

原式= -a? = ? -a? =-a + =(1-a)

2.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=

篇2:初三数学说课稿精选

各位老师,今天我说课的内容是:22.3 实际问题与一元二次方程第二课时,下面,我从教材分析、教学目的分析、教法分析、教材处理、教学流程等方面对本课的设计进行简要说明:

一、教材分析:

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:

1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1 复习回顾解决课前参与

活动2 封面设计问题的探究

活动3 草坪规划问题的延伸

活动4 课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1 复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容—— 面积问题。

活动2 封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3 草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4 课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

作业布置

共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。

篇3:初三数学说课稿精选

[本课知识要点]

会画出 这类函数的图象,通过比较,了解这类函数的性质.

[MM及创新思维]

同学们还记得一次函数 与 的图象的关系吗?

,你能由此推测二次函数 与 的图象之间的关系吗?

,那么 与 的图象之间又有何关系?

[实践与探索]

例1.在同一直角坐标系中,画出函数 与 的图象.

解 列表.

x … -3 -2 -1 0 1 2 3 …

… 18 8 2 0 2 8 18 …

… 20 10 4 2 4 10 20 …

描点、连线,画出这两个函数的图象,如图26.2.3所示.

回顾与反思 当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索 观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数 与 的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数 与 的图象,并说明,通过怎样的平移,可以由抛物线 得到抛物线 .

解 列表.

x … -3 -2 -1 0 1 2 3 …

… -8 -3 0 1 0 -3 -8 …

… -10 -5 -2 -1 -2 -5 -10 …

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线 是由抛物线 向下平移两个单位得到的.

回顾与反思 抛物线 和抛物线 分别是由抛物线 向上、向下平移一个单位得到的.

探索 如果要得到抛物线 ,应将抛物线 作怎样的平移?

例3.一条抛物线的开口方向、对称轴与 相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解 由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作 , 又抛物线经过点(1,1),

所以, ,

解得 .

故所求函数关系式为 .

回顾与反思 (a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向 对称轴 顶点坐标

[当堂课内练习]

1. 在同一直角坐标系中,画出下列二次函数的图象:

, , .

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线 的开口方向及对称轴、顶点的位置吗?

2.抛物线 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线 向平移 个单位得到的.

3.函数 ,当x 时,函数值y随x的增大而减小.当x 时,函数取得最 值,最 值y= .

[本课课外作业]

A组

1.已知函数 , , .

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数 的图象的开口方向、对称轴、顶点坐标.

2. 不画图象,说出函数 的开口方向、对称轴和顶点坐标,并说明它是由函数 通过怎样的平移得到的.

3.若二次函数 的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中 与 的图象的大致位置是( )

5.已知二次函数 ,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

[本课学习体会]

篇4:初三上册数学课件说课稿

一.说教材

1.教材的地位与作用

《一元二次方程的解法》是人教版九年级上册第二十一章第二节的内容。从本章来看,前几节课已经学习了一元二次方程的概念及四种解法,后面即将学习一元二次方程的应用,本节课具有承上启下的作用;从本册书来看,一元二次方程是后面学习二次函数、圆中的有关计算的基础;从整个初中阶段学生数学学习的内容来看,一元二次方程是初中数学“数与代数”的的重要内容之一,在初中数学中占有重要地位,通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它多元方程、高次方程、一元二次不等式、二次函数等知识的基础;从学科领域来看,学习一元二次方程对其它学科也有重要意义,如物理学中电学的一些计算、化学中根据化学方程式的计算等,都要用到一元二次方程的知识。本节课是一元二次方程的解法的练习课,旨在通过对一元二次方程四种解法的类比归纳,让学生会选择适当的方法解一元二次方程,并在学习中体会一些常用的数学思想。

2.教学目标

(1)熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程。

(2)通过对一元二次方程的四种解法进行类比,理解解一远二次方程的基本思想是“降次”,体验分类讨论、转化归纳等数学思想。

(3)通过学生间合作交流、探索,进一步激发学生的.学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。

3.教学重难点

重点:用适当的方法解一元二次方程。

难点:对解一远二次方程的基本思想是“降次”的理解。

二.说教法学法

常言道:知己知彼,百战不殆。我们教学就相当于和学生作战,只有了解学生的学习情况,才能够针对学生的具体水平而选择最好的方法将知识传授给学生,所以要先分析学情,再确定教法。

1.学情分析

在学习本节课之前,学生已经学习了一元二次方程的概念及四种解法,在七、八年级的时候也学习了一元一次方程、二元一次方程组、分式方程的解法,掌握了一些解方程的基本能力。再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的知识和经验,因此,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对一些数学思想的理解。

2.教法学法

本节课的主要任务是熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程,所以,我采用的方法可以概括性为四个字:精讲多练。讲,就是讲四种解法的优缺点及“降次”的思想;练,就是通过大量的解一元二次方程的练习题,让学生体会选择适当的方法的重要性及所有的一元二次方程都是通过“降次”转化为一元一次方程而求解,体验化归的数学思想。

所以,本节课主要采用引探式教学方法,在活动中教师着眼于“引”尽力激发学生求知的欲望,引导他们解决问题并掌握解决问题的规律和方法,学生着眼于“探”,通过探索活动发现规律,解决问题,发展探索能力和创造能力。同时,采用电脑多媒体课件辅助教学,利用投影仪出示练习题,节约了课堂时间,保证学生能有充足的时间进行练习、交流,还可以展示学生的练习结果,纠正学生存在的共性问题。

三.说教学过程

1. 回顾旧知:学生回顾一元二次方程的概念及四种解法(直接开平方法、配方法、公式法、因式分解法)

2. 探究新知:出示四道有代表性的一元二次方程,要求学生自己选择方法解方程。学生完成任务后,以小组为单位交流或者跨小组交流,看看彼此用的是不是同一种方法,若方法不同,比较看谁的方法更简单。教师深入各小组了解学生的解题情况,并选出几个有代表性的学生的解题过程在投影仪上展示。

3. 归纳小结:教师以四名学生的解法为例,引导学生体会不同的一元二次方程可以选择不同的方法来解,选择的基本原则就是简单易行。对于形如完全平方等于非负数的形式的一元二次方程,采用直接开平方法来解;对于方程的左边能用提公因式或乘法公式分解因式分解的一元二次方程,则采用因式分解法求解;其余的方程,则选择公式法或配方法。通过比较发现,无论选择哪一种方法解一元二次方程,基本的思想都是“降次”。直接开平方法和公式法是通过开平方达到降次的目的,配方法是通过配方再开平方达到降次的目的,因式分解法是通过把方程分解成两个一次因式的积等于0的形式而达到降次的目的,可谓是殊途同归。同时可以看出,这几种方法都是将“二次”降为“一次”,然后将一个一元二次方程化成了两个一元一次方程,然后用七年级学过的一元一次方程的解法来解决问题,这体现了一种转化的数学思想。可以给学生强调:我们学习数学知识有一种重要的方法,就是将遇到的新问题转化成我们已经学过的的、已经能解决的旧问题而解决,这就是转化归纳的数学思想。

4. 拓展延伸:通过对一元二次方程解法的归纳,学生发现解一元二次方程的基本思想是“降次”,由此可以拓展:解高次方程的基本思想就是“降次”,降高次为一次,那么解多元方程的基本思想就是“消元”,这样学生就会理解以前学习的二元一次方程组和三元一次方程组的解法都采用的是代入消元法和加减消元法了。为学生以后学习多元高次方程的解法打下良好的基础。

5. 巩固练习:通过前面的练习和讲解,学生对一元二次方程的解法有了新的认识,这时应该趁热打铁,再出示几道习题让学生练习。

篇5:数学说课稿

一、说教材

1、教学内容:

《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的第三个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

2、教学目标:

根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:

(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

二、说教法、学法:

根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识

三、[教学设计]

一、创设情境引发思考

多媒体出示有关国旗的四幅情境图,让学生说说图的内容,并找找图中共有的东西。接着出示四面国旗的长和宽的具体数据,并提示国旗的指定有着特定的制作标准,然后让学生去思考,猜测。

二、探究新知主动参与

这里分成二部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

第一部分:比例的意义

1、根据学生的发现,让学生任意地选择其中的两面国旗,先写出长和宽的比,再求出比值进行验证自己的猜测对不对。

2、把学生的计算结果出示在黑板上(四面国旗都有)接着请学生仔细观察计算结果发现了什么,发现他们的比值都相等。从而引出比例的意义。

3、揭示了比例的意义后及时进行练习。判断几组比能否组成比例,为什么?让学生说理巩固概念。

4、回到四面国旗,让学生找比组成比例。(可以是国旗的长与宽的比,每两面国旗长之比,宽之比)这里教师要适时引导,鼓励学生打开思路,从不同的角度去寻找,以加深对比例意义的认识。

第二部分:比例的基本性质

1、教学比例的各部分名称。这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。认识了比例的各部分名称后让学生说说比与比例的区别。

2、教学比例的基本性质。观察黑板上的比例中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果,然后引导他们回答两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的基本性质,探讨写分数形式,归纳“交叉相乘”积相等。

3、练习,p34的做一做

4、小结判断两个比能否组成比例,可以根据比例的意义,也可以根据比例的基本性质。

三、巩固练习形成技能

基础练习

1、写两个比值是0.4的.比,并组成比例。这里先让学生写,然后请其他学生判断他写的比例对不对。(可以用比例的意义,也可以用比例的基本性质)

2、猜数游戏,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。

发展练习:

1、把乘积相等的式子改写成比例。这个练习是巩固比例的基本性质,意图是让不同的学生在数学上得到不同的发展。因为有学生可能只能改写一个,而有学生可能改写4个,还有学生可能改写8个。

2、如果5a=3b,那么a:b=:()

四、课堂小结,回归目标

这堂课我们学习了什么,你有什么收获?

篇6:数学说课稿

一、教材分析

《工程问题》这部分内容是九年义务教育小学数学第十一册第三单元分数、小数应用题的最后一部分内容。它是学生在学习了整数工程问题的基础上进行教学的。这类应用题是用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。它的解题思路与整数工程问题基本相同,只是题中没有给出具体的工作总量,解题时要把工作总量看作“单位1”,用单位时间内完成工作总量的几分之一表示工作效率。由于计算的不是具体的数量,学生往往感到抽象、不易理解。

二、教学目标

我根据教材内容和学生特点确立以下教学目标:

基础知识目标: 使学生认识工程问题的结构特点, 掌握它的数量关系、解题思路和解题方法,并能正确解答工程问题的基本题。

基本技能目标: 初步培养学生的分析概括能力和迁移类推能力以及运用所学知识解决实际问题的能力。

情感目标:通过课堂教学中引用家乡的汤山公园、杭州湾大桥建设等大量图片,渗透学生爱家乡、爱祖国的教育。

教学重点: 工程问题的结构特点、解题思路和解题方法。

教学难点: 理解用“单位1”表示工作总量,用单位时间完成工作总量的几分之一表示工作效率。

三、说教法。

由于工程问题比较抽象,学生难以理解,因此我将“学生为主体,教师为主导,训练思维为主线”的原则贯穿教学始终,采用尝试、发现相结合的方法,充分调动学生的积极性。主要采用以下两种教学方法:

1、发现自学法:这种方法主要是培养学生的发现意识和能力。在引导学生探讨问题的过程中,教师要循序渐进,帮助学生找到正在探讨的问题和已经知道的问题之间的联系,引导学生发现新问题,鼓励学生独立解决问题,养成主动发现新问题的习惯。这节课前我让学生做了三道整数工程问题的应用题,使学生发现整数工程问题的结构特点和解题思路,发现“为什么这三道题的工作总量分别是120亩、20亩、1亩而用的工作时间相同呢?”进而引入分数工程问题,把前三道题的工作总量去掉,还能不能解答?让学生尝试练习,进一步发现和掌握分数工程问题的结构特点和解题方法。这样循序渐进,既缓减了教学的坡度和难度,又使学生能理解掌握分数工程问题的解题思路和解题方法,便抽象思维为具体形象思维。

2、联系生活教学:在本课中围绕一条主线;即汤山公园绿化展开教学,汤山 公园为学生所熟知,在教学中通过对公园绿化的不同陈述,展示了不同工作情景下关于绿化的工程问题,通过学生的练习,让学生感悟了公园的美景,。在联系中明白 把一项工作、修路、运货等全部的工作量看作单位“1”,也逐步把握了工程问题的特点,及其数量关系。

四、说学法。

在教学中,把着眼点放在对学生的学法指导上,使他们在获取知识的同时,掌握良好的学习方法,体现学生的主体作用。课堂上引导学生发现问题、解决问题、总结规律,使学生能主动获取知识。本节课注重培养了学生的迁移类推能力和分析问题、解决问题的方法。

五、说教学程序。

这节课按照“发现问题──解决问题──总结规律”这样几个程序进行:

1、复习铺垫:复习与新课内容紧密联系的旧知,为新课的学习做好必要的、充分的准备。

2、课前让学生做了整数工程问题的应用题,引导学生发现工程问题的解题思路和解题方法,然后引入分数工程问题,让学生尝试练习,发现规律,进一步类推出分数工程问题的解题思路和解题方法,变抽象为具体。

3、练习巩固:运用所学知识解决实际问题,有基本练习、变式练习、深化练习。

4、全课总结:对本节内容进行简明扼要的总结,使学生对本节内容有一个整体认识,起到画龙点睛的作用。

5、布置作业。

篇7:数学说课稿

今天我说课的内容是解简易方程。下面我从教材分析、教学方法、学法指导、过程分析等四个方面进行说课。

一、教材分析

1、教材的地位与作用

本节课是解简易方程的第一课时,是在学生学习的四则运算及四则运算各部分间的关系和等式的性质的基础上进行教学。而今天学习的内容又为后面学习解方程和列方程解应用题做准备。今后学习分数应用题、几何初步知识、比和比例等内容时都要直接运用。所以本节课起着一个承上启下的作用,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。

2、教学目标的确定

根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:

(1)?知道解方程的意义和基本思路。

(2)?会运用数量关系式或等式的基本性质对解方程的过程进行语言表述。

(3)?会对具体方程的解法提出自己解答的方案,并能与同学交流。

(4)?会独立地解答一、二步方程。

(5)?能够验算方程的解的正确性。

3、教学重点、难点、关键点

根据教材内容和教学目标,我认为本节课的重难点是解方程的两种方法及检验,解决重难点的关键是帮助学生确立解方程的一般思路。

二、说教法

1.演示操作法

借助媒体,激发学生的学习兴趣

2. 观察法

为了体现学生的主体性,培养学生的合作意识,通过四人合作、交流,自主探寻发现通过等量关系来列方程。

这些教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,

三、说学法

1、合作学习法

采用小组合作学习的形式,让学生经历一个观察、比较、交流、分析等过程,鼓励学生把发现的规律都说出来,有利于学生口语交际和解决问题能力的发展,这样既培养学生的合作意识,又能使学生在发现规律的同时获得成功的体验。

2、自主学习法

以学生自主学习为主,注重探索过程的教学,充分发挥学生的主观能动性,变被动听为自主学,学生积极动脑去思考、动口去表达。通过交流、猜测、验证、总结归纳,体验探索规律的过程,突破难点,提高效率。

四、过程分析

本节课我准备按以下几个环节进行教学:

(一)复习铺垫

巩固方程及等式的性质,为下面的学习做好铺垫。

(二)走进新课

1?汇集问题,寻找出路

用问题来提高学生的学习兴趣、探究的热情。

2?解决问题,形成方法(例1教学)

先通过学生仔细观察,回答下面的问题,把学生推向主体位置:

①你发现了哪些数学信息?

②能根据数学信息说出等量关系吗?

③请大家根据等量关系列出方程。

④这个方程的解是多少?你是根据什么得到的?

然后组内交流,班内展示,统一方法与答案。

① 解方程的格式(先提行,写下一个“解”字;为了美观,尽量使等号对齐,两边写式子。);

② 解方程的依据(等式的性质或四则运算各部分间的关系);

③自觉检验。

尝试练习:写出求解的过程和验算的过程,不会的可以问问同学和老师。

出示:20+x=30。

3?类比推广,深化探究。教学例2

学生写完后,互相交流,老师一一展示各组的解方程过程

方法一: 解3y-8=13 方法二:解 3y-8=13 方法三:解3y-8=13

3y=13+8 3y-8-8=13-8 3y-8+8=13+8

3y=21 3y=5 3y=21

y=21÷3 3y×3=5×3 3y÷3=21÷3

y=7 y=15 y=7

验算3×7-8=21 验算3×7-8=21

通过学生的自主探究,在学习方法的同时辨析渗透检验的重要性,培养学生自觉检验的习惯。

(三)练习巩固

强化重点,巩固新知,培养学生良好的学习习惯。

(四)回顾总结

梳理知识形成完整知识体系

(五)课堂检测

对所学知识进行检测,查缺补漏。

(六)布置作业

篇8:数学说课稿

一、教学内容。

我今天说课的内容是新人教版教材小学数学六年级上册第一单《分数乘法》例5《小数乘分数》。这部分是教材新增加的内容,用一课时进行教学。

二、说教材。

1、教材分析

本部分的教学是在学生掌握了整数乘法、小数乘法、分数乘法、以及整数和小数混合运算、简便计算的基础之上进行的教学。教学中不仅涉及到分数与小数的互化,假分数与带分数的互化,整数与分数的互化,而且对如何判断一个分数是否能化成有限小数等知识都会涉及。通过教学本例题要使学生经历探究计算方法的过程,运用多样化的解题思路开拓学生的计算思维,提高学生的计算能力。为教学例6、例7的分数混合计算和简便计算奠定基础。

2、学生分析

大部分学生有了一定的运算基础,特别是刚学的分数成分数的计算方法和对算理的分析探究过程都是本节课学习的基础。教学本课主要还是放手让学生自主学习,合作交流,根据学生生成的问题进行再教设计。为了更好的教学效果,我依据学生的认知特点确定了如下教学目标。

3、教学目标

认知目标:在解决问题的过程中学习并掌握小数乘分数计算方法。

技能目标:经历小数乘分数的计算方法的探究过程。培养学生的思维灵活性。

情感目标:体会算法多样化的思想,提高学生的计算能力。

4、教学重点

掌握小数乘分数的计算方法。

5、教学难点

灵活选择不同的计算方法,熟练地进行小数乘分数的计算。

6、教具准备:多媒体课件

三、说教法

“教必有法而教无定法”,只有方法得当,才会有效。根据本课教学内容的特点和学生思维活动的特点,我采用了自主学习教学法、合作探究法和讨论交流汇报法以及比较学习法的教学方法。学生是学习的主体,学生的参与状态、参与度是决定教学效果的重要因素。教学中我特别注重引导学生“观察、对比、总结”等多种方式进行探究性学习活动。

四、说学法

学法的指导要寓于教学的始终,结合学生的认知水平和可能出现的困难,给学生的学习予以一定的指导,根据学生学情实际,重点从以下几方面指导学生的学习:鼓励学生独立思考,引导学生抓住新旧知识之间的练习比较学习,利用已有知识基础和生活经验探究学习,在学习中形成多样性的解题思路。

五、说教学过程

(一)、说教学程序

整个教学按以下6个程序进行教学:复习旧知、情境引领、探究新知、归纳总结、巩固练习、课堂小结。

(二)教学实施策略

1、复习导入

这部分设计了分数乘整数和分数乘分数的算式题和小数与分数的互化,主要是为了巩固已学的知识,同时为新授课的教学做铺垫准备。

2、情境引领

出示形象生动的课件展示,引领学生进入问题情境。通过松鼠欢欢和松鼠乐乐的对话不仅使学生掌握一些科普知识,如松鼠的尾巴长度约占身体长度的,而且激发学生探究的兴趣。通过分析解决问题的方法,学生能根据分数乘法的意义轻松的列出乘法算式2、1×和2、4×接着放学生开始探究算式的特点。

3、探究新知

首先让学生独立思考,尝试计算。指明学生黑板上板书过程。如果学生在计算过程出现困难及时给予指导。接着同桌交流,小组交流计算的方法,分别说说说自己的解题思路。不重复说,尽量抓紧时间。最后每组选出最优学生汇报结果,总结计算方法。

4、归纳总结对于小数成分数方法一:可以都化成小数进行计算;方法二:可以都化成分数进行计算;对于直接约分的方法可能只有提前预习的学生会做,可以让这些学生说说自己的做法,教师随之补充小结。

5、巩固练习

通过让学生完成做一做检测学生的掌握情况并进行再教练习设计,课前准备了阶梯式的习题,根据学生的熟练程度做弹性式处理。

6、课堂小结本节课同学们学到了什么知识?掌握了什么学习方法呢?观察比较小数乘分数的三种计算方法有哪些特点?怎样灵活运用这些方法进行分数乘法计算呢?学生在整理的过程中使自己所学到的知识更加的明了。

总之本节课力求让学生在探究学习中掌握小数乘分数的计算方法,培养学生多样性的数学思想,不断提高学生的计算能力。

六、板书设计

小数乘分数

2、1× 2、4×

= =2、4× 能约分先约分,更简便

=(dm) =1、8(dm)

七、教学反思

本节课的教学中学生自主学习的时间用时过长,课堂显得前松后紧节奏不协调。学生对分数和小数的互化准确度不高也影响了课堂的进度,如把2、1化成假分数,应该先理解小数意义2、1=2+0、1也就是表示2个一和一个十分之一的和,分数单位,写成假分数。对于个别学生对已学知识遗忘,及时回顾旧知的同时又会使课堂练习时间减少,因此预设的练习任务没有全部完成。

八、教学中的启示与思考

1、课前要注重及时唤起学生对新授课内容相联系的相关知识,课前安排对相关知识提前巩固练习,课堂能达到熟练应用。

2、要备好教学内容的同时,别忽视备学生。对于不同的学生要进行因材施教,新知识的学习过程每位学生可以同步进行,但对已学知识的掌握情况学生的差异还是很大的,因此这也是每位老师应下功夫思考的教学环节。

3、不断的思考,不断的学习,不断的改进,在教学与反思中让自己进步是我在今后教学中的奋斗目标。

希望各位老师能对自己的教学环节中的不足给予指正,以利于自己在发现问题,思考问题,改进问题的过程中逐步提升自己的教学能力。

篇9:数学说课稿

教材分析:

这一节的内容包括8,9的认识,有关8,9的加减法以及8,9加减法的应用三部分,共5课时

"用数学"是第三课时,其内容分为三部分:一是通过同一情境反映两个不同的数学问题,让学生初步感受数学与生活的联系;二是让学生学会看已知数量和问号之间的关系找到合适的计算方法列式并计算;三.让学生能看图提出简单数学问题,并解决问题.内容对刚入学不久的儿童来说,既有现实性,趣味性,又有一定的挑战性,另外,咯市还通过结合"用数学"的教学过程来对学生进行热爱自然,保护动物的教育

设计理念和思路:

本节课的教学设计力图体现"尊重学生,注重发展"的教学理念.它注重培养和发展学生的思维能力,创设符合其水平的思维情景和条金,使学生思维活跃,兴趣盎然.

本节的"用数学"是让学生能寻找出解决问题的方法并结算出结果.在教学中还应让学生寻找问号的数量时侧重通过计算的出,而不是去数未知数的数量,所以本节的设计意图是在指导学生找出求"一共有几个蘑菇"用加法解决,而求"剩下有几只小象休息"用减法解决.让学生初步知道求整体,用加法,求部分用减法,再通过加减法两个题目的对比,引导学生总结出口诀:求总数,用加法,部分相加是答案;求部分,用减法.总数减另部分是答案.再让学生运用这个口诀,看图提数学问题,层层递进,让学生逐步理解接受.

针对以上的教学设想,却了本节课的教学目标:

1让学生进一步掌握加,减法的意义,和10以内的加减法的计算方法

2培养和提高学生用所学知识解决实际问题的能力

3能根据已知量和问号之间的关系,选择合适的计算方法列式计算

4能根据图画提出至少三个数学问题,并解决问题

教学程序:

依据这节课的教材知识结构及小学生认知规律和发展水平,为优化教学过程,实现"尊重学生,注重发展"的课堂教学要求,这节课的程序安排为:

一、创设情境,引新设疑

1(播放录音)

(出示电脑画面,有声音出:嗨,大家好,我是你们的新朋友哈利,小朋友们,今天我要带你们去快乐的森林玩一玩!,

提问:①你们知道哈利要带我们去哪里玩吗?(快乐的森林)

老师板书题目:快乐的森林

②你见过的大森林是什么样子的?------------------(有美丽的树木,可爱的小动物……)

老师教育学生要爱护大自然,爱护环境,爱护小动物

二、合作探究,体验发现

1,引导学生体验加法的含义

电脑出示动态蘑菇园,导入:哈利首先要带我们去快乐蘑菇园听小蘑菇们唱歌

问题①:通过观察,你看到现在在唱歌的是几个蘑菇呢?

(通过观察,现在有6朵蘑菇在唱歌)

师:你再听听,(有声音出:真好听,真好听,我们也想来一起唱.-------进入两朵小蘑菇)

问题②:谁来帮哈利算一算:现在一共有几朵蘑菇在唱歌了呢?并说说你是怎么想的?

①交流算法:6+2=8,一共有8朵蘑菇。把左边的6朵与右边的2朵加起来就是8朵

②引导理解:列式2+6=8对吗?

(求一共有多少蘑菇就是把这里的蘑菇加起来就得出结果了,可以是左边加右边,也可以是右边加左边,所以2+6=86+2=8都对)

小节总结与评价;

小朋友们这么聪明又这么乐于助人,哈利为了感谢你们对他的帮助,特意邀请你们去看看森林里的节目表演-------小象跳舞

2,引导学生体验减法的含义

(电脑出示的一共有9头象的字样.再3头小鹿跳舞的画面和音乐.再出示问题:有几头小象没有跳舞?

①引导观察,组织讨论

教师启发:引导学生弄清问题是:

有9只小鹿,3只小鹿在跳舞,不跳舞的小鹿有几只?

②引导学生列式解决问题:

因为一共有9只小鹿,3只跳舞,求不跳舞的小鹿就是用总共的9只小鹿减去跳舞的3只小鹿列式为:9-3=6

3,引导学生进行比较分析,再总结方法

(电脑出示蘑菇和小象图的比较图)

①提问:为什么求小蘑菇的题用加法解决,而求小象的题用减法解决

②引导学生明白小蘑菇的题目是求整体的数,即总数,求总数就用加法.小象的题目是求其中的一部分.求部分就用减法

③老师总结口诀:

求总数,用加法,部分相加是答案

求部分.用减法,总数减另部分是答案

三、巩固练习,加深理解

①出示课件一:(一共有8只小鸭子,水里面有3只,求在岸上的有几只?)

让学生观察,把题意说给你的同桌听听,再把算式填写完整

8-3=5

②出示课件二;(左边有7只小狗,右边有2只小狗,求一共有几只小狗?)

2+7=9

③引导汇报,结合学生回答,电脑演示,进行订正

四、唱歌,休息

五、联系生活、整体感知、加深理解

(出示小鸟图:原来有5只小鸟,后来飞来了4只,)

引导学生提问:①原来有5只小鸟,后来飞来了4只,现在一共是多少只?

5+4=94+5=9

②有一些小鸟在树上,后来又飞来了4只,现在一共是9只,求原来有几只?

9-4=5

③现在一共有9只小鸟,原来有5只小鸟,求后来飞来了几只?

9-5=4

④原来的小鸟比后来飞来的小鸟多几只?

5-4=1

⑤后来飞来的小鸟比原来的小鸟少几只?

5-4=1

六、活动练习,巩固旧知

发给20位小朋友每人一张卡片,每张卡片上都有一道数学题,让学生把得数是“8”的投入到“8”号信箱中,把得数是“9”的投入到“9”号信箱中,还有一些小朋友的卡片得数不是8也不是9,便找不到信箱,就请他们讲讲,自己没有把信送出去的原因。

七、总结收获,渗透联系

①通过这节课你学会了什么?

②回顾并记忆口诀:

求总数,用加法,部分相加是答案

求部分,用减法,总数减另部分是答案

篇10:数学说课稿

各位老师:

我说课的题目是《有序数对》。该节内容是人教版义务教育实验教材(供天津用)七年级《数学》上册第三章《平面直角坐标系》的第一节(教材86页—88页)。我将从以下五个方面对本节课的设计进行说明。

第一方面:教材分析。

本节内容是本章的起始内容,是学生学习了条形统计图和折线统计图的基础上的学习,为以后学习直角坐标系和研究函数的运动变化奠定知识基础。虽是初始内容,但是学生在实际生活中用“数对”表示点或事物的位置的意识以很浓,只是谈到“有序”感到陌生。这些知识积淀,为完成本节课内容的学习做了强有力的支撑。同时本节内容有利于增强学生的数学符号感,是“数”向“形”的正式过渡,使学生充分认识到数学是描述解决实际生活中事物、问题的重要工具,树立学好数学的信心,提高分析问题、解决问题的能力。

第二方面:目标分析。

根据课标的要求和本节内容的特点,我从知识与能力、过程与方法、情感价值观三个方面确定本节课的目标。

一、知识能力目标:

1、理解有序数对的概念,能说出一对有序数对的实际含义。

2、根据一对有序数对在坐标平面内能确定一个点,根据一个点能写出一对有序数对与它对应,渗透一一对应关系。

二、过程方法目标:

1、通过研究实际生活中座位位置的确定方法的活动,让学生树立“数“与”“形”统一的数学思想。

2、通过研究有序数对的含义,培养学生善于发现问题,解决问题的意识,提高归纳整理信息的能力。

三、情感价值目标:

1、通过参于活动,同学间协商探究,培养学生的合作交流的意识和探究知识的精神。

2、通过对有序数对的研究学习,进一步感悟数学与实际生活密切相关,树立刻苦学习品质。

3、通过本节课的学习培养学生科学、严谨的学习品质。

结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定本节课的教学重难点:

1、教学重点:理解有序数对的含义,熟练、科学的达到“数”与“形”的统一。

2、教学难点:“有序数对”中“有序”的含义。

为了更好凸显重点突破难点,我在学生已有知识、能力的基础上,通过确定座位、找路线等活动,探究有序数对的含义。同时借助多媒体课件合理设疑、启发引导、解疑点拨以达到预期的目标。

第三方面:教、学的方法和手段。

我认为:教师的教和学生的学是课堂教学活动的基本元素。教师的教是围绕着学生的学展开的,学生的学是在教师的教之下进行的。数学研究性活动成为数学课堂教学的载体。课堂教学是师生之间、学生之间交往互动和共同发展的过程。为此,我采用合作探究式教学方法进行教学。

一、教法

我作为学生学习的组织者、引导者、合作者,注重启发学生自主学习,结合目标,针对我班学生的认知水平,我借助多媒体课件和教材插图合理设疑、巧妙点拨。适情设计梯度,增强课堂教学的趣味性和直观性,激发学生求知欲望,有效渗透数学思想、方法,提高课堂教学效益。我将采用以下方法:

1、引导发现法:在活动中让学生观察所给图片,带着问题思考、探究知识,体悟有序数对的作用,感触数学与实际生活密切相关,调动参与学习活动的积极性和主动性。

2、适当梯度,合理设疑法:提问是课堂教学的基本形式,它引导学生思考探究,使学生的思维条理化。我结合目标和学生个体间的差异,合理设疑、提问,引导学生完成学习。

3、合作交流,协作探究法:学生是学习的主人,是课堂学习的主体。在我的引导下,采用学生个体探究、小组内交流的学习形式交叉进行,以逐步突破重难点,让学生体验成功,增强合作意识,树立学习信心。

4、练习巩固法:合理选配习题,创设问题情境,让学生检测是否达标。以此提高学生运用知识、解决问题的能力。

二、学法

学生是否学会、会学成为检验课堂教学效果的标准。在本节课中我尽可能多的给学生提供参与学习活动的时间和空间,让他们体会知识的产生过程,学会学习。因此我注重以下学法的指导:

1、观察分析法:给学生提供材料,让学生进行观察、分析。

2、探究归纳法:通过学生个体研究和小组交流协作进行探究归纳,真正体会有序数对的含义,从中领悟知识的产生,归纳规律。

3、练习巩固法:让学生树立数学重在应用的意识,检验学生掌握情况,找出差距,对症下药。

第四方面:本节课的教学过程我设计了以下四个环节:

第一环节:明确目标,创设情境,导入新课

首先我请同学说出自己在班上的座位的位置,就一名同学说的例如:“3排4列”进行讨论,让学生认识它的不足,补充完善,即从左向右数,从前向后数等。再次描述自己的位置,从而体会到:①数对中数应有一定的顺序,是非常必要的。②在每一对数对中每一个数所表示的实际意义。根据学生的讨论、发言马上引出本节课题和本节课要达到什么目标,把课堂教学推进,把学生的思维推向深入。

第二环节:协作商讨,归纳总结,达成目标

结合教材中的插图,“电影院找座位”。我设置了问题是:①9排7号与7排9号所表示的实际意义是什么?②在实际生活中,诸如表示座位的数对第一个数字表示什么?第二个呢?③这两个人谁是对的谁是错的?请帮助错的人找到正确的座位。通过问题,学生动脑去思考、探究、归纳,真正体会“有序数对”的含义及有序的重要性。

接下来我出示有序数对(2,4)、(4,2)设问这两个数对中的数字相同,只是他们呈现的顺序不同,结合我班的座位说说他们有什么关系?他们表示的是同一个座位吗?问题解决后我马上又写(3,3),这个数对中的“3”分别表示什么意义?有几个座位和他对应?

篇11:数学说课稿

一、说教材

1.从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要资料,它不仅仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,并且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

2.从学生认知角度看

从学生的思维特点看,很容易把本节资料与等差数列前n项和从公式的构成、特点等方面进行类比,这是进取因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不一样,这对学生的思维是一个突破,另外,对于q=1这一特殊情景,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

3.学情分析

教学对象是刚进入高中的学生,虽然具有必须的分析问题和解决问题的本事,逻辑思维本事也初步构成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,所以片面、不严谨.

4.重点、难点

教学重点:公式的推导、公式的特点和公式的运用.

教学难点:公式的推导方法和公式的灵活运用.

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

二、说目标

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.

过程与方法目标:

经过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维本事和逆向思维的本事.

情感与态度价值观:

经过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.

三、说过程

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的构成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1.创设情境,提出问题

在古印度,有个名叫西萨的`人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我能够满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的进取性.故事资料紧扣本节课的主题与重点.

此时我问:同学们,你们明白西萨要的是多少粒小麦吗引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而立刻相减呢在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识构成过程的氛围,突破学生学习的障碍.同时,构成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

2.师生互动,探究问题

在肯定他们的思路后,我之后问:1,2,22,…,263是什么数列有何特征应归结为什么数学问题呢

探讨1:,记为(1)式,注意观察每一项的特征,有何联系(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,所以教学中应着力在这儿做文章,从而抓住培养学生的辩证思维本事的良好契机.

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.教师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

3.类比联想,解决问题

这时我再顺势引导学生将结论一般化,

那里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自我探究公式,从而体验到学习的愉快和成就感.

对不对那里的q能不能等于1等比数列中的公比能不能为1q=1时是什么数列此时sn=(那里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来(引导学生得出公式的另一形式)

设计意图:经过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和理解,变为对知识的主动认识,从而进一步提高分析、类比和综合的本事.这一环节十分重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

4.讨论交流,延伸拓展

篇12:数学说课稿

本次说课我将分五部分向大家介绍,它们分别是教材分析、教法分析、学情分析、学法指导以及教学过程。首先让我们来看一下第一部分:即教材分析部分。

一、教材分析:

在教材分析中,我将对教材从教材联系、教学内容、教学目标以及重点、难点四个角度来进行分析。

教材联系:

本单元的任务是学会100以内进位加法和退位减法,解决简单的实际问题,在学生掌握了20以内的进位加法、退位减法和100以内不进位、不退位加减法基础上,我们本节课的任务是两位数加一位数的进位加法。教材设计了图书馆这个与学生生活密切相关的情境,引入两位数加一位数的进位加法,使学生在解决实际问题的过程中,进一步体会加法的意义,体会到数学与生活实际的密切联系,也为后面学习两位数加两位数奠定了坚实的基础。

教学目标:根据小学数学新课标和新课改活动的要求,配合教学大纲,结合课本教材,确定本节课教学目标如下:它们分别是:

1、通过自主学习和小组合作交流,探索并掌握两位数加一位数的进位加法的计算方法,初步体会计算方法的多样化。

2、培养学生的动手能力、计算能力、提出问题和解决问题的能力。这将是本节课所要达到的能力目标。

3、教育学生养成良好的学习习惯,在活动中鼓励学生与他人积极合作学习,使学生进一步感受到数的计算与生活的密切联系,提高学生的学习兴趣。这将是本节课所要达到的情感目标。

在了解了教学目标以后,就是本节课的重点、难点部分。

通过学生的合作学习从而探索出多种计算方法并掌握笔算加法的计算法则。将是本节课的重点部分。而在这其中,对多样化算法进行优化,理解满十进一的算理,达到正确完成计算又将是本节课的难点部分。在这次教学中,我将引导学生运用自主探索、合作交流的学习方式突出重点,以及采用介绍算理、强调法则的方法来突破难点。

以上是我从这五个角度来对教材进行的分析,下面再让我们来看一下本次说课的第二部分,即教法分析部分。

二、教法分析:

以学生为中心,充分发挥学生的自主能力和创新能力,调动学生学习的积极性,根据这些指导思想,我将采用情境教学法、任务教学法、多媒体课件图片演示法来教学,这几种方法将贯穿于整个教学过程当中,帮助学生快速、正确理解教学内容。

三、学生情况:

本课面向小学一年级的学生,他们的特点是年龄小、思维活跃、表现欲强,有一定的独立思考、合作交流和解决问题的能力,但他们第一次接触进位加法,理解起来会有一定难度,这就需要在课堂中通过动手操作、实物演示加强理解。

四、学法指导:

本着以新课标的理论为指导,以学生为中心的原则,在本节课中我将指导学生采用如下两种学习方法进行学习:它们是自主学习和合作学习。自主学习意在于培养学生的探究能力,使其学会认知,为以后的终身学习奠定基础。合作学习意在于培养学生的合作交流能力以及团队意识。

五、下面让我们来看一下对以上三个部分的综合运用阶段即教学过程部分。

整个教学过程,我分成5个环节包括:复习旧知识、创设情境,激发兴趣、新知识探索、练习巩固、全课总结。

首先让我们来看一下第一个环节即复习旧知识。

一、(出示课件)口算以开火车的形式呈现,提高孩子的积极性。这些题目可以帮助孩子回忆前面学过的知识。竖式计算找两个孩子到黑板上来做,集体订正,帮助孩子回忆竖式计算所要注意的地方,为这节课打基础。

二、第二部分是创设情境,激发兴趣。在这一环节中,我将使用的是创设情境法。对孩子们说:小朋友们,老师告诉大家一个好消息:我们学校的图书馆买新书啦,你们想不想看看都有哪些书呢?在学生融入课堂情境的时候,我将告诉学生:这节课老师就带你们到图书馆去看一看。(出示课件:图书馆)这时我板书课题(板书:图书馆)并提出问题,你能看图找出哪些数学信息并根据数学信息提出哪些数学问题呢?学生提出的问题,只要有价值教师就给予鼓励,然后集体选择有价值的问题。比如:《汪汪乐园》和《海底世界》共有多少本? 你能解决这个问题吗?这就自然地引出有关两位数加一位数的数学问题,这就是本节课的重点学习内容。这个环节充分调动了学生学习的积极性、主动性,增强学生探索新知的欲望。

三、新知识探索

在新课引入过后,接下来就是本节课的第三个环节:新知识探索,也是本节课的重点部分。在这一环节中,我将使用的是任务就是学习法和多媒体演示法。第一步:我让同学们独立思考算法,试算28+4=,第二步:我组织学生组内交流算法,对每种算法进行评价。第三步再全班同学交流算法。学生可能用直观模型操作:比如摆小棒、拨计数器,也可能口算,也可能列竖式等。不管汇报的是哪种算法,一定要让他们说出算理。如果说到列竖式这种算法,教师要板书列竖式的算法,并强调满十进一的计算法则,这一系列活动突出了本节课的重点,同时又突破了教学的难点。这个环节的设计是以学生原有的知识经验为基础,让他们进行自主的探索性学习,大胆地让学生自己动脑、自己发现、自己描述,并通过小组讨论、汇报等形式相互补充,尊重了学生的个性,体现了算法的多样化,极大地激发学生的学习积极性和主动性,使学生学得轻松愉快。

在学生交流各种算法后,再让学生比较一下:你喜欢哪种计算方法,为什么?这些方法中谁和谁比较接近?引导学生通过比较各种方法的特点,选择适合自己的方法,进一步理解算理。这样做是为了关注学生的情感,尊重学生自主的选择,增强学生的优化计算方法的意识。

在新知识学习后,我就将带学生进行扩展应用,巩固本节课所学的内容。让学生充分体验数学来源于生活,同时又应用于生活。练习分两部分:一是基础练习,包括集体解决前面提出的其他问题、圈小棒、竖式计算。二是开放性练习,排队问题。这样做是为了满足学生多样化的学习需要,使不同的学生在数学上得到不同的发展,调动学生学习数学的积极性。

最后一个环节是全课总结,今天我们学习了什么?你有什么收获?有什么想法?你自己这节课表现得怎么样?学了本节课后,请你试着用本节课所学知识去解决生活中的数学问题。如果解决不了,可以存入问题银行以后再解决。学生的自评,既关注学到了什么,又关注是否积极主动地参与数学活动的学习,以及对学习数学的兴趣。另外还引导学生把所学知识运用到生活中,用所学的知识解决一些生活问题,培养学生自觉运用数学解决日常生活中问题的意识。

以上就是我从四个部分进行本次说课的全部内容,《图书馆》一课我以教研课的方式上了,出现了很多问题,比如避重就轻等。我根据老师们提出的宝贵意见,对教案做了再一次的修改,形成了今天的说课稿。我知道还有很多不足之处,请各位老师指出,以便我继续提高。这里再次感谢各位数学组的老师。

我的说课到此结束,谢谢大家。

篇13:数学说课稿

一、说教材

《解决问题》是人民教育出版社出版的小学数学第十一册第二单元的内容。这一部分主要是解决已知一个数的几分之几是多少,求这个数的分数除法应用题,教材借助比体重的活动,为学生创设问题情境。分数除法运用问题历来是教学中的难点,尤其是在分数乘除法混合问题时,学生难以判断使用乘法还是除法,因此我在教学时,充分利用主题图,让学生大胆地提出问题,鼓励学生解决问题。

二、说教学目标

1、、理解已知一个数几分之几是多少,求这个数的应用题的结构特征,能用方程或算术方法解答这类题。

2、通过结合具体情境,借助线段图小组合作等方法,提高学生分析问题解决问题的能力。

3、进一步渗透转化的数学思想。

三、说教学重难点

教学重点:

通过分析比较,找出分数乘除法应用题的区别和联系,掌握解决问题的规律。

教学难点:

运用分数除法解决实际问题。

四、说教学

说教学思路:

本节内容是在学生掌握了分数乘除法的基础上进行教学的,所以在导入环节我安排了分数乘法应用题,帮助学生回忆解决方法,并且借助线段图帮助解决,为教学新知识打下基础。然后改变复习题的条件,让学生借助复习题,小组研究解决方法,并引导学生找到等量关系是,引导学生列方程解决问题。学生很容易找到关系式,并且列出方程,解答后一定要检验结果是否正确。然后归纳解题方法,举一反三,试着解决第二个问题,小组里交流,使学生知道,解决已知一个数的几分之几是多少,求这个数,用方程解决比较简便。然后通过适当的练习题加以巩固,学生基本掌握的比较好。

篇14:数学说课稿

一、教材分析

《字形与字体》是福建省小学信息技术教材第四册第六课中的内容,教学对象是小学四年级学生。它是教材关于word的文本编辑的延伸,是学生能够顺利、快捷操作使用word的练习之一。教材目的是让学生通过字形与字体的编辑设置,实现文档的美化。新的教育理念告诉我们,学生的需要就是我们教学的动力,基于此点,我设计了这一课时,目的在让学生掌握字形与字体的设置的同时,培养学生的自主学习能力,进而唤起学生的生活体验,激发其情感。单就内容而言,对已掌握字体的部分设置的四年级学生来说并不难,因此在课堂上只需坚持精讲多练的原则,重难点知识让学生通过学习交流大家一起讨论解决或教师作适当个别指导帮助解决。

二、教学目标认知目标:

初步掌握字形与字体的变化以及特殊符号的输入方法。

能力目标:

培养学生自我探索、自我创新、自主学习的能力。

情感目标:

让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲。

三、教法阐述

本课采用的主要教学方法是“任务驱动法”。信息技术教学大纲明确指出:知识及技能的传授应以完成典型“任务”为主。因此在上课时先让学生打开前两节课写的作文,设置一个个任务,让学生运用课堂所学知识,自己动手,完成对作文的再次编辑、排版。教学中,启发、诱导贯穿始终,充分调动学生的学习积极性,注意调节课堂教学气氛,使学生变被动学习为主动愉快的学习,使课堂能在生动、有趣、高效中进行。

四、学法指导

本课教给学生的学法是“接受任务——独立操练——思考讨论”。新课改强调以学生为中心,要求学生由知识的灌输对象转变为信息加工的主体。因此本课教学过程中,让学生带着任务通过实际操作,自我探索,自主学习,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。

五、教学过程

根据本课教学内容以及信息技术课程学科特点,结合四年级学生的实际认知水平,设计教学流程如下: 首先,谈话引入,由学生所看过的涉及字形变化的报刊、杂志发问学生,这些特殊字形是怎样编辑的?以激发学生的好奇心,再告诉学生这堂课探讨的问题就是使用word给我们提供的工具美化自己的作文。接下来布置任务,让学生翻开课本15页,自己先认识一下这些工具。然后再打开第三课写的作文,利用这此工具再次编辑作文。让学生独立操练,遇到困难交流讨论,教师巡视并个别指导,再利用广播教学规范操作,最后再由学生操作。利用同样的教学方法继续认识字体设置,以及学会插入符号的两种方法,并思考这两种方法有什么异同,以及各自的优缺点。整堂课按“学生操作——教师个别指导——规范操作——学生练习”的顺序进行教授。

数学说课稿

初三英语说课稿

初三数学工作总结

初三数学复习计划

初三数学教学计划

初三数学知识点

初三数学总结

初三数学教学计划

初三数学期末试卷

《数学广角》说课稿

《初三数学说课稿(共14篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档