下面是小编精心整理的九年级数学《三视图》优秀说课稿,本文共19篇,希望能够帮助到大家。

篇1:九年级数学《三视图》优秀说课稿
人教版九年级数学《三视图》优秀说课稿
背景分析
三视图这节课对我来说,是第一次接触并讲授它,难免有些生疏,还有理解不深,考虑不周的地方,也请老师们批评指正。本节课是新人教版九年级第二十九章第二节第一课时的内容 ,是在学习空间几何体结构特征和投影之后的情况下教学的 。 三视图是空间几何体的一种表示形式,是立体几何的基础之一。学好三视图有利于培养学生空间想象能力,几何直观能力,有利于培养学生学习立体几何的兴趣,为高中的后续学习打下基础 .因此我将从投影的角度加深对三视图概念的理解和会画简单几何体的三视图作为本节课的重点.
教学目标设计
1.知识技能:能认别简单物体的三视图,了解主视图、俯视图、左视图和三视图的概念。会画简单几何体的'三视图。
2.解决问题:会画实际生活中的简单物体的三视图。
教学媒体设计
充分利用多媒体辅助教学的优势。用多媒体对长方体进行正投影得到三视图,直观形象展示得到主、左、俯视图的过程,让学生更直观、形象的感悟三视图的特征。从而达到教学媒体与教学目标,内容的统一。
教学过程
一、情境引入:
二、新课讲授:
1.讲解:视图的定义——从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看作物体在某一角度的光线下的投影.
说一说:课本图29.2-2中右侧的视图,分别从哪个角度观察反映出字典的不同形状.
提问:究竟一个简单的几何体需要几个视图才能全面地反映它们的形状呢?
讲解:引出三视图的概念,并理解用三视图来表达几何体形状、大小的意义。
从前向后正投影在正面内得到主视图。
从左向右正投影在侧面内得到左视图。
从上向下正投影在水平面内得到俯视图。
(明确长宽高概念:从正面观察几何体,长是几何体从左到右的距离,宽是几何体从前到后的距离,高是几何体从上到下的距离。)
思考三视图的画法:对几何体进行正投影得到三视图,将正面、侧面、水平面展开到同一平面。
讨论:观察得到三种视图的位置关系并讨论得到三种视图大小上的规律。
位置规定:主视图要在左上边,它的下方应是俯视图,左视图坐落在右边
三种视图的大小对应关系:主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等。
三、范例学习
例1、课本P110例题,常见的各种几何体三视图
四、练习
五、小结
1、三视图 主视图——从正面看到的图
左视图——从左面看到的图 俯视图——从上面看到的图
2、画物体的三视图时,要符合如下原则:
位置:主视图要在左上边,它的下方应是俯视图,左视图坐落在右边
大小:长对正,高平齐,宽相等.
六、作业
我在这节课的教学中,设置的检测问题不到位,在某些问题的讲解上还不够深入。所以在今后要努力提高和完善自身业务素养,尽快成长起来。
我想不同的学生群体,不同的教学资源设置,不同的任课教师,还遇到不同的问题。有了问题,才会有解决问题的办法,那么,这些解决问题的办法,就要靠全体同仁共同探索。让我们携起手来,共同提高。
篇2:九年级数学三视图试题
九年级数学三视图试题
一、精心选一选(每小题3分,共24分)
1、一个几何体的主视图、左视图、俯视图都是正方形,那么这个几何体一定是( )
A 、长方体 B、正方体 C、四棱锥 D、 圆柱
2、下图中几何体的主视图是( ).
(A) (B) (C) (D)
3. 某几何体的三种视图分别如下图所示,那么这个几何体可能是( ).
(A)长方体 (B)圆柱 (C)圆锥 (D)球
4、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )
A.O B. 6 C.快 D.乐
5、 小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,它的主视图应该是 ( )
6、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )
(A)5桶 (B) 6桶
(C)9桶 (D)12桶
7. 一个四棱柱的俯视图如右图所示,则这个四棱柱的
主视图和左视图可能是( )
8、如图是正三菱柱,它的主视图正确的是( )
二、耐心填一填(每小题3分,共30分)
9、俯视图为圆的几何体是 , __,______.
10、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有 ____个碟子.
11、棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是 .
12、一个几何体的`主视图和俯视图如图所示,那么这个几何体最多由_______个小立方体组成.
13、一个长方体的主视图和左视图如图所示:(单位:cm)则其俯视图的面积为_________cm2
14. 请将六棱柱的三视图名称填在相应的横线上.
15、举两个左视图是三角形的物体例子: ,
16、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面长分别为 __________.
17、主视图、左视图、俯视图都相同的几何体为________(写出两个)
18、在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是______(填上序号即可)
三、用心想一想(共66分)
19、(12分)根据要求画出下列立体图形的视图.
(画左视图) (画俯视图) (画主视图)
20、(12分)画出下面实物的三视图:
21、(14分)根据三视图想像出几何体,并求几何体的表面积(不取近似值)
22、(14分)如图所示是一个几何体的主视图和俯视图,求该几何体的体积(不取近似值)
23、(14分)如图,有一圆锥形粮堆,其主视图是连长为6m的正三角形ABC,母线AC的中点处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,求小猫经过的最短路程。(结果保留根号)
参考答案
一、精心选一选(每小题3分,共24分)
1、B 2、C 3、B 4、B 5、B 6、B 7、D 8、B
二、耐心填一填(每小题3分,共30分)
9、球、圆柱、圆锥
10、12
11、36cm2
12、8
13、6
14、俯视图 主视图 左视图
15、圆锥 三棱柱
16、 3 2
17、球 正方体
18、②
三、用心想一想(共66分)
19、略
20、略
21、
22、(30000+3200 )cm3
23、
篇3:《三视图》说课稿
一、说教材
1、本课内容:
义务教育阶段,数学的学习内容包括“数与代数”、“图形与几何”、“综合与实践”,本节课就“图形与几何”进行讲解。根据大纲要求,有关本节课内容需要会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图;能判断简单物体的视图,并会根据视图描述简单的几何体。
本节课的教学重点:理解三视图,并掌握三视图的画法。
本节课的`教学难点:几何体与其三视图之间的相互转化。
2、在教材中的位置:
《三视图》是人教版九年级下册第二十九章《投影与视图》第二节的教学内容,通过本节课的学习,为高中进一步学习空间几何打下基础。
二、说学生
1、学生已有知识基础包括:平行投影、正投影、中心投影以及空间几何体结构特征。
2、本班学生课堂学习积极性高,好奇心强,具有一定的探究能力,但抽象思维能力薄弱,在课堂教学中应重点突破。
三、说目标
1、通过探究与学习,理解视图、三视图的概念,掌握三视图画法,能够进行三视图与几何图之间的转化。
2、感受从不同方向观察同一物体可能看到不一样的结果,培养学生全面观察的能力。通过对三视图的分析,(采用实物模型)以小组探究的方法掌握三视图的基本画法,促使学生的思维活动外显,提高学生的合作探究能力。
3、通过三种视图才能确定一物体,启发学生认识问题要从多个角度进行分析。
四、说教法和学法
1、教法:
根据新课程教学理念,要求以学生为中心,教师要注重引导与启发,所以在教学过程中采用讨论法和体验学习教学法,通过师生互动、生生合作,使学生在动手动脑动口过程中,积极参与课堂教学活动,掌握学习重点。由于本节课知识相对较抽象,而学生抽象思维能力薄弱,所以在教授过程中采用直观的演示法来突破知识抽象性这一难点。对于较简单的理论概念,教师为保证课堂教学效率,采用讲授法。
2、学法:本着以学生为本的教学理念,为了尽力让所有学生都参与到课堂中,成为课堂的“主角”,同时也为了培养学生的合作探究能力,在学画三视图时进行小组讨论探究学习。
五、说教学过程
1、导入新知:
以古诗《题西林壁》导入(横看成岭侧成峰,远近高低各不同)。
【设计意图】切入主题,激发学习兴趣,另外也能展现学科间并不是孤立的,有其互益性,数学也可以充满文学是色彩。
2、讲解“视图”的概念
结合上次课所学的“正投影”的概念延伸到“视图”的概念。
【设计意图】新知与旧知结合,建立知识之间的联系,便于学生理解。
3、用图片展示三视图在生活中和工程设计中的应用,引导学生发现通过三个方向的视图,就可以确定一物体,引出对三视图的研究。
【设计意图】让学生感受数学来源于生活,激发学生对数学学习的兴趣,引导学生发现三视图的组成
4、通过直观的动画演示,说明三视图的形成过程,与此同时讲解“主视图”、“左视图”和“俯视图”的概念;将三种视图之间的位置关系(长对正、高平齐、宽相等)及大小关系的推演过程展示出来。
【设计意图】学生的抽象思维能力薄弱,用直观的动画演示来完成这一教学内容,便于学生理解知识。
5、本节课重点内容为掌握简单几何体的三视图画法,通过小组合作探究的方法来完成重点内容的学习。将学生分为十组,每组4―5人,将“四棱柱”“三棱柱”“圆柱”“圆锥”、“球体”的实物模型分发给各组,其中每两个组所发模型相同,向学生说明任务要求。
活动任务:小组成员讨论,探索如何将立体图的三视图画出来。五分钟之后,从所画立体图相同的两个小组选出一组将小组成员讨论出的三视图画到黑板上,另一组在此过程中仔细观察,并对其进行评价。
根据学生所画三视图情况,引导学生总结画三视图的步骤(正投影、找位置、定尺寸)及应注意的问题。
老师重点说明画三视图时的细节问题,如看不见的边用虚线表示、尺寸的确定与实物一一对应(严谨性),总结寻找画几何体三视图的规律(柱体的主视图和左视图都为矩形、圆柱和圆锥的俯视图都为圆形,但圆锥俯视图中间有一黑点、球的三视图都为圆形)。
【设计意图】画三视图是本节课的教学重点,小组合作探究一方面可以加深学生对这一知识点的理解,另一方面,可以培养学生合作探究的能力。
6、在PPT中由逆推法逐一呈现主视图、主视图+左视图和主视图+左视图+俯视图,让学生说出相对应的几何体,训练学生由视图到立体图的转换能力,进一步说明确定一个立体图形需要三种视图来描述。
【设计意图】几何体与三视图之间的转化是本节课的难点,用逆推法循序渐进地让学生掌握由三视图判断几何体的方法,易于学生接受
7、课堂小结
视图的概念
三视图的概念
三视图的位置关系及大小关系
画三视图的步骤
【设计意图】梳理归纳本节课知识点,让学生对知识形成系统的认识,加深记忆。
8、情感价值观教育
猜猜他们是什么关系?
看问题不能只看单方面,同学之间相处也是一样的,要从很多方面看待同学,从不同的角度看待问题,这样你看到每个人都有很多优点。
【设计意图】培养学生多角度、全面看待问题的思维模式。
六、说评价
1、教师通过观察学生的课堂表现及反馈情况,以及学生小组讨论后所画三视图的情况,判断学生对本节课的掌握情况。
2、小组合作探究环节,加入了小组之间互评的评价方式。
本节课遵循“以教师为主导,以学生为主体”的教学原则,重视发展学生的抽象思维,把课堂交给学生,让学生亲自经历和体验知识的获取过程,提高学生的合作探究能力和创新精神。
篇4:《三视图》说课稿
一、教材分析
1、本堂课在教材中的地位和作用:人们在日常生活中接触到的是立体图形,而要研究它,往往把它转化成平面图形来研究。图形的三视图是立体图形转化成平面图形的一种形式,而下一节的“立体图形的表面展开图”是由立体图形转化成平面图形的另一种形式。而整个初中数学教材的编排顺序也是按立体图形—平面图形——多边形——四边形——三角形的编排顺序。因此,本节内容将是由立体图形到平面图形的一个纽带,学好它至关重要。
2、教学内容分析:本节课由学生日常生活引入,由浅入深,循序渐进。由生活中的立体图形——视图——利用图纸制作工件。让学生经历探索三视图画法的过程,让学生深切体会到数学知识来源于生活,运用于生活。
3、教学目标:
(1)知识目标:让学生能画出简单立体图形的三视图。
(2)能力目标:培养学生多角度观察事物的能力以及空间想象能力、渗透数学转化思想。
(3)情感目标:通过学生对“三视图”的学习应用,激发学生热爱生活、热爱数学的情感。
4、教学重点:
画简单立体图形的三视图。
5、教学难点:
三视图与美术作图的区别。
二、学情分析
七年级学生对身边有趣的事物充满好奇,对一些有规律性的问题充满探求的欲望,他们非常乐意动手操作,有很强的好胜心和表现欲,有一定的归纳能力。但是他们开始接触几何知识,空间想象力太弱,缺乏从多角度观察事物的经验。
三、教学方法
依据新的课程标准精神及建构主义学习理论,学生学习不是教师向学生传递知识的过程,而是学生建构自已的知识和能力的过程。根据以上教材的特点和学生的具体情况,我将采取以下教学方法进行教学。
1、情景教学法:通过各种情景的设置,让学生溶入到生活中去。通过在生活情景中体验、掌握数学知识,让学生深切体会到,数学就在我们身边。
2、直观教具演示教学法
通过直观教具的演示,以及学生利用学具亲自操作,培养学生从多角度观察事物的能力。满足学生的探求欲望。
3、多媒体辅助教学法。
通过多媒体动画演示,针对学生缺乏空间想象力的弱点化难为易。让学生能轻易理解三视图的作法,区分三视图与美术作图。
在学法指导上,我让学生初步体验“结合情景,自主参与,合作交流”的探索式学习方法,让学生在“活动中实践,在实践中感悟,在感悟中成长。”
四、教学程序
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。我将从以下几个环节进行教学。
(一)、情景导入
通过多角度观察小车的形状。工人修建房屋前观看的图纸引出三视图。让学生溶入到情景之中。激发学生的学习兴趣。
(二)、合作探究
这部分内部是教学中的一个重要部分,主要让学生掌握三视图的概念以及作三视图的方法。首先我通过多媒体演示从正面、上面、左面三个方向观察飞机的形状并展开小组讨论归纳得出三视图的概念。通过对水管三叉接头三通的三视图的描绘及直观教具演示和多媒体动画演示教会学生作三视图的方法。体验三视图与美术作图的区别。突破本课难点。
(三)、例题讲解
我主要讲解正方体及三棱柱和圆锥体的三视图的画法。归纳出画三视图要注意的问题即要将所观察到的棱和顶点画出。
(四)、巩固练习
主要练习球体、四棱柱、圆柱体及变式练习。让学生进一步体验画三视图要注意的问题。然后让学生描绘由小正方体搭成的立体图形的三视图。让学观察自已手中的学具探讨、交流然后通过多媒体演示,降低学生对复杂图三视图描绘的难度,让学生进一步掌握三视图的画法。
(五)、生活运用。
课上到这里,学生对三视图的'作法基本掌握,那么学好三视图有什么用呢?这时正是让学生回归生活,应用数学的最佳时机。这时我让学生也来当一回工程师,给学生一个描绘由正方体、圆柱体组合而成的零件的三视图的机会。并让学生体验到学习三视图的用途,培养学生应用数学的意识。进一步加深对三视图作法的印象。
(六)、课堂小结:课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。我将从以下三个方面进行总结。
1、视图是将立体图形转化成平面图形的一种方法。
2、同一物体,不同的放置方式,不同的观察方向。其视图有可能是不一样的。
3、在画立体图形的三视图时,一定要将所观察到的棱和顶点画出来。
五、板书设计
好的板书简明扼要,能体现知识的脉络、要点及要注意的问题。并能规范学生的解题格式。
六、课后反思
通过以上教学活动的设置,学生基本上能掌握三视图的画法,能体验到学习数学的乐趣。但学生的空间感不是一两天就能培养起来的,还有待在以后的教学活动中加强训练。
篇5:三视图说课稿
实用三视图说课稿
教学时间:1课时
学习领域:设计·应用
教材分析:
一般而言,我们从某个单一的视角所观察到的物体形体信息是不完整、不全面的,所以,只有从前后、左右、上下各个角度全面的观察,才能获得完整的物体形象。从这三个角度观察而得的物体的平面图就是我们所说的三视图。
三视图在现代社会中应用极广,造型设计、加(施)工、产品使用、电脑辅助设计等领域都要用到三视图及其原理。本课的设置目的是:让学生通过了解三视图的基本原理和方法,在个体的实践练习中提高其空间思维能力和空间想象力,形成健全的空间观念。三视图和立体图的相互转换难度适中,也很有趣,易于为学生接受。
学生分析:
初中学生求知欲强,涉猎广泛,设置三视图与立体图的转换练习既具有新鲜感,又富于思维的挑战性,是合他们胃口的。本课除了要向学生明确正确的三视图原理和绘图方法外,还应适当强调三视图的表达效果(这是其设计应用的属性决定的),但不必过分强调制作的专业性。
教学目标:
1、在直观教学中了解三视图的基本含义和画法。
2、通过欣赏认识三视图的社会应用。
3、通过多种练习,提高学生的空间思维能力,设计绘图能力,形成学以致用的意识。
教学重点:三视图与立体图的相互转换练习。
教学难点:三视图的绘制方法。
教具准备:
教学课件、视频演示台、图片资料、立体模型、三角尺、圆规等。
学具准备:铅笔、橡皮、直尺、三角板、圆规等。
教学流程:
导入新课 欣赏理解 讲解画法 实践练习讲评观摩。
教学过程:
教学环节
教师活动
学生活动
设计构思
导入新课
“同学们,我们今天玩一个猜谜游戏,好吗?”
[出示图片1]
“根据你的经验,图1是表现的什么事物呢?”
基于现有图形猜测:
回答(略)
通过设置悬念,引起学生关注和思索,同时为三视图的概念导出创设情境。
“看来,大家的意见很不相同,是老师提供的信息太少了;我们再添加一个信息呢……”
[出示图片2]
两图结合,有的答案被否决了,但也有新的答案出现,答案还是五花八门:
回答(略)
“还有分歧,信息还是不充分。我们再提示一个信息……”
[出示图片3]
大家同时说出了谜底
“台灯!”
归纳结论:
①
生活中,如果我们仅仅观察事物的一个侧面,并不能准确的了解它;
②
只有从前后、左右、上下等三个角度综合的观察,才能全面的掌握物体的造型信息,从而避免“盲人摸象”式的'笑话发生;
③
平面图要比立体图的形式简单,易于掌握,有很高的实用性。
学生们跟着思考,理解,
频频点头,表示认同。
出示课题
“用三幅从相互垂直的三个角度观察所得的平面图来反映物体全部造型信息的方法,就是我们所说的三视图。”[板书]
看P18第一段,作笔记。
图片欣赏
“下面,我们一起来欣赏一些三视图作品。”
[出示图片“4组”]
学生欣赏,评论,畅谈感受
通过直观教学,从感性层面了解三视图的应用领域,把教学和生活实际相联系,培养学生“学以致用”思想,为下一步绘制三视图作准备。
“大家看,三视图的都有哪些社会应用啊?”
[总结,板书:沟通设计、生产、使用诸环节。]
学生发言,总结归纳。
“产品设计”
“生产和施工”
“宣传、推介”
“使用产品”
“维修、保养”
三视图的
形成
和绘制方法
“那么,三视图是怎样形成的呢?”
[出示课件]
学生观看,了解,笔记。
以直观的动画演示三视图的形成过程,软化了难点。
[讲解:]“为了三视图使用的方便,我们规定了一些它的绘制规则……”
[板书:
①
位置固定:
②
尺寸相应:
(长对齐,高平齐,宽相等)
③
虚(不可见部分)实(可见部分)并用。]
掌握绘图技巧
强调绘制要领,为下一步的三视图绘制练习做技术铺垫。
三视图练习
辨识
三视图
[出示P18图-塑料壶]
分辨右边的平面图是哪只壶的
仔细观察,阐述观点,说明理由
训练学生观察能力和空间想象力
三视图-立体
[课件出示图片“5组”、“6组”、“7组”,引导练习,巡回辅导]
根据提示信息,完成练习,巩固知识,掌握技能;自评、互评。
通过多种形式的练习强化所学知识,形成美术技能。
立体图-三视
补齐
三视图
作品
观摩与讲评
师生互动,品评得失。
体验成功的乐趣,交流学习心得,激发学生持久兴趣。
小结和拓展
总结课堂教学,布置课外作业。
“大家翻到课本的封面,这上面有一只陶器,它造型奇特,简约古朴,有兴趣的同学可以在课下试着画一下它的三视图。”
利用既有兴趣,延伸教学效果,探索深层次的美术技巧。
板书设计:
教学反思:
1、学生们在数学课上接触过三视图,个别人参与积极性不高。
2、绘制三视图时,部分学生遗漏细节,比例不调,或画成了立体图。
篇6:九年级数学说课稿
一 【教材分析】
地位和作用:本节课是人教版九年级上册24章第2节的第3课时,是学生已掌握了点与圆、直线与圆的位置关系等知识的基础上,来研究平面上两圆的不同位置关系,是学生对圆的知识应用的基础,也是今后到高中继续研究平面与球的位置关系,球与球的位置关系的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
二 【教学目标】
知识技能目标:
1、探索并了解圆与圆的位置关系。
2、探索圆与圆的位置关系中两圆圆心距与两圆半径间的数量关系。
3、能够利用圆与圆的位置关系和数量关系解题。
过程与方法:
学生经历探索圆与圆的位置关系的过程,培养学生的观察、分析、归纳、概括的能力;学会 “类比”、“分类讨论”、“数形结合”的数学思想;提高运用知识和技能解决问题的能力,发展应用意识。
情感态度目标:
学生经过操作、实验、确认等数学活动,体会运动变化的观点,量变产生质变的辨证唯物主义观点,感受数学中的美感。
教学重点与难点:
教学重点:探索并了解圆和圆的位置关系。
教学难点:探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系。
三【教法与学法分析】
1、课堂上本着人人学有用的数学,人人获得有价值的数学的新课程理念,从生活中的图形实例出发引入新课,并用动画演示,直观形象的展示圆与圆的位置关系,经过探索、讨论、观察、总结 、再运用的学习过程,逐步深入地探索知识和掌握知识,非常符合这个年龄段学生的认知特点;
2、改生硬的传授和呆板的讲课,着眼于直观感知和操作认识,从学生熟悉的实际出发,让学生看一看、想一想认识图形的主要特征与图形变化的基本性质,学会识别不同的圆与圆的位置关系的图形;
3、在课堂上赋予适当的教学说理,达到把知识由浅入深;从无规律到有规律;从直观认识到理性认识的数学学习过程,培养学生一定的合理推理能力以及增强学生的严密的思考能力,同时培养学生适当的数学素养。
四【教学程序设计】
1、创设情境,激发兴趣
2、提出问题,引导探究
3、动画演示,探索新知
4、归纳总结,整体感知
5、应用新知,拓展提高
6、布置作业,巩固加深
五【教学过程】
1、创设情境,激发兴趣
设计意图:引导学生欣赏图片,激发学生对探索两圆位置关系的兴趣,由此引入到要研究的课题。(课件展示)
2、提出问题,引导探究
探究1:直线与圆的位置关系的几何特征是通过公共点来刻画的,请同学们猜想一下,圆与圆的位置关系按公共点分类能分成几类?
动手操作;在事先准备好的两张透明的纸上画两个半径不同的⊙O1和⊙O2,把两张纸叠合在一起,固定其中一张而移动另一张,你能发现⊙O1和⊙O2有几种不同的位置关系?每种位置关系中两圆有多少个公共点?
设计意图:让学生亲自动手实验,参与数学活动。
3、动画演示,探索新知
设计意图:是让学生运用运动变化的观点观察两圆的位置关系的变化及公共点个数的变化情况,学会用类比和分类讨论的方法去研究两圆的位置关系。
学以致用
1、北京奥运会自行车比赛会标在图中两圆的位置关系是_____
2、在图中有两圆的多种位置关系,请你找出还没有的位置关系是__
3、请你指出生活中图片蕴含的圆和圆的位置关系( 图形在课件上)
设计意图:是让学生学会用数学语言表述问题,体会数学来源于生活,并服务于生活,增强应用意识。
探究2:影响直线与圆位置关系的数量因素是半径和圆心到直线的距离,那么影响圆与圆的位置关系的数量因素是什么?
探究2 是本节课的重点内容,教学中通过课件的动画演示,让学生探索出不同位置关系时两圆的圆心距(d)和两圆的半径(R和r)的数量关系。(观看课件动画)
设计意图:利用多媒体动画演示让学生直观形象地观察圆与圆的位置关系,学生能轻松的从数量关系的角度来探索两圆的位置关系,突破难点,体会数形结合的数学思想。
4、归纳总结,整体感知
通过前面的教学让同学们自己总结,填写下表:
圆与圆的位置关系
位置关系 图形 交点个数 d与R、r的关系
(R>r)
d>R+r
d=R―r
设计意图:采用表格形式,将知识点归纳,通过表格很容易看出圆与圆的位置关系的分类情况,体会数形结合思想,以及两圆位置关系的判定方法,让学生形成清晰、系统、完整的知识网络。
5、应用新知,拓展提高
例1:如图,⊙0的半径为5cm,点P是⊙0外一点,OP=8cm,
求:(1)以P为圆心,作⊙P与⊙O外切,小圆P的半径是多少?
(2)以P为圆心,作⊙P与⊙O内切,大圆P的半径是多少?
练习:圆O1和圆O2的半径分别为3厘米和4厘米,下列情况下两圆的位置关系是怎样?
(1) O1O2=8厘米 (2)O1O2=7厘米
(3)O1O2=5厘米 (4)O1O2=1厘米
(5)O1O2=0。5厘米 (6)O1和O2重合
设计意图:利用两圆位置关系与圆心距和半径之间的数量关系来解决问题。培养学生应用知识的能力。
6、归纳总结,布置作业
1)问题:回顾本节课的探究过程,我们懂得了哪些新知识,学会了哪些方法?
2)布置作业:A:课本习题14。3中第1、4、6题。
B :课余探索:和圆O1(半径为2)圆O2(半径为1)都相切且半径为3的圆共有几个?
设计意图:通过总结回顾本节内容,帮助学生学会归纳,反思,培养科学的认知习惯。作业布置注重了分层,让探究延伸到课外。
六【教学评价】
1、 本节课的设计,我从生活中的图形实例出发引入新课,运用动画演示,直观形象地展示圆与圆的位置关系。让同学们经过探索、讨论、观察、总结得出结论。
2、 采用表格的形式将圆与圆的位置关系分类列出,既体现了分类思想,又体现了数形结合思想;把知识由浅入深,从直观认识到理性认识的数学学习过程,是学生真正理解和掌握基本的数学知识与技能、思想和方法,获得广泛的数学活动经验。
3、通过课后作业的完成情况,进一步了解学生对圆与圆的位置关系的理解和掌握的程度。教师根据这些评价结果做出相应的反馈和调节,调整设计下节课或下阶段的教学内容,以达到尽可能好的教学效果。
板书设计:
位置关系 图形 交点个数 d与R、r的关系
(R>r)
d >R+r
d =R―r
篇7:九年级数学说课稿
一、说教材
1、说课内容:
《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。
2、教学目标:
认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。
能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重、难点:
重点:使学生掌握梯形面积的计算公式。
难点:理解梯形面积计算公式的推导过程。
二、说教法与学法
1、根据几何图形教学的特点,我采用了以下几点教法:
①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;
②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、通过本节课的教学,使学生掌握一些基本的学法:
①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;
②让学生学会自主发现问题,分析问题,解决问题的方法。
三、说教学过程
新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:
(一)、创设情境,引出问题。
1、课件出示 “神七”发射实况
2、谈话引出课题
梯形的面积如何计算?引出学习的内容。
〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉
(二)、自主探究,合作交流
1、直接切入主题:
对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路――把梯形转化为我们学过的图形。)
〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉
2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)
3、自主探究,合作学习
学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉
4、分小组展示汇报,教师深化点拔。
教师板演推导过程。
5、引导学生用字母表示公式: S=(a +b)×h÷ 2
6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)
〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉
(三)、学以致用,解决问题
1、学习例3
(1)、借助教具演示,理解“横截面”的含义。
(2)、弄清渠口、渠底、渠深各是梯形的什么?
(3)、学生尝试计算横截面积。
〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉
(四)、应用深化,巩固练习:
1、做一做:请两名学生板演。
2、课件出示练习题。
(通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。)
(五)、总结,反思体验
回想这节课所学,说说自己有哪些收获?学生谈收获,谈学习方法,教师小结强调梯形面积公式的推导过程。
〈这个环节主要是再次把学习的主动权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。〉
四、板书设计
板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。
篇8:九年级数学说课稿
各位专家领导,大家好!
非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。
我说课的题目是:苏科版九年制义务教育八年级上册第三章中心对称图形中的第6节“三角形梯形的中位线”的第一课时。
一、教材分析
1、教材的地位和作用
本节课是苏课版数学八年级上册第三章第6节第1课时的内容。在此之前,学生已学习了旋转图形、中心对称与中心对称图形的性质,利用中心对称图形的性质,研究了平行四边形的性质,并在此基础上展开了对矩形、菱形、正方形的研究。这一节的内容也是本章的重要内容,主要是利用中心对对称变换,研究三角形中位线和梯形中位线的性质,并通过中心对称变换向学生展示一个重要的数学思想方法——转化。将三角形中位线性质的研究转化为平行四边形性质的研究、梯形中位线性质的研究转化为三角形中位线性质的研究。本节内容虽然安排在本章的最后一节,但是三角形、梯形的中位线的性质在今后的几何推理、证明中将时有出现,有些问题我们用构造中位线的方法可以轻松解决。
2、课时安排和说明
“3.6三角形、梯形的中位线”这一节安排两课时,第一课时,探索得到三角形中位线的概念和性质,并会利用三角形中位线的性质解决有关问题;第二课时,在三角形中位线的基础上,探索梯形中位线的性质,并用此性质解决有关问题。本次说课内容为第1课时。
3、教学重点和难点
教学重点:探索三角形中位线性质的过程,体会转化思想。
教学难点:利用中心对称性质研究得到三角形中位线的性质。
二、学情分析
认知分析:学生已掌握了如何构造中心对称图形以及中心对称的性质,这将成为本课学生研究和探索三角形中位线性质的基础知识。
能力分析:学生通过前三章内容的学习,已具备一定的操作、归纳、推理和论证能力,但在数学意识与应用能力方面尚需要进一步培养。
情感分析:多数学生对数学学习有一定的兴趣,能够积极参与动手操作与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生主动性不够强,尚需通过营造一定学习氛围,来加以带动。
三、教学目标
知识与技能目标:探索并掌握三角形中位线的概念和性质。
过程与方法目标:经历探索三角形中位线性质的过程,体会转化的思想方法,进一步发展学生操作、观察、归纳、推理能力;让学生接触并解决一些现实生活中的问题逐步培养学生的应用能力和创新意识。
情感与价值观目标:通过真实的、贴近学生生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣;通过对三角形中位线的研究,体验数学活动充满探索性和创造性,在操作活动中,培养学生的合作精神。
四、教法、学法
教法:本课采用“情境——问题——探究——反思——提高”,使学生进一步体验到数学是一个充满着观察、实验、归纳、联想和猜测的探索过程。
学法:本节课采用小组合作、实验操作、观察发现,师生互动、学生互动的学习方式。
五、程序设计
课堂教学是学生数学知识的获得、技能技巧的形成、智力的发展以及思想品德的养成的主要我们途径,为了达到预期的教学目标,我对整个教学过程进行了系统的规划,遵循目标性、整体性、启发性、主体性等一系列原则,进行教学设计,设计了以下六个教学环节:
(一)激发情趣、问题导入
(二)指导观察、认识特点
(三)自主探索,探求新知
(四)合作交流、推理证明
(五)尝试运用,巩固性质
(六)小结反思,巩固提高
六、说课过程
(一)激发情趣、问题导入
(投影)先让学生看一个现实问题,使学生认识到生活中处处有数学:
如图,A、B两地被建筑物阻隔,怎样测出A、B间的距离?说说你的方法。让学生观察、思考,学生可能回答用全等的知识,也可能回答用直角三角形的性质(勾股定理)来测量。
(问题导入,并配以题目,让学生自然进入学习的氛围,为下面的教学打下良好的基础,体现数学来自生活的新课标理念。问题引疑,激发学生学习兴趣。)活动探究:
活动 操作——观察——探究
给你一个任意的三角形(不要用特殊的三角形如直角三角形、等腰三角形等),能否只剪一刀,就能将剪开的图形拚成一个平行四边形呢?请大家按分好的小组一起动手操作一下,然后将结果告诉老师。
(分组动手操作激发学生学习的兴趣,增加学生的感性认识,同时培养了学生合作的良好习惯。体现学生“自主学习”的过程,并培养学生的合作意识。)(将学生原来的三角形和拚好后的图形一起贴在黑板上)(二)指导观察、认识特点观察:大家观察图形的变化师:哪一组的代表在黑板上画出转化前后的图形(教学:指导学生在图形必要的地方标上字母,并将变化前后的字母都标在转化后的图上。)师:同学们剪的、画的都非常准确,可谁能告诉大家你是如何找到剪痕DE的呢?
生:我是通过做高AF,将点A与点F重合的折叠的方法找到的生:我是先通过用对折的方法分别找出AB与AC的中点,再沿着DE折叠找到的。
师:两种折法不同,那么哪一种的做法是正确的呢?为什么?
生:(学生讨论后归纳)两种做法都是正确的,因为两种做法的折痕是重合的。
(构造中心对称为下面利用中心对称的性质研究三角形中位线的性质做铺垫。)师:通过操作我们可以看到线段DE实质上就是三角形两边中点的连线,我们给这样特殊的线段起个名称叫做三角形的中位线。
(板书:三角形的中位线)
三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。
(三)自主探索,探求新知
师:大家观察黑板上的拚图及所画的图,会发现DE与BC有什么关系?
(小组讨论)学生自由发言 生:DE是平行于BC 生:两个DE的长等于BC师: DE从位置上看是平行于BC的,而数量上看等于BC的一半。即DE∥BC,DE= BC.这也就是三角形中位线的性质。
(板书:三角形中位线的性质:三角形的中位线平行于第三边,并且等于第三边的一半)师:你能用符号言语将它表示出来吗?
生:能 因为 AD=DB,AE=CD 所以 DE∥BC,DE= BC(通过直观的观察让学生得到三角形中位线的性质,培养学生对客观世界的直观认识,培养学生的猜测、归纳能力。)(四)合作交流、推理证明师:三角形有中位线的性质只是我们通过直接的观察得到的,它一定是正确的吗?让人总感觉到有点不敢相信,能不能让我们通过推理的方式把它的正确性加以验证呢?生:能。
师:好,我相信大家的能力。请大家根据黑板上的图形,写出已知的条件及所要说明的结论。就让我们勇敢的同学上来将过程展现给大家看一看,大家同时练习好不好?
学生板演,教师点评,强调注意点。
(用推理的方法对三角形的中位线的性质进行验证。培养学生严密的数学态度,也发展学生有条理地思考和表达能力体验成功的喜悦。)(五)尝试运用,巩固性质1.性质运用师:下面我们通过习题尝试运用三角形的中位线性质。
出示:例1 如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,四边形EFGH是平行四边形吗?为什么?
(学生讨论后)回答:是
师:谁来告诉大家,你是如何思考这个问题的。
(鼓励学生回答:利用①一组对边平行且相等;②两组对边分别相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形)师:变式1:如果这个条件不变,改变结论:如EG与FH的关系等。
变式2:四边形ABCD是平行四边形呢?
变式3:四边形ABCD是矩形呢?
变式4:四边形ABCD是菱形呢?
(体会图形的构造过程,增强学生的感性认识,进一步理解题意,通过变式练习,培养学生的发散思维能力及图形的动感,使学生体会到事物之间都是相互联系的)例2.尝试解决本课开头的问题。
总结:可在地面上选一点C,连接CA、CB,分别取CA、CB的中点D、E,连接DE,量出DE的长,则根据三角形中位线的性质,可知AB=2DE.(前后照应,学以致用。)(六)小结反思,巩固提高1、你是如何发现三角形的中位线及其性质的。
2、让学生自己思考通过本节课的学习有什么体会?
(课堂小结不仅可以使学生从总体上把握所学的内容,得到相应的体验,在活动中做数学,还可以培养学生的语言表达能力,培养学生良好的个性与思维品质,对学生的小结以鼓励为主,让学生有学习数学而获得的成功的体验与喜悦。)板书设计(略)本节课我主要采取“创设问题情境——组织数学活动——引导自主、合作学习——观察发现得到概念——问题解决”的教学模式,培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发展数学和应用数学解决生活中问题的过程,发展学生的空间观念,品尝成功的喜悦,激发学生应用数学的热情,同时注重学生的动手能力、协作与交流能力、数学语言表达能力的锤炼与培养。由于八年级学生的理解能力与思维特征,也为使课堂生动、有趣、高效,将学生分成若干个学习小组,学生采用“多观察、多动脑、大胆猜、勤钻研”的研讨式学习方法。给学生提供更多的活动机会和空间,在动脑、动手、动口的过程中获得充分的体验和发展,从而培养学生各方面的能力。
总之,本节课教师的角色是引导者、合作者、组织者,注重让学生在活动中学好数学,通过数学活动与小组的交流,让学生有更多的展现自我的机会,并给予鼓励,另外侧重利用学生生活中的问题,让学生经历将实际问题数学化的过程,体会“生活中处处有数学,生活中时时用数学”.
篇9:九年级数学下册《投影和三视图》教学反思
人教版九年级数学下册《投影和三视图》教学反思
我执教了《投影与视图》,现将自己在这章中的得与失总结一下。
一、创造性地使用教材。
教材是给教师和学生提供的一个信息平台,教师在实际的教学中,要结合着实际情况进行调整。让学生知道“数学知识来源于生活”的数学理念。
二、注重“实践出真知”的基本理念
教学中,关注实践活动中获取知识。课堂上通过学生的实践、观察、归纳与思考交织在一起进行,这有效地促进了知识的学习,便于评价学生所体现的主动参与和积极思考。
三、体现“数学知识生活化”,让学生学习“有用的数学”
“数学知识生活化”,主要表现在三个方面,一是材料来源要尽可能地采用生活中的资料;二是主要知识点的`引出尽可能来源于学生此文转自斐.斐课件.园熟悉的事物或实际活动;三是要在实际中鼓励学生利用数学知识解决实际问题,都渗透了数学是“生活化”和“应用意识”。
四、不足和改进的地方
在实际教学中,出现了一些遗憾。一是课堂上留给学生的时间太少,没有让每个同学都充分发挥自己的想象力;课上讨论中一些生成性的问题没有充分展开,二是备课不细致,有待提高。继续加强学习提高自身的业务水平是我以后努力的方向。
篇10:《空间几何体的三视图》高一数学说课稿
各位领导、专家:您们好!
今天我说课的内容是课标教材人教版A版《必修2》第一章“空间几何体”中第二节“空间几何体的三视图和直观图”的第一课时。下面我的说课将从以下几个方面进行阐述:
一、教材分析
本节课是在上一节认识空间几何体结构特征的基础上学习空间几何体的表示形式。主要内容是:介绍两种不同的投影方法,画空间几何体的三视图。
通过本节的学习可以进一步提高学生对空间几何体结构特征的认识,培养空间想象能力、几何直观能力,运用图形语言进行交流的能力。是学好立体几何的基础之一,是本章的重点。
二、教学目标
⒈知识与技能:了解两种投影方法,中心投影与平行投影.掌握三视图的画法规则,能画出简单空间几何体的三视图,能由三视图还原成实物图。
⒉过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
⒊情感、态度与价值观:欣赏空间图形反映的数学美,培养学生大胆创新、勇于探索、互相合作的精神。
三、教学的重难点
重点:画出空间几何体的三视图。
难点:识别三视图所表示的空间几何体。
四、学情分析
在义务教育阶段,学生已经初步接触了正方体,长方体的几何特征以及从不同的方向看物体得到不同的视图的方法.但是对于三视图的概念还不清晰;还无法准确的识别三视图的立体模型. 高一年级的学生年龄小,具有模仿性强、记忆力好、表现欲望强等特点。根据学生已接触的空间几何体结构的相关知识,将学生引入到如何观察这些空间几何体,非常符合学生的好奇心,能激发他们的求知欲,使他们易学、乐学。
五、教法分析
为了提高教学效率,做到精力节约化和绩效最优化,本着提高学生自主探究能力,增强他们合作学习的意识,有利于学生可持续发展的宗旨,针对本节课知识抽象的特点,我采用的教法是运用多媒体直观感知和动手实践发现法,以及“看—作—议—讲”结合法。
在教学中,通过创设问题情境,充分调动学生学习的主动性,并引导启发学生动眼、动脑、动手。同时采用多媒体的教学手段,加强直观性和启发性,增大课堂容量,提高课堂效率 。
课前准备:电脑、投影仪、课件。
六、学法分析
学习方式的转变是新课程改革的重要目标之一,提倡学习方式的多样化,强调学生的动手操作和主动参与。而高一是学生打好数学基础的关键阶段,学生思维正从经验型向理论型发展,观察力、记忆力、想象力也在迅速发展。而这节课考察学生空间想象能力,难度较大。根据本节课特点及学生的认知心理,学生在教师营造的“可探索”环境里,积极参与、通过自己的观察,想象,思考,实践,主动发现规律、获得知识,体验成功。
七、教学过程分析
(一)创设情境,引入新课
活动1.(多媒体播放手影表演图片,组织学生欣赏)
1.导入:同学们在感受这些形象逼真的图形时,是否思考一下,这些图形是怎样形成的呢?它们形成的'原理又是什么呢?这就是我们本节课所要探讨的第一个问题——中心投影和平行投影.
引入生活情境,激发学生的学习欲望,自然导入新课,同时又弘扬了中国传统文化,增强文化意识.
活动2.多媒体播放演示中心投影和平行投影的相关知识.
1.投影的概念
①投影:由于光的照射,在不透明物体后面的屏幕上留下这个物体的影子,这种现象叫做投影.其中,光线叫做投影线,屏幕叫做投影面.
②中心投影:把光由一点向外散射形成的投影叫做中心投影.
③平行投影:把在一束平行光线照射下形成的投影称为平行投影.平行投影分为斜投影与正投影.
讲解原则:配以多媒体动画,让学生思考,抽象或概括出相应定义,教师加以修正.
通过动画演示投影的形成过程,使学生直观、生动地感悟,使抽象问题具体化,加速学生对概念的理解.
2.中心投影和平行投影的区别和用途
中心投影的投影线交于一点,形成的投影图能非常逼真地反映原来的物体,主要运用于绘画领域.平行投影的投影线相互平行,形成的投影图则能比较精确地反映原来物体的形状和特征.因此更多应用于工程制图或技术图样.
活动3.直观感知 形成概念--三视图
①欣赏图片;
图片说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这就是本节课我们要探讨的第二个问题--空间几何体的三视图.
②欣赏飞机、轿车的三视图图片;
引入生活情境激发学生的学习欲望,自然引入新课,同时与其它学科相联系,拓宽学生思维,发展他们联想、类比能力.
(二)动手作图 掌握技能
在初中,我们已经学习了长方体、正方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),下面我们就以长方体为例,结合刚刚学过的投影知识,进一步了解空间几何体的三视图。
大千世界,丰富多彩,我们生活的周围不仅仅是简单的几何体,更多的是它们的组合体,通过练习,让学生学会观察,为将来应用社会奠定基础,培养应用数学意识.
(三)总结提高 加深理解
1.投影的分类:
①中心投影--投影线交于一点
②平行投影--投影线平行 (又分正投影和斜投影)
2.三视图的概念和画法:
画物体的三视图时,要符合如下原则:
①位置:侧视图安排在正视图的正右方,俯视图安排在正视图的正下方.
②大小:主、俯视图要“长对正”,主、侧视图要“高平齐”,俯、侧视图要“宽相等”.
③能看见的轮廓和棱用实线,不能看见的轮廓和棱用虚线.
回顾本节课,归纳总结,加深理解,巩固学习成果.培养学生及时归纳和善于思考的良好品质.
(四)布置作业 训练提高
1.教材习题1.2 A组 1、2题; B组 第3题;
篇11:九年级下册数学说课稿
九年级下册数学说课稿
大家好!
我叫##,今天我说课的题目是选自人教版八年级数学第十八章第一节的内容:勾股定理我将从以下这几个方面进行本节课的阐述:
教材分析、教法、学法指导以及教学过程设计
下面请大家和我共同走进教材,看第一部分内容 – 教材分析《勾股定理》是人教版新课标八年级数学第十八章第一节第一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
其次,说教学目标
根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。能够灵活地运用勾股定理及其计算。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。
情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。
(三)本节课的重点:是勾股定理的发现、验证和应用。
难点:是用拼图方法、面积法证明勾股定理
教法指导:
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程, 针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。使学生得到获得新知的成功感受,从而激发学生钻研新知。并利用教具与多媒体进行教学。
我们常说:“现代的文盲不是不识字的人, 而是没有掌握学习方法的人”, 因而在教学中要特别重视学法的指导, 我采用了如下的学法指导:
学法指导:
在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
通过以上的教材分析,教法和学法的指导,相信大家已建立起本节课的知识框架,下面就来看以下本节课的教学过程设计:
教学过程设计:
根据学生的认知规律和学习心理,对于本节课的教学过程,我设计了如下的教学流程图:
一、读一读,引入勾股定理
二、议一议,探索勾股定理
三、拼一拼,验证勾股定理
四、练一练,应用勾股定理
五、谈一谈,总结勾股定理
一、读一读,引入勾股定理
首先,出示两幅图片,第一幅图片配上文字说明(引出勾股定理这一课题)。简单介绍勾股定理的历史,图片不仅给学生带来美感,也激发他们的学习兴趣,产生学习的渴望,振奋精神投入到课堂之中。第二幅图片为在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。在学生倾听历史,欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。
二、议一议,探索勾股定理
接着讲述毕达哥拉斯到朋友家做客的故事,通过讲述毕达哥拉斯的故事来进一步激发学生的学习兴趣,使学生在不知不觉中进入探究学习的.最佳状态。然后提出三个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。问题一:在图中你能发现那些基本图形?同学可以发现等腰直角三角形。问题二:与等腰直角三角形相邻的正方形面积之间有怎样的关系?同学通过直接数等腰直角三角形的个数可以得出A的面积加上B的面积等于C的面积。从而得到。紧接着抛出第三个问题:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?同学可以很快得出:等腰直角三角形两直角边的平方和等于斜边的平方。“问题是思维的起点”,通过层层设问,引导学生发现新知。等腰直角三角形三边具有这样的特殊关系,那么一般的直角三角形呢?最后探索出勾股定理。
3、拼一拼,验证勾股定理
教师引导学生按照要求进行拼图,观察并分析;这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难,此时,老师发放勾股定理拼图模具,让同学试试看,能不能仿照上面的例子,利用手中的纸质模具拼一拼,拼出一个规则图形,使得它的面积能用两种不同的方法表示。当学生利用纸质模具拼出之后,进行拼图,此时可以进行分组合作互相协助。相信同学在老师的指导和互相帮助之下,可以很快的拼出赵爽弦图和毕达哥拉斯用来证明勾股定理的图形。通过这些实际操作,学生能够进一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备,给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动性,可以进一步提高学生的学习兴趣。利用分组讨论,加强学生的合作意识。
4、练一练,应用勾股定理
在这一环节,我设置了分组打擂,闯关的游戏,采取小组内合作交流,小组间公平竞争的方式,小组的成果在全班展示,有一人代表小组到台前展示、板演、说明。师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
5、谈一谈,总结勾股定理
让学生谈谈这节课的收获是什么,让学生畅所欲言,通过小结,培养学生的归纳概括能力。引导学生对知识要点进行总结,梳理学习思路。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
六、静一静,欣赏勾股定理
让学生从这组图片当中进一步感受勾股定理神奇、美妙、美丽,课堂教学中动静结合,以免引起学生的疲劳。
七、分层作业,巩固创新。
.针对学生认知的差异设计有层次的作业,既能巩固知识,有使学有余力的学生获得最佳发展。
本课意在创设愉悦和谐的乐学气氛,我始终面向全体学生,突出了学生的自主探究与合作交流,体现了学生的主体地位。 让全体学生都能积极主动地参与教学活动。预设是生成的基础,通过我课前充分的预设,这节课收到了预期的效果。
篇12:空间几何体的三视图的说课稿
本次评优课使我深受启发,并针对我的教学实践,以及本节课的得失与收获做深入地反思。
为了让学生通过体验图形与视角的相互关系,形成三视图概念,进而形成画三视图的技能,我在课前,做了大量的准备工作,通过查找相关书籍、资料,查阅互联网等手段,结合课标和教材的要求,精心组织了一份文图并茂的材料,作为辅助教材,并在教学电脑上,并充分利用学具和多媒体,在教学中创设丰富的情境及层层递进的观察活动吸引学生主动参与,并引导学生采用动手实践与思考体验相结合的学习方法,以自主探索与合作交流的.学习方式积极参与学习过程,从中获得知识、形成技能、发展思维、学会学习。
针对此教学内容,如何进行有效的教学;以及在教学中常遇到的一些问题,有哪些可供参考的解决办法,我进行了尝试性教学实践。要学会识读三视图,而且还要学会绘制简单的三视图,以观赏图、文、声并茂的视频短篇,迅速激起学生的学习兴趣、立刻进入学习状态;
荷兰数学家弗赖登塔尔说过:数学起源于现实。数学教育必须基于学生的数学现实,为了帮助学生构造“数学现实”设计了本实验:从生活中的实物入手创设吸引人的情境,让学生亲身想像、体验、验证以培养学生的空间想像能力并在活动中初步体会从不同方向观察同一物体看到了不同的图形,这样得出的结论更接近学生的生活和经验也更容易被学生所接受。
“判别观察方向”让学生的思维在三维实物与二维图片间不断地进行切换想像,从而完成思维过程的第一次抽象,学生的空间想像能力得到培养训练。
前苏联数学教育家斯托利亚尔说:“数学教学是数学活动的教学。” 此时学生接触的情境已经逐步“数学化”(从观察实物到摆放规则的几何体再到相应的图片),目的是让学生借助图形来反映并思考思维的空间形式及位置关系,并用合理、清晰的语言表达出来,这是学生空间想像能力、语言表达能力得到再次培养训练的过程,也是积累数学活动经验的重要过程。
课件的演示将难以用语言解释说明的抽象思维过程动态直观地展现在学生面前,使学生的感知能力、空间想像能力得到训练培养,并突破教学难点。
训练学生学会识别并画出简单物体的三视图。学生进行互搭、互批、介绍画图经验以使不同层次的学生都有不同的体验收获。学生经过“想像、画图、互评、互改、交流、总结”等过程(师生对正误做法给予点评)归纳出三视图的观察方法、画法和注意事项,从而帮助学生突破难点。
小结不只是知识、方法的归纳,对学生的参与度、合作交流意识,情感态度等良好表现也给予引导和肯定的评价,以帮助学生养成习惯、认识自我、完善认知结构,全面、持续、和谐地发展。
最后对本节课做几点说明:
一、关于培养空间想像能力的说明
空间想像能力以被动听讲和练习为主的学习方式是难以实现的。因此,本课为学生创设了许多现实有意义、富有挑战性的问题情境,及多组环环相扣、层层递进、要求学生思维逐步抽象概括的观察体验活动,充分调动了学生多种感觉器官协同活动,并引导学生借助实物、几何体、图片及课件演示等在充分的时间、空间中进行观察操作、对比想像、探讨交流、感受体验,从而使学生的空间想像能力在参与解决问题的过程中不断地生成、发展和得到提升。
二、关于本课整体设计的说明
(1)在培养目标上,本课力求让不同层次的学生学会知识、熟练技能、掌握方法、形成能力、发展积极向上的情感体验,获得终身发展的学习动力。
(2)在内容设计与呈现上,本课力求知识性、生活性、趣味性、活动性、层次性、教育性于一体,让学生在“创设情境―→探索和体验―→形成概念―→画法探究―→反思归纳”的过程中学数学、做数学、用数学。
(3)在教学方式与学法指导上,本课力求自己作为学生意义建构的组织者、引导者、合作者、促进者,引导学生在丰富的情境中进行自主探索、合作交流、动手实践、亲身体验,从而使学生成为知识建构的主动者。
(4)在教学手段上,本课力求将现代教育技术与学具、教学内容的有机结合,以激发学生兴趣、帮助学生想像理解,突破难点,提高教学质量与效率。
(5)在教学评价上,本课力求从不同的角度、方式去评价学生(如学生自评、互评、集体评),及评价不同层次学生的不同方面(如知识掌握、学习方式、努力程度与参与度)。
以上是我依据《三视图》这一节评优课课后的所思所想。就教学设计的初衷而言,我是想把“评优课”作为“问题课”,就此提出问题,寻求解决的办法和经验。有了问题,才有可能进步;有了交流,才有可能提高;有了探索,才有可能发展。
篇13:空间几何体的三视图的说课稿
空间几何体的三视图的说课稿
本次评优课使我深受启发,并针对我的教学实践,以及本节课的得失与收获做深入地反思。
为了让学生通过体验图形与视角的相互关系,形成三视图概念,进而形成画三视图的技能,我在课前,做了大量的准备工作,通过查找相关书籍、资料,查阅互联网等手段,结合课标和教材的要求,精心组织了一份文图并茂的材料,作为辅助教材,并在教学电脑上,并充分利用学具和多媒体,在教学中创设丰富的情境及层层递进的观察活动吸引学生主动参与,并引导学生采用动手实践与思考体验相结合的学习方法,以自主探索与合作交流的学习方式积极参与学习过程,从中获得知识、形成技能、发展思维、学会学习。
针对此教学内容,如何进行有效的教学;以及在教学中常遇到的`一些问题,有哪些可供参考的解决办法,我进行了尝试性教学实践。要学会识读三视图,而且还要学会绘制简单的三视图,以观赏图、文、声并茂的视频短篇,迅速激起学生的学习兴趣、立刻进入学习状态;
荷兰数学家弗赖登塔尔说过:数学起源于现实。数学教育必须基于学生的数学现实,为了帮助学生构造“数学现实”设计了本实验:从生活中的实物入手创设吸引人的情境,让学生亲身想像、体验、验证以培养学生的空间想像能力并在活动中初步体会从不同方向观察同一物体看到了不同的图形,这样得出的结论更接近学生的生活和经验也更容易被学生所接受。
“判别观察方向”让学生的思维在三维实物与二维图片间不断地进行切换想像,从而完成思维过程的第一次抽象,学生的空间想像能力得到培养训练。
前苏联数学教育家斯托利亚尔说:“数学教学是数学活动的教学。” 此时学生接触的情境已经逐步“数学化”(从观察实物到摆放规则的几何体再到相应的图片),目的是让学生借助图形来反映并思考思维的空间形式及位置关系,并用合理、清晰的语言表达出来,这是学生空间想像能力、语言表达能力得到再次培养训练的过程,也是积累数学活动经验的重要过程。
课件的演示将难以用语言解释说明的抽象思维过程动态直观地展现在学生面前,使学生的感知能力、空间想像能力得到训练培养,并突破教学难点。
训练学生学会识别并画出简单物体的三视图。学生进行互搭、互批、介绍画图经验以使不同层次的学生都有不同的体验收获。学生经过“想像、画图、互评、互改、交流、总结”等过程(师生对正误做法给予点评)归纳出三视图的观察方法、画法和注意事项,从而帮助学生突破难点。
小结不只是知识、方法的归纳,对学生的参与度、合作交流意识,情感态度等良好表现也给予引导和肯定的评价,以帮助学生养成习惯、认识自我、完善认知结构,全面、持续、和谐地发展。
最后对本节课做几点说明:
一、关于培养空间想像能力的说明
空间想像能力以被动听讲和练习为主的学习方式是难以实现的。因此,本课为学生创设了许多现实有意义、富有挑战性的问题情境,及多组环环相扣、层层递进、要求学生思维逐步抽象概括的观察体验活动,充分调动了学生多种感觉器官协同活动,并引导学生借助实物、几何体、图片及课件演示等在充分的时间、空间中进行观察操作、对比想像、探讨交流、感受体验,从而使学生的空间想像能力在参与解决问题的过程中不断地生成、发展和得到提升。
二、关于本课整体设计的说明
(1)在培养目标上,本课力求让不同层次的学生学会知识、熟练技能、掌握方法、形成能力、发展积极向上的情感体验,获得终身发展的学习动力。
(2)在内容设计与呈现上,本课力求知识性、生活性、趣味性、活动性、层次性、教育性于一体,让学生在“创设情境―→探索和体验―→形成概念―→画法探究―→反思归纳”的过程中学数学、做数学、用数学。
(3)在教学方式与学法指导上,本课力求自己作为学生意义建构的组织者、引导者、合作者、促进者,引导学生在丰富的情境中进行自主探索、合作交流、动手实践、亲身体验,从而使学生成为知识建构的主动者。
(4)在教学手段上,本课力求将现代教育技术与学具、教学内容的有机结合,以激发学生兴趣、帮助学生想像理解,突破难点,提高教学质量与效率。
(5)在教学评价上,本课力求从不同的角度、方式去评价学生(如学生自评、互评、集体评),及评价不同层次学生的不同方面(如知识掌握、学习方式、努力程度与参与度)。
以上是我依据《三视图》这一节评优课课后的所思所想。就教学设计的初衷而言,我是想把“评优课”作为“问题课”,就此提出问题,寻求解决的办法和经验。有了问题,才有可能进步;有了交流,才有可能提高;有了探索,才有可能发展。
篇14:数学优秀说课稿
数学优秀说课稿样例
一、 说教材
根据教材特点和学生的年龄特征、认知规律,我确定了本课的教学目标
本课的教学重点难点:
二、 说教法
古代教育家孔子指出:各因其材,小以小成,大以大成,无弃人也!而目标教学分层递进正是因材施教的最好体现。目标教学分层递进是从各类学生的学习实际出发,明确各自学习目的,使学生在自己的最近发展区内独立自主地向知识的.广度和深度延伸,能充分发挥学生的学习主体作用。本节课我主要采用目标教学分层递进这以教学方法,在教学中以全班教学为主,小组学习为辅,个别辅导相结合的原则分层教学。我力求做到:努力形成一种各层次学生都争取递进的氛围,激发学习兴趣,使学生爱学;揭示知识规律使学生能学,展示知识过程,使学生会学,并利用观察讨论等方法,帮助学生建立相应的知识概念,并引导学生积极探索参与教学全过程。
三、 说学法
学生使学习的主体,要让学生真正成为学习的主人,必须在活动中学习数学。正如荷兰数学家费赖登塔尔所说:数学使人的一种活动,如同游泳一样,要在游泳种学会游泳。我们也必须在数学活动种学习数学,也就使在创造数学中学习数学。基于上述思想,本节课我设想:
1、 动手实践,培养学生发现探索能力。
2、 小组合作,培养学生合作意识。
3、 抽象概括,发展学生思维能力。
教学准备:
四、 教学过程
(一)前置补偿,动机内趋
这一环节采用全班教学,复习与新知识有关的旧知,同时设疑置问,激发学生求知欲,产生内趋力,为分层教学打下基础。
(二)分层目标,分层施教
分层目标有效的为教学活动定向,引导教学过程的展开,同时也让学生带着问题去思考去学习,为衡量教学效果提供准确的标尺。分层目标要以学生低中高三各层次的学生学习可能性相适应:A层目标体现于基础性,B层目标着眼于变通性,C层目标着力于发展性,为分层递进注入活力。
(分层次教学)
(三)分层练习,及时反馈
练习是学生掌握知识形成技能,发展智力,培养能力的主要手段,也是评测教学效果的重要标尺。因而,我根据教学的实际情况与学生的可接受能力在课堂中设计如下有坡度有层次的练习。
1、 基础巩固性练习
2、 变通发散性练习]
3、 综合提高性练习
(四)分层总结,不断提高
总结是强化重点,明确关键,揭示规律的重要环节,帮助学生对所学知识进行系统整理,使新知有效地纳入学生原有的认知结构,建立有效的知识网络。本节课我采用学生自己小结的方法,各层次明确自己学到了什么,肯定每位学生积极探索,发现规律的精神,从而诱发继续学习的积极性。
五、 最后值得强调
目标教学分层递进体现了素质教育的基本思想,使一种重视人本思想的教学组织形式,因此在全体发展,全面发展的基础上并没有固定的模式,因教学内容,班级条件学生题点而异!
篇15:九年级数学反比例函数说课稿
九年级数学反比例函数说课稿
一、 说教学内容
(一)、本课时的内容、地位及作用
本课内容是北师大版九年级(上)数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二)、本课题的教学目标:
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:
1、 知识目标
(1) 通过对实际问题的探究,理解反比例函数的实际意义。
(2) 体会反比例函数的不同表示法。
(3) 会判断反比例函数。
2、 能力目标
(1) 通过两个实际问题,培养学生勤于思考和分析归纳能力。
(2) 在思考、归纳过程中,发展学生的合情说理能力。
(3) 让学生会求反比例函数关系式。
3、 情感目标
(1) 通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。
(2) 理论联系实际,让学生有学有所用的感性认识。
4、 本课题的重点、难点和关键
重点:反比例函数的概念
难点:求反比例函数的解析式。
关键:如何由实际问题转化为数学模型。
二、 说教学方法:
本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。
由于学生在前面已学过“变量之间的关系”和“一次函数”的内容,对函数已经有了初步的认识。因此,在教这节课时,要注意和一次函数,尤其是正比例函数一反比例的类比。引导学生从函函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。
对于所设置的两个问题为学生熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。
三、 说学法指导:
课堂,只有宝贵的四十分钟,有相当一部分学生注意力不能集中。针对这种情况,从学生身边的生活和已有的知识出发创设情境,目的是让学生感受到生活中处处有数学,激发学生对数学的兴趣和愿望,同时也为抽象反比例函数概念做好铺垫。让学生自己举例,讨论总结规律,抽象概念,便于学生理解和掌握反比例函数的概念,同时,培养和提高了学生的总结归纳能力和抽象能力。
为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。
在本课时的`师生互动过程中,积极创造条件和机会,关注个体差异,让学困生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。
教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。
四、 说教学过程:
1、 复习引入:
师生共同回忆前一阶段所学知识,再次强调函数和重要性,同时启开新的课题——反比例函数(教师板书)。
(一) 创设情景,激发热情
我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。
因而用两个最贴近学生生活实例引出反比例函数的概念;从而让学生感受数学与生活的紧密联系。
多媒体课件展示
(问题1)我校车棚工程已经启动,规划地基为36平方米的矩形,设连长为X(米),则另一连长Y(米)与X(米)的函数关系式。
让学生分析变量关系,然后教师总结:依矩形面积可得
XY=36 即Y=36/X
(问题2)昨天在放学回家时,小明的车胎爆了。第二天,小明的爸爸骑摩托车送小明来学校。中午放学小明不得不走回家。(小明家距学校米)
(1)、在这个故事中,有几种交通工具?
(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?
师生共同探究,时间的变化是由速度所引起的,设时间为T,速度为V,则有T=2000/V
(二) 观察归纳——形成概念
由实例XY=36 即Y=36/X和T=2000/V 两个式子教师引导学生概括总结出本课新的知识点:
一般地,形如Y=K/X或XY=K(K是常数,K不为0)的函数叫做反比例函数。
在此教师对该函数做些说明。
(三) 讨论研究——深化概念
学生通过对例1的观察、讨论、交流后更进一步理解和掌握反比例函数的概念
多媒体课件展示、
例1、 下列函数关系中,哪些是反比例函数?
(1)、一个矩形面积是20平方厘米,相邻两条连长分别为X厘米和Y厘米那么变量Y是变量X的函数吗?是反比例函数吗?为什么?
(2)、滑动变阻器两端的电压为U,移动滑片时通过变阻器的电流I和电阻R之间的关系;
(3)、某地有耕地346.2公顷,人口数量N逐年发生变化,那么该村人均占有耕地面积M(公顷?(人))是全村人口数N的函数吗?是反比例函数吗?为什么?
(4)某乡粮食总产量M吨,那么该乡每人平均粮食Y(吨)与该乡人口数X的函数关系。
学生回答后教师给出正确答案。
四、 即时训练——巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把课本的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
多媒体课件展示
(巩固练习:)
(口答)下列函数关系中,X均表示自变量,那么哪些是反比例函数?每一个反比例函数的K的值是多少?
Y=5/X Y=0.4/X Y=X/2 XY=2
5)Y=-1/X(给学困生发表见解的机会,激发他们的学习兴趣)
学生回答后教师给出正确答案。
五)突出重点,提高能力
为了突出重点,特意把书中的练习题设计为例题的形式,以提高学生的分析问题,解决问题的能力,再给出一道类似的题目以加强巩固
T=24/V
例3 Y是X的反比例函数,下表给出了X与Y的一些值。
X-2-1-1/21/123Y2/3-1
写出这个反比例函数的表达式;
根据函数表达式完成上表。
(六)总结反思——提高认识
由学生总结本节课所学习的主要内容:
A、 反比例函数的意义;
B、 反比例函数的判别;
C、 反比例函数解析式的求法。
让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(七)任务后延——自主探究
学生经过以上五个环节的学习,已经初步掌握了探究数列规律的一般方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
课后思考:
当M为何值时,反比例函数Y=4/X2M-2是反比例函数,并求出其反比例函数解析式。
(板书设计)
篇16:九年级数学随机事件说课稿
九年级数学随机事件说课稿
教学目标:
1、知识与技能:通过分析正确认识必然事件、不可能事件、随机事件,并理解随机事件的概念。
2、过程与方法:能根据随机事件的特点辨别哪些事件是随机事件。
3、情感与态度:感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,获得成功的体验。在体验中去感受数学,喜欢数学。
教学重点、难点:
重点:理解随机事件的概念并掌握随机事件发生可能性的变化规律。
难点:1、判断现实生活中哪些事件是随机事件。
2、探究随机事件可能性的变化规律。
教具准备:课件、口袋、小球、扑克牌、骰子
教学过程:
一、创设情境,引入新课
在篮球比赛前,有这样一位新裁判员想以抽签方式决定两支球队的进攻方向,他准备了三根形状、大小相同的纸签。上面分别写有1、0、0,在看不到纸签上的数字情况下,让其中一方队长从三根纸签中任意地抽取一根,抽到数字是1的纸签则拥有选择权,抽到数字是0的纸签则选择权给对方。
[师生行为]结合图片引发学生思考:如果你是队长会去抽吗?让学生凭借自己的经验谈谈想法,教师引导学生学完本节课内容后用严谨的数学知识可以解答。
[设计意图] 从篮球比赛中创设情境引出问题,让学生思考,激发学生求知欲望。
二、活动1:猜牌游戏
1、展示四张红桃A,然后洗牌抽出一张,让学生猜这张是什么A?问可能是黑桃A吗?
2、展示红桃A、黑桃A、方块A、梅花A各一张,然后洗牌抽出一张,猜是什么A?
[设计意图] 通过师生互动游戏引导学生观察、思考并归纳出在一定条件下判断事件发生的结果有三种情况:可能、不可能、一定。
三、活动2:投掷一个质地均匀的正方体骰子,骰子六个面上分别刻有1到6的点数,每位学生掷10次并记录每次向上一面骰子的点数。
问:(1)通过实验推断老师任意的投掷一次骰子而向上一面可能出现哪些点数?
(2)出现的点数大于0。
(3)出现的点数会是7。
(4)出现的点数会是4。
在(2)(3)(4)三种结果中哪些是必然(一定)发生的`,哪些是不可能发生的,哪些是可能发生,也有可能不发生的?
[设计意图]通过师生共同游戏让学生在感性认识的基础上解决数学问题,引出三个概念:必然事件、不可能事件、随机事件。
四、活动3:我说你判断
在一个袋中有4个黄球,2个白球,任意摸出一个球是白球,它是随机事件吗?
[师生行为] 实验论证:
(1)袋中每个白球都变了形的前提下摸白球是必然事件。
(2)在形状、大小、质地等相同的情况下,让学生看到并摸出白球,也是必然事件。
[设计意图]在引导学生动手操作中发现原题中存在的问题,并不断完善题目,得出一个结论:随机事件必须在一定条件下才能发生,同时培养学生严谨的逻辑思维能力和语言表达能力。
五、活动4:我能说
让学生在生活中举出随机事件的实例。
[师生行为]教师引导学生用所学知识判断举例是否正确。
[设计意图]在举例与判断的过程中,进一步理解随机事件的概念。
六、活动5:
(1)袋子中装有4个黄球,2个白球,这些球的形状、大小、质地等完全相同。在看不到球的条件下,随机地从袋子中摸出一个球是白球。
(2)袋子中装有4个黄球,2个白球,这些球的形状、大小、质地等完全相同。在看不到球的条件下,随机地从袋子中摸出一个球是黄球。
[师生行为] 教师让一部分学生动手操作并把摸出的白、黄球分成两类。让学生通过它们数量差异归纳结论:摸到白球的可能性小。
[设计意图] 让学生自己概括出所感知的知识,有利于学生在实践中感悟知识的生成过程,并能培养学生的语言表达能力。得出结论:随机事件的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同。
七、活动6:练习
1、说一说:下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)在地球上抛向空中的球会下落。
(2)度量三角形的内角和,结果是360度。
(3)经过城市中一有交通信号灯的路口,遇到红灯。
2、想一想:已知地球上陆地面积与海洋面积之比为3:7,如果宇宙中飞来一块陨石落在地球上,可能性大的是落在海洋里还是落在陆地上?
3、议一议:在[活动1]中为了使抽签公平,你能帮助裁判改进方法吗?
[师生行为]学生口答,教师要注意学生分析问题的过程。
[设计意图]考察学生对概念的理解与判断,巩固新知,同时培养学生的发散思维。
八、 活动7:砸蛋游戏
在三个蛋中隐藏一幅田园风光图,让学生积极参加活动:
蛋1:小结谈谈这节课学到了什么
蛋2:一幅田园风光图
蛋3:一幅漫画
作业:P138练习
[师生行为]让学生自由选择每个蛋,在砸蛋游戏中回答问题。
[设计意图]
1、小结使学生知识系统化。
2、结合田园风光图对学生进行情感教育,陶冶情操。
3、在漫画中隐藏了一个数学问题,把课堂引申到课外,培养学生自主学习的习惯与能力。
板书设计:
25.1随机事件
定义:在一定条件,可能发生也有可能不发生的事件
性质:一般地,随机事件发生的可能性是有大小的,不同的
随机事件发生的可能性的大小可能不同。
探究:机会均等
关于教案设计的说明
教学思想:
数学教学要联系实际,要让学生充分体会到数学的应用价值,打破纯数学知识教学给学生带来与生活脱节的现象,在教师创设的篮球比赛活动中激发学生的求知欲。通过猜牌游戏、投掷骰子活动、摸球游戏让学生轻松地掌握新知识,充分发挥学生的主体功能。利用自主、合作、探究的各种学习方法培养学生的合作精神,在教师安排的砸蛋游戏中进行知识的梳理,通过田园风光图感受大自然的美,陶冶情操。同时在一幅漫画中引发思考把课堂引申到课外。
教学流程:
1、通过一幅篮球比赛的图片引出一个数学问题,让学生凭生活经验进行解答,引导学生用数学知识可以更准确地得到问题的解决方法,从而激发学生的学习兴趣。
2、让学生在猜牌游戏中得出判断事件发生结果的三种情况:可能、不可能、一定。
3、让全班学生动手操作投掷骰子,在活动中通过合作交流引出三个定义:必然事件、不可能事件、随机事件。
4、在教师安排的摸球游戏中让学生不断完善题目,从而逐步完善随机事件的定义。
5、让学生在所学知识的基础上例举出生活中随机事件的实例,让数学知识为生活服务。
6、再次通过摸球游戏让学生在轻松的师生活动中自主构建数学知识,得出随机事件发生可能性的变化规律。
7、在练习中让学生巩固新知,提升技能。
8、在砸蛋游戏中对本节课的内容进行小结,在一幅美丽的乡村油菜花图片中陶冶情操(环境很美,我们要用心呵护它,因为它可以让我们心旷神怡;数学不难,我们要努力学好它,因为它可以为我们生活服务)。在此基础上提出问题把学生从课堂引申到课外,充分发挥学生自主学习的能力。
篇17:初中数学三视图教案有哪些
9.2 三视图(一)
一、教学目标
1、会从投影的角度理解视图的概念
2、会画简单几何体的三视图
3、通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系
二、教学重、难点
重点:从投影的角度加深对三视图的理解和会画简单的三视图
难点:对三视图概念理解的升华及正确画出三棱柱的三视图
三、教学过程
(一)创设情境,引入新课
物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影.
如图 (1),我们用三个互相垂直的平面
作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图,在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向右观察物体的视图,叫做左视
图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图与俯视图的宽相等通过以上的学习,你有什么发现?
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图.
(二)应用新知
例1 画出下图所示的一些基本几何体的三视图.
分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:
1.确定主视图的位置,画出主视图;
2.在主视图正下方画出俯视图,注意与主视图“长对正”.
3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.
解:略(课本)
例2画出如图所示的支架(一种小零件)的三视图.
分析:支架的形状,由两个大小不等的长方体构
成的组合体.画三视四时要注意这两个长方体的
上下、前后位置关系.
图29.2-6
解:如图29.2-7是支架的三视图
图29.2-7
例(补充)右图是一根钢管的直观图,画出它的三视图
分析.钢管有内外壁,从一定角度看它时,看不见
内壁.为全面地反映立体图形的形状,画图时规定:看得见部分的轮廓线画成实线.因被其他那分遮挡而看不见部分的轮廓线画成虚线.
解.图如下图是钢管的三视图,其中的虚线表示钢管的内壁.
练习:
你能画出下图1中几何体的三视图吗 小明画出了它们的三种视图(图2),他画的对吗 请你判断一下.
四、小结
1、画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰.
2、在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等.
五、作业:
P97练习
P101习题29.2 1、2、3
篇18:初中数学三视图教案怎么设计
一、设计的初衷
《三视图》在教学内容中,是比较抽象并且难以理解的,然而三视图在工业设计中又是表达与交流设计构思、设计方案的一种常用的工程技术语言。学生不但要学会识读三视图,而且还要学会绘制简单的三视图,并且在今后的设计实践中,能够运用三视图来表达自己的设计构思,与他人交流设计方案,从而获得全面的评价,优化设计方案。于是针对此教学内容,如何进行有效的教学;以及在教学中常遇到的一些问题,有哪些可供参考的解决办法,我进行了尝试性教学实践。
1. 课题引入方面:
采用问题情景设置的方法:学生喜爱打篮球,而用直尺测算出篮球的表面积是学生平时不会想到或实践过的问题。这样激起了学生的好奇心和想解决问题的兴趣。问题提出来后,学生积极思考,想出了许多办法。而解决这个问题的关键是能否利用墙面与地面相互垂直这一条件。目的是打开学生空间想象能力。而空间想象能力是学好三视图,理解三视图以及绘制三视图的必备能力。这也是我设计此问题情景的初衷。
问题情景的设计,我认为达到了预期效果。学生们或异想天开,或奇思妙想,有些测量的办法,是我事先没想到的。如:将篮球放气,压扁成半圆,用直尺测量篮球直径等办法。而我在这些突如其来的环节上的处理以及应变手段上还稍显不足。这是我今后应加以改进和提高的地方。
2.三视图的学习过程与注意事项:
1)学习三视图,要确立研究方向即问题的设置。
我用电脑图片打出问题:三视图是如何把物体的各个表面形状表达清楚的?如何绘制三视图?
学生要想达到可以绘制简单的三视图的程度,只得认认真真地去学习,去研究,去解决问题。
想理解三视图为什么可以把物体的各个表面形状表达清楚这个问题,首先要知道什么是三视图?三视图依据的是什么原理?三视图的展开以及三个试图之间的投影规律是什么?画图步骤有哪些? 怎么选择主视图?而这些概念性的知识,学生可以通过资料并结合教材很容易找到。我认为教师照本宣科地讲述这些概念性知识,即便是举出相当多的图片和视图实例,也不如让学生自己去查找、去发现、去体会、去理解。换句话说,三视图的学习应该在自学理论的基础上,教师加以辅导绘图实践和识图练习。
2)学习三视图,教师要做必要的学法指导。
我在布置任务环节中,借用本章所学的发现问题,提出问题;明确要求,收集和处理信息等方法,引导学生利用现有资料进行学习。学生很容易地进入了角色。
3)学习三视图,要求教师根据学生的实际情况,预设学生学习成效检测方式和内容,给与学生中肯的评价并做出相应的激励。
我在这节课的教学中,设置的检测问题不到位,在某些问题的讲解上还不够深入。所以在今后要努力提高和完善自身业务素养,尽快成长起来。
我想不同的学生群体,不同的教学资源设置,不同的任课教师,还遇到不同的问题。有了问题,才会有解决问题的办法,那么,这些解决问题的办法,就要靠全体同仁共同探索。让我们携起手来,共同提高。
篇19:初中数学三视图教案有哪些
1.了解视图的概念,明确 视图与投影的关系.
2.理解三视图中主视图、左视图、俯视图的概念.明确三视图与我们从三个方向看物体所得到的图象的联系 与区别,会画立 体图形的三视图.
3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.
阅读教材P94-97,弄清楚视图、主视图、俯视图、左视图的概念,以及画三视图时的位置和视图之间的大小关系.
自学反馈 独立完成后展示学习成果
①当我们从某一角度观察一个物体时,所看到的图象叫做物体的一个 ,也可以看作物体在某一角度的光线下的 .
②主视图是在正面 内得到的由 向 观察物体的视图;俯视图是在水平面内得到的由 向 观察物体的视图;左视图是在侧面内得到的由 向 观察物体的视图.
③主视图与俯视图的 对正,主视图与左视图的平齐,左视 图与俯视图的宽 .
④三视图一般规定主视图要在 ,俯视图在 ,左视图在 ,其中主视图反映物体的 和 ,左视图反映物体的 和 ,俯视图反映物体的 和 .
文档为doc格式