下面是小编收集整理的植树问题说课稿,本文共12篇,仅供参考,希望能够帮助到大家。

篇1:植树问题说课稿
一、说教材
大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想,为此,本节课我将引导学生完成下列教学目标:
1、知识方面:认识不封闭路线上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。
2、能力方面:培养学生观察能力、操作能力以及与人合作的能力。
3、情感方面:在解决问题的过程中,感受数学与现实生活中的密切联系,并对学生进行环保教育。
教学重点:引导学生在观察、操作、交流中探索并发现不封闭路线上间隔现象中的简单规律。
教学难点:引导学生将这种认识应用到解决简单的实际问题之中。
教具准备:课件 小树 纸板
二、说教法、学法
依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中。充分调动学生的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。
教法:
设疑激趣法、实际操作法、直观演示法。
学法:
观察辨析法、动手操作法、合作交流法、自主探究法。
三、说教学过程
根据《数学课程标准》的基本理念:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”,“动手实践,自主探索与合作交流是数学学习的重要方式”。因此,教学本课我采用了“问题探究”为中心的教学模式。设计了如下教学程序:
1、谈话引入,明确课题。
(利用3月12日植树节进行引入,这样既直观又可以对学生进行环保教育。)
2、分组探究,发现规律。
学生真正的生活经验应该是他们身边熟悉的事物,是能够激发他们感情因素的事物,这样才会让学生真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。所以我并没有利用教材上的例题,而是创设了一个同学们身边的现实问题情境。“我校计划在一条40米长的小路一旁栽树,每隔5米栽一棵。”然后提出“一共可栽多少棵?”的问题,(“可”字体现出植树方法有多种)引导学生按照要求设计出不同的植树方案。
学生的知识起点与知识结构逻辑起点存在差异,要解决两者之间的矛盾,合作是一个良方,生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示和合理的利用。所以在设计植树方案时我让学生分组讨论,分工与合作,通过说一说,画一画,贴一贴、数一数来培养学生动手实践及与人合作的能力。
如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,同学们才能走得更稳、更好。
当学生合作完成设计方案后,老师选择三种不同的方案展示在黑板上,然后让学生观察这三种方案,发现它们的异同点,并说一说。(这一环节利用实物感知,让学生更容易观察出其中的规律。)
通过观察,学生会发现这样几个相同点:小路的长度,每两棵之间的距离,小路被分成的段数。还有一个不同点:棵数不同,这时候老师就问:为什么不?当学生说到方案不同时,老师再追问一句:哪里不同?这样一步一步地引导学生发现:
方案一:两端都栽
方案二:只有一端栽
方案三:两端都不栽
接着就引导学生列出算式:
方案一:40÷5=8 方案二: 40÷5=8 方案三:40÷5=8
8+1=9 8—1=7
下一步就是让学生观察这些算式的异同,他们会发现,每种方案都有一个相同的算式:40÷5=8
究竟40÷5=8表示什么意思呢?先让同学们说说自己的理解,然后老师给予纠正并介绍两个新词“间隔”与“间隔数”,同时可以借助五指加强学生对这两个词的理解。
通过观察分析得出,这三种方案的间隔数都是8,而方案一种了9棵树,方案二种了8棵树,方案三种了7棵树,棵数与间隔数之间又有什么联系呢?通过观察,他们会发现这样一个规律:
两端都栽:棵数=间隔数+1
只有一端栽:棵数=间隔数
两端都不栽:棵数=间隔数—1
3、应用规律,解决问题。
为了巩固刚刚发现的规律,也为后面的练习作铺垫,我又设计了一道例题“为了让孩子们的乐园更漂亮,幼儿园打算在20米长的小路旁摆一些花盆,一共需要购买多少盆花?”这道题只告诉了路的总长度,留给同学们的思维空间更广,同学们的设计方案也可以更多一些。每两盆间的距离可以是1米、2米、4米、5米、10米、20米;可以只在一旁摆,也可以两旁都摆;可以两端都摆,也可以只在一端摆,还可以两端都不摆。这道题我大胆地放手让学生自己去设计,不管是哪一种情况都应给予肯定和表扬。
4、回归生活,实际运用。
根据上一例题老师可以提示学生,植树问题并不仅仅是植树,就像摆花盆也属于植树问题,我们的身边还有许多类似的问题,让学生举例说一说。老师可以提示,让他们知道挂灯笼、爬楼梯、安装路灯、锯木头、敲钟、排队等都属于植树问题。然后运用今天所学的规律来解决一些生活中的问题。我用选择和填空的形式向同学们呈现了几道练习题,其中包括:栽树、安装路灯、爬楼梯、锯木头。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
5、总结。
先让学生谈谈这节课的收获,然后老师小结:我们的身边处处都是数学,只要同学们留心观察就会发现更多的规律和奥秘,就能解决更多的难题。
篇2:《植树问题》说课稿
一、说教材。
1、剖析教材。
本单元主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成了若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵等等,它们中的隐藏着总数和间隔数之间的关系问题,我们就把这类题统称为植树问题。
在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。即使是关于一条线段的植树问题,也可以有不同的情形,例如两端都要栽,只在一端栽国一端栽,或是两端都不栽。本单元通过一些生活中的事例,让学生根据不同的情况总结出规律,并利用这些规律解决类似的实际问题。
例1是探讨关于一条线段的植树问题并且两端都要栽的情况,例2讨论的是两端都不栽树的情形。根据编者的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。
2、教学内容:人教版小学数学四年级下册第八单元数学广角中的例1、例2及相应的“做一做”、练习等。
3、教学重难点:
重点:引导学生从实际问题中探索并总结出“棵树=间隔数+1”的关系。
难点:把现实生活中类似的问题同化为“植树问题”,并运用植树问题的思想方法解决这些实际问题
3、课时安排:本课为第一课时。
二、说目标
知识与技能:
1、经历探索日常生活中间隔排列中简单规律以及类似现象中简单数学规律的过程,初步认识其中的简单规律,并能将这种认识应用到解决简单实际问题之中,感受数学与生活的'广泛联系。
2、通过观察、猜测、操作、验证以及与他人交流等活动,培养学生用数学眼光观察周围事物,用数学的观点分析日常生活中各种现象的意识和能力。
过程与方法:
通过观察、猜测、操作、验证以及与他人交流等方式探索规律。
情感态度与价值观:
通过实践活动,培养学生应用所学知识解决实际问题的能力,体会数学和现象生活的密切联系,并从小养成勤俭节约、合理安排开支的习惯。
三、说学情
学生在学这个内容之前,已经初步积累了一些探索规律的经验,由于这种规律在日常生活中常见,学生容易在生活中找到相关的原型,因而也比较容易体会到探索规律的乐趣和成功感。
四、说教法
五、说教学程序
说教学流程:本节课我分四个流程进行教学推进,
一、情境导入
“用以改变和净化我们生存环境的‘植树活动’里面藏着许多数学问题,谁发现了?”
设计意图:既要激发学生的学习兴趣,也要让学生感受到数学问题原本就来源于生活实践。
二、探究新知
1. 出示例题1。
⑴指名读题,理解题意。
(2)独立思考:你会解决这个问题吗?
设计意图:造成认知冲突,激发学生寻求可行性的方法验证自己的数学猜想。
2.动手绘制线段图,通过线段图来理解题意,找到规律,解决问题。
设计意图:向学生渗透解决问题的常用方法。
⑵学生汇报,初步建模。大多数学生在这一环节意识到棵数与间隔数之间的关系,但教师不要急于求成,要让学生明白任何科学的结论都要建立在普遍性的基础上。
3.学生自己解决路长和树的间距,比较间隔数和棵数的关系,进而总结出它们之间的关系式。给全体学生创设水到渠成的境界
4、重新审视例题1的不同解法。
设计意图:让学生用探索出的规律解决他们认知的矛盾,这个矛盾在此自然而然的化解开来,所有的学生都会豁然开朗。
三、巩固练习
四、课堂小结。
篇3:《植树问题》说课稿
一、说教材:
“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法――化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
二、说教学目标:
基于对教材的理解和学生知识水平的分析,我将本节课的教学目标定位为:
(一)知识与技能方面:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3、能够借助图形,利用规律来解决简单植树的问题。
(二)过程与方法方面:
1、进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。
(三)情感态度与价值观方面
通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
三、说教学重、难点:
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
四、说教法、学法:
现代教育论主张,学生的学习不是被动接受的过程,而是主动建构的过程。因此在本节课我主要采用“在生活中找间隔――――在动手操作中中找方法―――――在方法中找规律―――在规律中学应用”的教学过程,让学生通过小组合作形式探究方法,使每个学生动脑、动手、合作探究,经历分析、思考、解决问题的全过程。并通过对媒体的直观演示辅助教学,引导学生意趣激思,以思促学,在创设的生活情境中尝试探索,形成概念,积极参与,促进学生全面发展。
五、说教学过程
本课教学分四大环节:
一、激趣导入:
1、同学们你们知道吗?在我们的手中,还藏着数学知识呢,你们想了解一下吗?
2、伸出你们的右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把这种空格叫做间隔,也就是说,5个手指之间有几个间隔?3个间隔是在几个手指之间?其实这样的数学问题在我们的生活中随处可见。(通过摆动手指,创设情境,其实手指问题就和植树问题是一样的道理的。通过动手,观察,激发学生学习的兴趣,集中注意力走进新课。)
二、创设情境,提出问题
同学们知道每年的3月12日是什么日子吗?就是我国的植树节。你们知道植树都有什么好处吗?今天我们就一起来研究植树中的数学问题。板书课题:植树问题
三、巩固应用,内化提高
基础练习:
我们身边类似的数学问题。
学校到5路车站一侧植树,每隔5米种一棵,一共种了26棵。从第1棵到最后一棵的距离有多远?
小结:说一说,在我们生活中,还有哪些像植树问题这样的现象呢?小组同学说说,然后汇报情况。如手指与间隔,栏杆与间隔,站队列,插彩旗,种白菜,围墙柱子,作业本的横线与间隔……
(在学生基本掌握了植树问题中两端都种的规律以后我设计了一道巩固反馈练习题,这道题是两端都种的植树问题的逆运算,应运用“全程长=间隔距离*间隔数;间隔数=棵树―1”。)
提高练习:
1、“六一”庆祝,同学们布置教室,挂了7只红灯笼,每两只红灯笼之间挂2只黄灯笼,你知道同学们一共挂了几只黄灯笼吗?
2、卓老师去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道卓老师去几楼的教室吗?
(引入生活中的“植树问题”如:上楼梯等问题,这些题目都体现了数学知识生活化和生活化的数学知识。这二题是典型的两端都种植树问题,这一环节我主要是通过练习法让学生将所学到的知识运用的`生活中的解决问题中去,努力体现一种“人人学有价值的数学”的价值取向。)
拓展:
一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4―1=3(次)
问:为什么要―1?这种类型的植树问题以后我们会更深入的学习。
(在学生掌握了两端不种的植树问题的规律的基础上,我设计了一道强化练习题,一根木头长8米,每2米锯一段。一共要锯几次?学生自主分析题意,解决问题。这一教学环节虽然不是本节课的主要教学目标,但为了使学生的合作探究能力有更进一步的发展,和今后更好的学习植树问题。我做了这样的安排,相信一定会取得较好的学习效果。)
四、回顾整理、反思提升
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,我们以后再去学习。
整节课我们努力作到放飞学生思维的翅膀,把数学教学融于千姿百态的生活之中,从学生实际出发,营造一份“天空任鸟飞、海阔凭鱼跃”的佳境,让每一位学生都能成为课堂的主人,让每一节数学课都
篇4:《植树问题》说课稿
一:执教内容:
“义务教育课程标准实验教科书”四年级下册第八单元《数学广角》P117页内容。
二、教学设计理念:
新课程标准指出:学生通过有效的数学学习,能够获得适应未来社会生产生活和进一步发展所必须的数学知识以及基本的数学思想方法。
教学中成功的关健在于:教师的“教”立足于学生的“学”。本次课我的设计立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学生的主动权交给学生,发展学生的潜能,培养学生的实践能力和创新意识。
1、联系生活创设情境,让学生充分体验数学活动。
有意义的学习是学生在具体情景中通过活动体验而自主建构的。体验和建构是学生活动化学习的关键。体验是建构的基础,没有体验,建构就失去意义。体验是学生从旧知识向新知识迁移和生成的过程。学生真正的生活经验应该是他们身边熟悉的事物,是能够激发他们感情因素的事物,只有选择学生熟悉的事物才能真正激发学生的兴趣,让学生产生共鸣,激发学生的探究欲望,有效实现活动化的数学教学的数学学习。
2、有效借助数形结合,让学生充分感受知识的形成。
如果说生活经验是学生学习的基础,那么借助图形帮助学生理解是建构知识的一个拐杖。有了这根拐杖,学生才能将文字信息与已有的知识经验相互结合,达到思维发展的生长点。借助数形结合将文字信息与学习基础结合,学习得以继续,使学生思维发展有了凭借,也使学生学习数学的思想方法真正得以渗透。因此,学生是数学学习的主人,教师应激发学生的.学习积极性,要向学生提供充分从事数学活动的材料和机会,帮助他们掌握基本的数学基础知识、基本技能,基本的数学思想和方法,获得丰富的数学活动体验。
三、教材分析:
和前几册教材一样,本册也专门安排了“数学广角”单元,向学生渗透一些重要的数学思想方法。主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。P117页例1是探讨关于一条线段的植树并且两端都要种树的情况。
四、教学目标简析:
(一)教学目标:
《课程标准》中关于第二学段目标有以下阐述:“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“探求给定事物中隐含的规律或变化趋势。”。基于以上思考,本节课我确定了以下教学目标:
1、探索两端都种树,两端都不种树和只有一端种树的植树问题的规律,培养学生运用这一规律解决实际生活中问题的能力。
2、通过观察、猜想、实验、推理等数学活动过程,探索新知识。
3、在解决问题的过程中,感受数学与现实生活的密切联系,尝试用数学方法来解决实际生活中的简单实际问题,培养学生应用意识和解决实际问题的能力。培养学生的爱心,同时渗透爱国主义思想教育。
(二)、教学重难点:
教学重点:引导学生发现植树问题的棵树和间隔数的关系。
教学难点:把现实生活中类似的问题同化为“植树问题”,并运用发现的规律解决这些实际问题。
(三)教学具准备:
课件、小棒、格子图、小树模型……
五、教学流程预设:
(一)、教法和学法说明:
依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,以学生发展为主体,以自主探索为主线,以求异创新为主旨,采用多媒体辅助教学。运用设疑激趣,以趣激思,以思促学等教学方法。在多元化的教学情境中,学生积极参与,尝试探索,总结规律,形成概念,并灵活运用规律解决问题。
(二)流程预设:
片断一激趣导入 明确主题
挖掘生活中的素材,课件出示手,让学生猜一猜:五兄弟,四条沟,能干活,不说话,谁的本领大,第一就属它。课件出示两支间隔距离不同的队伍让学生比一比哪支队伍站得更整齐?引入本课的学习内容。
设计意图:增强学生的好奇心和探究欲。从而对手指头之间、队列之间的间隔产生一个初步的感知。让他们全身心的投入到学习生活中来。其实在学生生活的周围有很多事物具有植树问题的本质特征。想要了解植树问题必须要知道间隔的问题。引出手和队列里的数学问题就是为了让学生初步
了解间隔数的概念。渗透“生活中处处有数学”的思想。让学生体会到只要处处留心用数学的眼光去观察广阔的生活情境,就能发现在平常事件中蕴涵的数学规律。紧接着为了进一步加强学生对间隔和间隔数的感知,利用课件展示生活中随处可见的间隔,这样就为下一步的学习作了良好的铺垫。
片断二 自主探索猜测验证
1、3月12日是植树节.红旗小学四年级的同学参加植树造林活动,老师对他们提出了要求:同学们在全长100米的一条小路一边植树,每隔5米栽一棵(两端都要栽),一共需要多少棵树苗?你能帮助他们完成吗?
设计意图:既要激发学生的学习兴趣,也要让学生感受到数学问题原本就来源于生活,并且初步培养学生乐于助人的品质。
2、鼓励学生大胆猜测,并板书出学生的多种猜测结果。因为数据较大,在和学生达成复杂的问题简单化入手的共识后,将数据100米改成20米,要求让学生用自己喜欢的方式去验证哪个结果符合题目要求。
设计意图:学生因为猜测出不同的结果,造成了认知冲突。他们迫切的需要寻求可行性的方法,去验证自己的数学猜想。将数据改成20米也是在向学生渗透解决问题的常用方法。
片断三合作交流 总结规律
1、汇报验证结果,总结出两端都种树和规律。将学生的汇报结果展示在黑板上。
篇5:《植树问题》说课稿
(设计意图:展示学生不同的数学验证的方法,体现了“不同的学生学习数学的水平可以不同”的教育思想,而且启发学生透过现象发现规律,并将规律升华成概念,学生学习一气呵成,会充分感受到成功的喜悦。)
2、课件演示两端都种树时棵数和间隔数的规律,完成统计表。解决例1。要求学生同座理清数量关系,说清算理。
设计意图:这个环节是本课的重点,所以在和学生共享成功的喜悦后,我借助学生感兴趣的电脑课件将线段植树问题中两端都种树时,棵数和间隔数的规律直观得演示一遍。接着趁热打铁出示统计表,让学生快速完成统计表。小学生毕竟年龄小,当他们成功找出两端都种的棵数和间隔数的规律并且形成概念后,他们的精神上会有一种“如释重负”的散漫性。不过这是暂时性的,他们的激情等待再次燃烧。电脑会解决这个问题,直观的课件演示将孩子们的心集中起来,他们会不亦乐乎的投入到统计表的工作中去!前后呼应去解决例1。要求同桌之间说清算理,本课重点再次得到巩固。再利用教材118页上面的“做一做”进行强化训练,要求学生列式前弄清数量关系,难点得到有力突破!
片断四回归生活 实际应用
1、出示:在一条长1000米的临时街道上每隔50米为受灾人民设置一个物质发放点,(头尾都设点),这条街道可以设置多少个灾民物质发放点?
2、学生列举生活中还有哪些类似两端都种树的生活情境。
3、出示:学校宣传廊两边每隔2米摆一盆花,(头尾都摆)一共摆了16盆花,学校宣传廊长多少米?
设计意图:通过练习法让学生将所学到的知识运用解决生活实际问题中去。让学生将在街道上设置灾民物质发放点的情境顺利迁移到两端都种的植树问题中来,借机对学生进行爱心教育,教育学生珍惜学习机会。第二题我有意加深了难度,把道路一边改成了道路两边,使学生的应用能力得到循序渐进的提高。设计的练习题充分体现了新课标“数学学习内容应当时现实的,有意义的,富有挑战性”的理念。
片断五拓展升华反思提高
电脑出示:一段木料,要锯成5段,每锯一段要3分钟,全部锯完要几分钟?
设计意图:电脑演示锯木料的情境,帮助学生顺利将两端都不种树,只有一端种树的规律找出来。培养学生的知识迁移能力。
六、教学反思:
反思整个教学流程,我认为
1、广挖素材,使学习内容更贴近学生的生活。从所周知,现实世界是数学的丰富源泉,生活离不开数学,数学源于生活。挖掘各类生活素材,创设生活情境,让学生感到数学知识就是从生活中来。感兴趣的学习自然充满激情!
2、数形结合,使学生体会植树问题的思想方法。学生经历了从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,获得对数学较为全面的体验与理解。
总之,面对教学的成功与失败,我将真实的对待、坦然的看待,将在不断的自我反思中再学习,再实践,相信能在不断的反思中成长,在不断的实践中发展,在不断的成长中创新!
篇6:植树问题说课稿
一、说教材:
“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
二、说教学目标:
基于对教材的理解和学生知识水平的分析,我将本节课的教学目标定位为:
(一)、知识与技能方面:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3.能够借助图形,利用规律来解决简单植树的问题。
(二)、过程与方法方面:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2.渗透数形结合的思想,培养学生借助图形解决问题的意识。
3.培养学生的合作意识,养成良好的交流习惯。
(三)、情感态度与价值观方面
通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
三、说教学重、难点:
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
四、说教法、学法:
现代教育论主张,学生的学习不是被动接受的过程,而是主动建构的过程。因此在本节课我主要采用“在生活中找间隔----在动手操作中中找方法-----在方法中找规律---在规律中学应用”的教学过程,让学生通过小组合作形式探究方法,使每个学生动脑、动手、合作探究,经历分析、思考、解决问题的全过程。并通过对媒体的直观演示辅助教学,引导学生意趣激思,以思促学,在创设的生活情境中尝试探索,形成概念,积极参与,促进学生全面发展。
五、说教学过程
【本课教学分四大环节】:
一、激趣导入:
1、同学们你们知道吗?在我们的手中,还藏着数学知识呢,你们想了解一下吗?
2、伸出你们的右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把这种空格叫做间隔,也就是说,5个手指之间有几个间隔?3个间隔是在几个手指之间?其实这样的数学问题在我们的生活中随处可见。(通过摆动手指,创设情境,其实手指问题就和植树问题是一样的道理的。通过动手,观察,激发学生学习的兴趣,集中注意力走进新课。)
二、创设情境,提出问题
1、同学们知道每年的3月12日是什么日子吗?就是我国的植树节。你们知道植树都有什么好处吗?今天我们就一起来研究植树中的数学问题。板书课题:植树问题
三、探究交流、解决问题
1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)、指名读题
(2)、师:理解“两端”是什么意思?指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根米尺看作是这条小路,在小路的两端要种就是在小路的两头要种。
怎么解决?(引导学生用画图的方法来解决,但数据太大,可以化繁为简,先研究短距离的路上的植树问题的情况)
(3)学生探究短距离路上的植树规律。
①假如路长只有15米,要栽几棵树?如果路长是25米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)
②画一画,简单验证,发现规律。(填表)
路全长(米) 相邻两棵树间的距离 间隔(个) 棵树(棵) 图示
A15
B20
C25
D30
E
发现了:
a. 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段 4棵)
b. 跟上面一样,再种20米看一看,这次你又分了几段,种了几棵?(板书:4段 5棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;4段 5棵)
d. 你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=间隔数+1)
③应用规律,解决问题。
a. 问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
100÷5=20 这里的20指什么?
20 +1=21 为什么还要+1?
师:通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
(在做题时先引导学生分析题目中的数量关系,要求的是需要多少棵树苗,必须要知道有多少个间隔,间隔数加一才是需要的棵数,间隔数是用全程长除以间隔距离,让学生将刚才掌握的规律说清楚,通过例题让学生一方面巩固刚发现的规律,并且说清算理,同时让学生运用自己总结出的规律解决实际问题,使学生体会成功的喜悦,另一方面认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。再利用教材第118页上面的做一做进行强化练习,要求学生在列式之前将题目中的数量关系分析清楚,养成学生解决问题的良好习惯。这一环节的教学主要是通过猜测法、分析法以及直观演示法掌握两端要种的植树规律并运用这一规律解决实际问题,同时我也运用了大量的创设情境加强对学生数学思想和解决复杂问题能力的培养。)
四、巩固应用,内化提高
基础练习:
1.我们身边类似的数学问题。
学校到5路车站一侧植树,每隔5米种一棵,一共种了26棵。从第1棵到最后一棵的距离有多远?
小结:说一说,在我们生活中,还有哪些像植树问题这样的现象呢?小组同学说说,然后汇报情况。如手指与间隔,栏杆与间隔,站队列,插彩旗,种白菜,围墙柱子,作业本的横线与间隔……
(在学生基本掌握了植树问题中两端都种的规律以后我设计了一道巩固反馈练习题,这道题是两端都种的植树问题的逆运算,应运用“全程长=间隔距离*间隔数;间隔数=棵树-1”.)
提高练习:
1. “六一”庆祝,同学们布置教室,挂了7只红灯笼,每两只红灯笼之间挂2只黄灯笼,你知道同学们一共挂了几只黄灯笼吗?
2.卓老师去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道卓老师去几楼的教室吗?
(引入生活中的“植树问题”如:上楼梯等问题,这些题目都体现了数学知识生活化和生活化的数学知识。这二题是典型的两端都种植树问题,这一环节我主要是通过练习法让学生将所学到的知识运用的生活中的解决问题中去,努力体现一种“人人学有价值的数学”的价值取向。)
拓展:
一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4—1=3(次)
问:为什么要—1?这种类型的植树问题以后我们会更深入的学习。
(在学生掌握了两端不种的植树问题的规律的基础上,我设计了一道强化练习题,一根木头长8米,每2米锯一段。一共要锯几次?学生自主分析题意,解决问题。这一教学环节虽然不是本节课的主要教学目标,但为了使学生的.合作探究能力有更进一步的发展,和今后更好的学习植树问题。我做了这样的安排,相信一定会取得较好的学习效果。)
五、回顾整理、反思提升
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,我们以后再去学习。
整节课我们努力作到放飞学生思维的翅膀,把数学教学融于千姿百态的生活之中,从学生实际出发,营造一份“天空任鸟飞、海阔凭鱼跃”的佳境,让每一位学生都能成为课堂的主人,让每一节数学课都是学生人生路上起飞的加油站!
篇7:植树问题说课稿
尊敬的评委老师:
大家好!
我这次的说课题目是“植树问题”.它是人教版新课程标准实验教材四年级下册“数学广角”中的内容。
一、说教材
大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想,为此,本节课我将引导学生完成下列教学目标:
1、知识方面:认识不封闭路线上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。
2、能力方面:培养学生观察能力、操作能力以及与人合作的能力。
3、情感方面:在解决问题的过程中,感受数学与现实生活中的密切联系,并对学生进行环保教育。
教学重点:引导学生在观察、操作、交流中探索并发现不封闭路线上间隔现象中的简单规律。
教学难点:引导学生将这种认识应用到解决简单的实际问题之中。
教具准备:课件 小树 纸板
二、说教法、学法
依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中。充分调动学生的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。
教法:设疑激趣法、实际操作法、直观演示法。
学法:观察辨析法、动手操作法、合作交流法、自主探究法。
三、说教学过程
根据《数学课程标准》的基本理念:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”,“动手实践,自主探索与合作交流是数学学习的重要方式”.因此,教学本课我采用了“问题探究”为中心的教学模式。设计了如下教学程序:
1、谈话引入,明确课题。(利用3月12日植树节进行引入,这样既直观又可以对学生进行环保教育。)
2、分组探究,发现规律。
学生真正的生活经验应该是他们身边熟悉的事物,是能够激发他们感情因素的事物,这样才会让学生真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。所以我并没有利用教材上的例题,而是创设了一个同学们身边的现实问题情境。“我校计划在一条40米长的小路一旁栽树,每隔5米栽一棵。”然后提出“一共可栽多少棵?”的问题,(“可”字体现出植树方法有多种)引导学生按照要求设计出不同的植树方案。
学生的知识起点与知识结构逻辑起点存在差异,要解决两者之间的矛盾,合作是一个良方,生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示和合理的利用。所以在设计植树方案时我让学生分组讨论,分工与合作,通过说一说,画一画,贴一贴、数一数来培养学生动手实践及与人合作的能力。
如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,同学们才能走得更稳、更好。
当学生合作完成设计方案后,老师选择三种不同的方案展示在黑板上,然后让学生观察这三种方案,发现它们的异同点,并说一说。(这一环节利用实物感知,让学生更容易观察出其中的规律。)
通过观察,学生会发现这样几个相同点:小路的长度,每两棵之间的距离,小路被分成的段数。还有一个不同点:棵数不同,这时候老师就问:为什么不?当学生说到方案不同时,老师再追问一句:哪里不同?这样一步一步地引导学生发现:
方案一:两端都栽
方案二:只有一端栽
方案三:两端都不栽
接着就引导学生列出算式:
方案一:40÷5=8 方案二: 40÷5=8 方案三:40÷5=8
8+1=9 8-1=7
下一步就是让学生观察这些算式的异同,他们会发现,每种方案都有一个相同的算式:40÷5=8
究竟40÷5=8表示什么意思呢?先让同学们说说自己的理解,然后老师给予纠正并介绍两个新词“间隔”与“间隔数”,同时可以借助五指加强学生对这两个词的理解。
通过观察分析得出,这三种方案的间隔数都是8,而方案一种了9棵树,方案二种了8棵树,方案三种了7棵树,棵数与间隔数之间又有什么联系呢?通过观察,他们会发现这样一个规律:
两端都栽:棵数=间隔数+1
只有一端栽:棵数=间隔数
两端都不栽:棵数=间隔数-1
3、应用规律,解决问题。
为了巩固刚刚发现的规律,也为后面的练习作铺垫,我又设计了一道例题“为了让孩子们的乐园更漂亮,幼儿园打算在20米长的小路旁摆一些花盆,一共需要购买多少盆花?”这道题只告诉了路的总长度,留给同学们的思维空间更广,同学们的设计方案也可以更多一些。每两盆间的距离可以是1米、2米、4米、5米、10米、20米;可以只在一旁摆,也可以两旁都摆;可以两端都摆,也可以只在一端摆,还可以两端都不摆。这道题我大胆地放手让学生自己去设计,不管是哪一种情况都应给予肯定和表扬。
4、回归生活,实际运用。
根据上一例题老师可以提示学生,植树问题并不仅仅是植树,就像摆花盆也属于植树问题,我们的身边还有许多类似的问题,让学生举例说一说。老师可以提示,让他们知道挂灯笼、爬楼梯、安装路灯、锯木头、敲钟、排队等都属于植树问题。然后运用今天所学的规律来解决一些生活中的问题。我用选择和填空的形式向同学们呈现了几道练习题,其中包括:栽树、安装路灯、爬楼梯、锯木头。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
5、总结。
先让学生谈谈这节课的收获,然后老师小结:我们的身边处处都是数学,只要同学们留心观察就会发现更多的规律和奥秘,就能解决更多的难题。
篇8:小学植树问题说课稿
小学植树问题说课稿
第一部分 教材及学情分析
本课的内容是选自人教版义务教育课程标准实验教材四年级(下册)第107页例1。本单元主要是渗透有关植树问题的一些思想方法,通过现实生
页例1。本单元主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题。学生在学这个内容之前,已经初步积累了一些探索规律的经验,由于这种规律在日常生活中常见,学生容易在生活中找到相关的原型,因而也比较容易体会到探索规律的乐趣和成功感。
第二部分 教学目标
根据新课标的要求,结合教材和四年级学生的年龄特点,我从知识与技能、过程与方法、情感与态度三方面来确定本节课的教学目标:
1、知识与技能: 通过探索,发现两端都栽的植树问题的规律,并运用这一规律解决实际生活中的问题。
2、过程与方法:通过尝试探索、实验、直观演示、观察、讨论等方法经历和体验“复杂问题简单化”的解题策略。
3、情感态度与价值观:感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养应用意识和解决实际问题的能力,增强学生学习数学的兴趣。
教学重难点:
根据教学目标,我将本课的重点定为:
发现植树的棵数和间隔数的关系(两端都栽)。
教学难点:灵活运用植树问题(两端都栽)的数量关系,正确解决生活中的实际问题。
第三部分 设计意图
1、从学生真实的生活中挖掘素材,以学生灵巧的小手为载体,目的是增强学生的好奇心和探究欲,使学生全身心的投入到学习活动中来。让学生知道在我们生活的周围,具有植树问题本质特征的事件很多,要想了解植树问题,必须要知道间隔的问题。
2、本课是根据小学生知识获得与能力提高的心理特点设计的`。充分利用多媒体辅助教学,激发学生的学习兴趣,使学生自己积极地发现规律,经历思考、分析、发现、归纳、总结、验证、应用的过程,轻松地完成了由形象思维向抽象思维的过渡,结合生活实际运用规律解决问题,形成技能,提高解决问题的能力。
第四部分 教学流程
结合四年级学生的年龄和认知水平,我将本课的教学设计为四个环节:
一、激趣导入,游戏试探
二、引导探究,建立数学模型
三、回归生活,实践应用
四、评价体验,情感激新
第一个环节:激趣导入,游戏试探
让学生伸出自己的手,观察5个手指,有几个手指和几个间隔?其实在数学中也有许多像手上问题一样的数学问题。我们称之为“植树问题”。板书课题。从我们的双手引入间隔与间隔数,这样激发了学生的求知欲,形成积极的情感态度。也为下面的学习奠定一定的基础。
第二个环节:引导探究,建立数学模型
这一环节是课堂教学的中心环节。我设计了四个活动,目的是让学生在体验中学习,在学习中体验。
活动一:呈现情景,出示问题
在全长100米的小路一边植树,每隔5米栽一棵,一共需要多少棵树苗?(两端都栽)老师利用课件介绍概念:
师问:这里的20是什么?(师:我们称为“总长”)
这里的“5”是什么?(师:我们也可以称为“间隔长”)
每两棵树间的这一段叫什么?(师指着“间隔”说:这是“间隔”)?
这里有几个“间隔”?(师:我们说“4”是“间隔数”)
“两端都栽”是什么意思?(师:用一支笔演示说:就是两头都栽。)
这是我就告诉同学们,“总长”、“间隔长”、“间隔数”他们之间的关系是间隔数=总长÷间隔长,并板书。
接下来尝试猜测答案,猜测是一种培养学生推理能力的好方法。
活动二:动手设计,激起兴趣
首先创设这一教学情境:为了美化学校环境,学校要在操场的东侧一条长20米的小路一旁种树,每隔4米种一棵,然后提出问题:一共可种多少棵树?给学生充分的独立思考时间,让学生初步有自己的设计方案后,将自身的设计方案带到小组中交流,在合作时,再让学生动手画一画,变抽象为形象,就得出:两端都栽、两端都不栽、一端栽一端不栽三种不同的设计方案,经过交流后,选择小组代表到黑板前展示,当每个同学都了解了这三种方案后,教师再逐个进行分析,重点分析第一种方案“两端都种”,得出在这种情况下棵数与段数之间的关系是棵数=段数+1,由于有了前面的学习基础,再经过教师的提炼,得出“两端都不种”这两种方案中棵数与段数之间的关系。在这个过程中,把一个复杂问题通过画图,讨论交流等多种方法,分解成了一个个简单的问题,让学生对新课内容有了更深刻的体验。
篇9:《植树问题》的说课稿
《植树问题》的说课稿
一、说课标
新《课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和解决问题的策略。”所以,新课标实施后,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。最明显的表现在于每册教材多了“数学广角”这一单元,通过“数学广角”来进一步渗透数学学习的思想、方法,拓宽学生的数学学习思路,提高学生的数学思维水平,激发学习数学的兴趣,培养创新意识,加强综合运用知识的能力,逐步提高解决问题的能力。
二、说教材
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”中的内容。大家都知道,数学的思想方法是数学的灵魂,解决植树问题的思想是实际生活中应用比较广泛的数学思想方法。让学生在解决这些问题的过程中能主动尝试从数学的角度运用所学知识和方法寻找解决问题的策略,培养学生解决实际问题的实践经验和能力,并让学生通过接触这些重要的数学思想方法,经历猜想,实验推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。
三、说学情
从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理得数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
四、说目标
根据新课标的要求,结合教材和四年级学生的年龄特点,我从知识与技能、过程与方法、情感与态度三方面来确定本节课的教学目标:
1、知识与技能:通过探索,发现两端都种的植树问题的规律,并运用这一规律解决实际生活中的问题。
2、过程与方法:通过尝试探索、实验、直观演示、观察、讨论等方法经历和体验“复杂问题简单化”的解题策略。
3、情感与态度:感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中简单问题,培养应用意识和解决实际问题的能力,增强学生学习数学的兴趣。
为实现本节课的'教学目标,我确定以下的教学重点和难点。
教学重点:理解植树棵树与间隔数之间的关系。
教学难点:会应用植树问题的模型解决一些相关的实际问题。
五、说教学方法
为了实现教学目标,突出重点,有效降低难点,我采取以下教学方法。
(一)说教法:现代教育论主张,学生的学习不是被动接受的过程,而是主动建构的过程,因此在本节课中我主要采用“尝试探索”的教学法,让学生先猜测,再动手操作,实际验证。并通过多媒体直观演示辅助教学,引导学生以趣激思,以思促学,在创设的生活情境中尝试探索,形成概念,积极参与,促进学生全面发展。
(二)说学法:这节课我主要采取了引导发现的学习模式:即:提出问题、讨论交流、学生操作、实例验证、总结规律、巩固练习,这种模式对提高学生的自信心和求知欲有极大的帮助,同时在这节课中我采用了尝试探索、实验、直观演示、观察、讨论等教学方法,使学生更容易接受新知识。
六、说教学设计
为达到本节课的教学目标,我从以下四个环节设计教学:
创设情境,初步感知;
合作学习,探究新知;
检测提升,应用反馈;
拓展延伸,情感升华。
(一)创设情境,初步感知
1、新课开始,我直接引出课题——植树问题,然后出示教学目标,接着用课件出示生活中的的间隔问题:马路上的灯柱和树木、广场上灯笼、校园里同学排队做操时的队伍,让学生说说有什么特点。然后让学生找找自己身体上有没有间隔,从而认识什么叫间隔,为下一步的学习做好铺垫。
这一环节我从学生真实的生活中挖掘素材,以学生灵巧的小手为载体,目的是增强学生的好奇心和探究欲,使学生全身心的投入到学习活动中来。让学生知道在我们生活的周围,具有植树问题本质特征的事件很多,要想了解植树问题,必须要知道间隔的问题。
2、问:3月12日是什么节日?
出示一幅校园图,提出问题:学校想在这条路上种树,你愿意来思考植树中的问题吗?
然后出示题目:学校要在全长12米的一条路上,每隔4米种一棵树,如果你是园林设计师,你想怎样种?有几种情况?
路长设为12米,我认为数据较小有利于学生的思考和动手操作,如此修改的意图是,让学生在一个开放的情境,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。
3、自主探究感知
这一环节我让学生自己通过画一画得出三种不同的植树方法;通过用课件直观地显示三种不同情况,让较差些的学生也能理解:植树方法不同,需要的树也不相同,从而进一步使学生建立解决问题的模型。
4、补充课题
在实际的植树过程中,“两端都种”、“只种一端”和“两端都不种”三种情况都存在,我们必须仔细审题,弄清是哪一种情况。今天,我们主要研究的是两端都种的植树问题。
师板书:“植树问题(两端都种)”
5、介绍概念:
师问:这里的12是什么?(师:我们称为“总长”)
这里的“4”是什么?(师:我们也可以称为“间隔”)
每两棵树间的这一段叫什么?(师指着“间隔”说:这是“间隔”)
这里有几个“间隔”?(师:我们说“3”是“间隔数”)
它们之间有什么关系?
学生答:
总长÷间隔=间隔数。
间隔数+1=两端都种的棵数。
是不是这样呢?我们来验证一下!
(二)合作学习,探究新知
让学生明确我们本节课只研究两端都种的情况。
1、小组合作,自主探究。
学生在前面有了画图的基础,我让学生小组合作以画图的形式填表,理解总长、间隔、间隔数和棵数之间的关系。充分发挥学生的自主动手能力,使学生在理解数学概念的基础上,进一步地探索这些数学概念之间的数量关系。
通过汇报交流,小结发现:
总长÷间隔=间隔数。
间隔数+1=两端都种的棵数。
2、根据规律填一填:(两端都种)
(1)15棵树之间有个间隔。
(2)从第一棵树到最后一棵树之间有30个间隔,一共有()棵树。
“棵数”和“间隔数”之间的关系,是学生最难理解的,有了前面概念的理解,再加上这两道简单的练习,使学生加深了对这两者之间关系的认识,进一步突破学习的难点。
3、出示例题:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)指名读题
(2)自主列式计算:100÷5=20(个),20+1=21(棵)。
(3)指名板书并汇报想法。
(要求“棵数”必须先求“间隔数”。用“总长÷间隔=间隔数”用“间隔数+1=棵数”)
4、让学生看书P117质疑:有什么不明白的地方?
由于有前面概念和概念之间数量关系的理解,学生已经能独立解决实际的问题。所以在这个例题的教学过程中,主要是放手让学生自己去列式解决问题,充分发挥学生学习的自主能动性。
(三)检测提升,应用反馈
1、基础练习:P118的做一做。
园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?(让学生知道已知什么,求什么?用哪些数学关系式)
2、变化练习:P122:2
5路公交车行驶路线全长12千米,相邻两站距离是1千米,一共有几个车站?(学生独立做,做完后让学生说想法)
3、选择题。
(1)课间操时,四(1)班23个男同学站成一列纵队,如果每相邻的两个同学相距一米,四(1)班男同学队伍长()米。
22米23米24米
(2)老师从一楼底层去某教室,每走一层楼有24个台阶,共走了48个台阶。你知道老师去了几楼教室?()
2楼3楼4楼
这些练习题,以解决生活中的实际问题为主。使课内的学习活动得以延伸,让学生体会到生活中处处有数学,体验学习数学的价值,享受成功的喜悦。同时,通过求“总长”“棵数”“间隔”的变化练习,锻炼了学生的思维,使学有余力的同学学得更有兴趣。同时也让学生扩大视野:“植树问题”不仅仅用于“植树”,还有很多的问题解决方法与“植树问题”一样。
3、总结提炼:
(1)说一说:这节课你有什么收获?
(2)说一说:老师或同学们在这节课中的表现怎样?
让学生反思,在反思中不断进步。同时,通过自评、互评,让学生感受成功的喜悦,激发学生学习数学的兴趣。
(四)拓展延伸,情感升华
同学们在全长100米的小路两边植树,每隔5米栽一棵(只栽一端)。一共需要多少棵树苗?
让学生说出与例题有什么变化?该怎么解决这个问题呢?让学生课下思考,下一节来交流。激发了学生的求知欲,使学生更易于学会应用“植树问题”的方法来解决实际生活中的数学问题。
七、说板书设计
植树问题(两端都种)
总长÷间隔=间隔数
例1:间隔数:100÷5=20(个)
间隔数+1=两端都种的棵数
棵数:20+1=21(棵)
答:一共需要21棵树苗。
这样的板书设计整齐、美观、合理,对教学内容进行了高度概括,使学生对所学知识一目了然,印象深刻。
总之,本节课为学生提供了充足的空间与时间,引导学生有效参与,强化操作意识,实现了知识的再创造。力求做到以学生发展为本,以学生为主体,充分关注学生的自主探究与合作交流。
篇10:数学植树问题的说课稿
数学植树问题的说课稿
教材分析
“植树问题”是人教版新课程标准实验教材四年级下册第八单元“数学广角”的内容。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想,整个知识点的学习需要3至4个课时,本节课设计的是第一个课时的学习。
设计理念
以教材知识编排为基准,创造性地应用教材,改编教材题例,将复杂的.植树问题进行简单化分解,实现知识点的各个击破,三个知识点的学习过程在对比中进行,通过最后的系统总结,帮助学生实现知识的内化。
教学目标
1、利用现实生活中的情景,引导和组织学生通过观察、推理及动手操作,认识植树问题中间隔数与植树棵数之间存在的关系,即:两端栽——植树棵树=间隔数+1;只栽一端——植树棵树=间隔数;两端不栽——植树棵树=间隔数-1。
2、引导学生能熟练应用所学植树规律解决生活中的实际问题。
3、培养学生从实际问题中发现规律,应用规律解决问题的能力。
教学重点
认识植树问题中间隔数与植树棵数之间存在的关系,即:两端栽——植树棵数=间隔数+1;只栽一端——植树棵数=间隔数;两端不栽——植树棵数=间隔数-1。
教学难点
引导学生利用生活中的植树情景,发现并理解植树问题中间隔数与植树棵数之间的关系。
教具准备
教师:幻灯片、学习卡片
学具准备
学生:直尺或三角板
教学过程
整个知识点的教学过程在收信后的回信过程中进行,具体环节如下:收到信(问题的产生)——引导学生结合学习卡1进行动手操作、观察、推理等得出植树问题中两边栽时棵数和间隔数之间的关系式——引导学生结合关系式解答——谈话引出新的问题(如果只栽一端)——引导学生结合学习卡2进行动手操作、观察、推理等得出植树问题中只栽一端时棵数和间隔数之间的关系式——引导学生结合关系式解答——谈话引出新的问题(两端不栽)——引导学生结合学习卡3进行动手操作、观察、推理等得出植树问题中两端不栽时棵数和间隔数之间的关系式——引导学生结合关系式解答——知识点的对比整理(回信)——应用所学知识解决问题(2个小题)——拓展练习(结合学习知识点和学生实际情况设计)——课堂小结(先让学生交流,再结合板书小结,最后进行知识点延伸铺垫)。
篇11:《植树问题》教学设计及说课稿
教学目标:
1. 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题 的规律。
2. 使学生经历和体验复杂问题简单化的解题策略和方法。
3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
一、谈话引入,明确课题
母亲节刚过,我们马上又要迎来一个快乐的节日──六一儿童节 ,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)
大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究植树问题。(板书课题:植树问题)
二、引导探究,发现两端要种的规律
1. 创设情境,提出问题。
①课件出示图片。
介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a. 指名读题,从题中你了解到了哪些信息?
b. 理解两端是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
③算一算,一共需要多少棵树苗?
④反馈答案。
方法一:10005=200(棵)
方法二:10005=200(棵) 200 +2=202(棵)
方法三:10005=200(棵) 200 +1=201(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2. 简单验证,发现规律。
①画图实际种一种。
课件演示:我们用这条线段表示这条绿化带。两端要种,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去
师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?
②画一画,简单验证,发现规律。
a. 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段 4棵)
b. 跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段 6棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;7段 8棵;10段 11棵。)
d. 你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1)
③应用规律,解决问题。
a. 课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
10005=200 这里的200指什么?
200 +1=201 为什么还要+1?
师:这个秘方好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到两端要种求棵树,知道该怎么做了吗?
b. 解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种求棵树用段数+1;如果两端不种棵树和段数又会有怎样的关系呢?
三、合作探究,两端不种的规律
1. 猜测两端不种的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2. 独立探究,合作交流。
3. 展示小组研究成果,发现规律,验证前面的猜测。
小结:同学们太了不起了,通过举简单的例子,自己又发现了两端不种的规律:棵树=段数-1。如果两端不种求棵树,你会做了吗?
4. 做一做。
①在一条长米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)
②师:同学们注意看,这道题发生了什么变化?
课件闪烁:将一侧改为两侧
问:两侧种树 是什么意思?实际要种几行树 ?会做吗?赶紧做一做。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数1。以后同学们在做题的时候,一定要注意分清是两端要种还是两端不种。
四、回归生活,实际应用
1. 一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
82=4(段)
41=3(次)
问:为什么要1?这相当于今天学习的植树问题中的那种情况?
2. 我们身边类似的数学问题。
①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?
②这一列还是4个同学,如果每相邻
您现在正在阅读的《植树问题》教学设计及说课文章内容由收集!本站将为您提供更多的精品教学资源!《植树问题》教学设计及说课两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?
3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?
五、全课总结
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。
篇12:《植树问题》教学设计及说课稿
植树问题是人教版新课程标准实验教材四年级下册数学广角的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排植树问题的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
1. 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。
2. 学生经历和体验复杂问题简单化的解题策略和方法。
3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的`能力。
本课教学分四大环节:
一、谈话导入,明确课题
二、引导探究,发现两端要种的规律
1. 创设情境,提出问题。
通过创设在公路中间绿化带中植树的现实问题情境,提出共需多少棵树苗的问题。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)
2.简单验证,发现规律。
在举简单例子画一画这个环节,安排了两个小层次:
① 按老师要求画。
② 学生任意画。
通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。
3.应用规律,解决问题。
①应用规律,验证前面例题哪个答案是正确的。
②应用规律,解决插多少面小旗的问题。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
三、合作探究两端不种的规律
1. 猜测两端不种的规律。
猜测是一种培养学生推理能力的好方法。学生已经发现了两端要种的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。
2. 独立操作,探究规律。
有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。
四、回归生活,实际应用
设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
文档为doc格式