欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

全等三角形练习题含答案

时间:2022-11-24 08:50:33 其他范文 收藏本文 下载本文

这次小编给大家整理了全等三角形练习题含答案,本文共9篇,供大家阅读参考。

全等三角形练习题含答案

篇1:全等三角形练习题含答案

全等三角形练习题含答案

夯实基础

一、耐心选一选,你会开心:(每题6分,共30分)

1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )

A.①②③④ B.①③④ C.①②④ D.②③④

2.如果是中边上一点,并且,则是

A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形

3.一个正方形的侧面展开图有()个全等的正方形.

A.2个B.3个C.4个D.6个

4.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )

A.1个B.2个C.3个D.4个

5.下列说法正确的是()

A.若,且的两条直角边分别是水平和竖直状态,那么的两条直角边也一定分别是水平和竖直状态

B.如果,,那么

C.有一条公共边,而且公共边在每个三角形中都是腰的两个等腰三角形一定全等

D.有一条相等的边,而且相等的边在每个三角形中都是底边的两个等腰三角形全等

二、精心填一填,你会轻松(每题6分,共30分)

6.如图所示,沿直线对折,△ABC与△ADC重合,则△ABC≌,AB的对应边是,BC的对应边是,∠BCA的对应角是.

第6题第7题

7.如图所示,△ACB≌△DEF,其中A与D,C与E是对应顶点,则CB的对应边是,∠ABC的对应角是.

8.如图,AB、DC相交于点O,△AOB≌△DOC,A、D为对应顶点,则这两个三角形中,相等的边是____________________,相等的角是____________________.

9.已知,,,则,,和的度数分别为,,.

10.请在下图中把正方形分成2个、4个、8个全等的.图形:

三、细心做一做,你会成功(共40分)

11.找出下列图中的全等图形.

12.找出下列图形中的全等图形.

(1)(2)(3)(4)(5)(6)

(7)(8)(9)(10)(11)(12)

13.如图,AB=DC,AC=DB,求证AB∥CD.

综合创新

14.如图,点在一条直线上,△△你能得出哪些结论?(请写出三个以上的结论)

[来源:ZXXK]

15.把一张方格纸贴在纸板上.按图1所示画上正方形,然后沿图示的直线切成5小块.当你照图2的样子把这些拼成正方形的时候中间居然出现了一个洞!

我们发现,图1的正方形是由49个小正方形组成的.图2中拼成的正方形却只有48个小正方形.哪一个小正方形没有了?它到哪去了?

中考链接

16.如图,,则的度数为( )

A.B.

C.D.

17.如图,若,且,则.

18.右图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.

参考答案

夯实基础

1.A

2.D

3.C

4.A.

5.B

6.△ADC,AD,AC,∠DCA

7.EF,∠DFE

8.AB=DC、AO=DO、OB=OC,∠AOB=∠DOC、∠A=∠D、∠B=∠C.

9.;,,

10.分法可分别如下所示:

11.根据全等形的定义得全等形有天鹅、荷花.

12.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形

13.分析:要证AB∥CD,只需∠ABC=∠DCB,要证∠ABC=∠DCB,只需△ABC≌△DCB.

证明:∵在△ABC和△DCB中,,

∴△ABC≌△DCB(SSS).

∴∠ABC=∠DCB.

∴AB∥CD.

综合创新

14.由△△可得到

△△等.

15.5小块图形中最大的两块对换了位置之后,被那条对角线切开的每个小正方形都变得高比宽大一点点.这意味着这个大正方形不再是严格的正方形.它的高增加了,从而使得面积增加,所增加的面积恰好等于那个方洞的面积.

16.C

17.

18.2

篇2:三角形练习题(含答案和解释)

三角形练习题(含答案和解释)

一、选择题

1.在△ABC中,下列a与bsin A的关系正确的是( )

A.a>bsin A

B.a≥bsin A

C.a

D.a≤bsin A

【解析】 由正弦定理得asin A=bsin B,所以a=bsin Asin B,又因为sin B∈(0,1],所以a≥bsin A。

【答案】 B

2.△ABC中,a=5,b=3,sin B=22,则符合条件的三角形有( )

A.1个

B.2个

C.3个

D.0个

【解析】 ∵asin B=102,asin B【答案】 B

3.在△ABC中,若A=75°,B=45°,c=6,则△ABC的.面积为( )

A.9+33

B.9(6-2)2

C.9+332

D.9(6+2)2

【解析】 A=75°,B=45°,C=60°,b=csin Bsin C=6×2232=26,S△ABC=12bcsin A=12×26×6×6+24=9+33。

【答案】 A

4.在△ABC中,角A、B、C的对边分别为a,b,c,且acs B+acs C=b+c,则△ABC的形状是( )

A.等边三角形

B.锐角三角形

C.钝角三角形

D.直角三角形

【解析】 acs B+acs C=b+c,故由正弦定理得,sin Acs B+sin Acs C=sin B+sin C=sin(A+C)+sin(A+B),化简得:cs A(sin B+sin C)=0,又sin B+sin C>0,cs A=0,即A=π2,△ABC为直角三角形。

【答案】 D

5.(天津高考)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cs C=( )

A.725

B.-725

C.±725

D.2425

【解析】 由bsin B=csin C,且8b=5c,C=2B,所以5csin 2B=8csin B,所以cs B=45.所以cs C=cs 2B=2cs2B-1=725.x b 1。

【答案】 A

二、填空题

6.在△ABC中,B=45°,C=60°,c=1,则最短边的边长等于________.

【解析】由三角形内角和定理知:A=75°,由边角关系知B所对的边b为最小边,由正弦定理bsin B=csin C得b=csin Bsin C=1×2232=63。

【答案】 63

7.(济南高二检测)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=3,A+C=2B,则sin C=________.

【解析】 A+B+C=180°,且A+C=2B,B=60°,由正弦定理得sin A=asin Bb=1×sin 60°3=12,又a

【答案】 1

8.若△ABC的面积为3,BC=2,C=60°,则边AB的长度等于________.

【解析】 由于S△ABC=3,BC=2,C=60°,3=12×2AC32,AC=2,△ABC为正三角形,AB=2。

【答案】 2

三、解答题

9.在△ABC中,c=6,A=45°,a=2,求b和B,C。

【解】 ∵asin A=csin C,sin C=csin Aa=6×sin 45°2=32,csin A<a<c,∴C=60°或C=120°,当C=60°时,B=75°,b=csin Bsin C=6sin 75°sin 60°=3+1,当C=120°时,B=15°,b=csin Bsin C=6sin 15°sin 120°=3-1.b=3+1,B=75°,C=60°或b=3-1,B=15°,C=120°。

10.在△ABC中,如果lg a-lg c=lgsin B=-lg 2,且B为锐角,判断此三角形的形状。

【解】 由lg a-lg c=lgsin B=-lg 2,得sin B=22,又B为锐角,B=45°,又ac=22,∴sin Asin C=22,sin C=2sin A=2sin(135°-C),sin C=sin C+cs C,cs C=0,即C=90°,故此三角形是等腰直角三角形。

11.在△ABC中,已知tan B=3,cs C=13,AC=36,求△ABC的面积。

【解】 设△ABC中AB、BC、CA的长分别为c、a、b,由tan B=3,得B=60°,sin B=32,cs B=12,又cs C=13,sin C=1-cs 2C=223,由正弦定理得c=bsin Csin B=36×22332=8,又sin A=sin(B+C)=sin Bcs C+cs Bsin C=36+23,三角形面积S△ABC=12bcsin A=62+83。

篇3:全等三角形

课题:

教学目标:

1、知识目标:

(1)知道什么是全等形、及的对应元素;

(2)知道的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个的对应角、对应边。

2、能力目标:

(1)通过角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:的性质。

教学难点:找的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

、对应顶点、对应角以及有关数学符号。

2、性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及性质的应用

(1) 投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)对应角所对的边是对应边,两个对应角所夹的边是对应边(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

第 1 2 页

篇4:全等三角形

教材分析:

《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。

设计理念:

针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

教学目标:

1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。

教学的重点和难点:

重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

教学过程设计:

一、创设问题情境:

某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)

师:请同学们先独立思考,然后小组交流意见

生:…………

师:上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。(引出课题)。

师:识别三角形及等的方法有哪些?

生:SAS 、SSS、ASA、AAS 、HL。

复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )

练习2、已知AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是

(2)添加条件后,证明△ABC≌△DEF?

[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]

二、探求新知:

师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?

请同组合作,交流,并把有代表性的摆放进行投影。

熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

(1)求证:AB⊥ED

(2)若PB=BC,请找出右图中全等三角形,并给予证明。

用多媒体演示图形的变化过程。

师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。

生甲:AB垂直ED

师:为什么?可以从几方面来考虑?

生乙:可以从图形运动变化的过程来考虑

生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

(根据学生的回答,教师板演)

师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?

生丁:△PBD≌△CBA(ASA)

师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

师:还有其他三角形全等吗?

生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)

例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。

教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。

师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度

关系如何?

生:基本相等。

生:长度相等。

师:如何来证明他们相等?注意审题。

学生先独立思考后,组内交流,等到有同学举手发言。

生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH

师:为什么要这么做?你是怎么想到的?

生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

师:这样只能得到EF=FH。

生:再证明△FHC≌△FDC。

生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=

∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)

师生共同小结:

1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。

2、在错综复杂的几何图形中能够寻找全等三角形。

3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

4、运用全等三角形的识别法可以解决很多生活实际问题。

作业:

1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。

2、书本课后复习题

教学反思:

本教学设计从以下三方面考虑:

1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。

2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。

篇5:全等三角形整合练习题有答案

全等三角形整合练习题有答案

1.下列说法中,不正确的是( )

A.形状相同的两个图形是全等形

B.大小不同的两个图形不是全等形

C.形状、大小都相同的两个三角形是全等三角形

D.能够完全重合的两个图形是全等形

2.如图所示,△ABD≌△BAC,B,C和A,D分别是对应顶点,如果AB=4cm,BD=3cm,AD=5cm,那么BC的长是( )

A.5cmB.4cm

C.3cmD.无法确定

3.如图所示,△ABC≌△ADC,∠ABC=70°,则∠ADC的度数是( )

A.70°B.45°C.30°D.35°

4.如图所示,若△ABC≌△DBE,那么图中相等的角有( )

A.1对B.2对C.3对D.4对

5.如图所示,若△ABC≌△DEF,那么图中相等的线段有( )

A.1组B.2组C.3组D.4组

6.(1)已知如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.

(2)由对应边找对应角,由对应角找对应边有什么规律?

能力提升

7.已知等腰△ABC的周长为18cm,BC=8cm,若△ABC≌△A′B′C′,则△A′B′C′中一定有一条边等于( )

A.7cmB.2cm或7cm

C.5cmD.2cm或5cm

8.下图所示是用七巧板拼成的`一艘帆船,其中全等的三角形共有__________对.

9.如图所示,△ADF≌△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.

10.下图是把4×4的正方形方格图形沿方格线分割成两个全等图形,请在下列三个4×4的正方形方格中,沿方格线分别画出三种不同的分法,把图形分割成两个全等图形.

11.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.

参考答案

1.A 点拨:选项A中,形状相同,但是大小不一定相同,所以不一定是全等形.选项B,C,D,只要两个图形形状、大小相同的图形放在一起能够完全重合,它们一定是全等形.全等三角形是全等形的特殊情形.

2.A 点拨:因为△ABD≌△BAC,所以BC=AD=5cm.

3.A 点拨:因为△ABC≌△ADC,所以∠ADC=∠ABC=70°.

4.D 点拨:因为△ABC≌△DBE,根据全等三角形的对应角相等,得∠A=∠D,∠C=∠E,∠ABC=∠DBE.

由∠ABC=∠DBE,得∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE.

5.D 点拨:由全等三角形的对应边相等得三组对应边相等,即AB=DE,AC=DF,BC=EF.由BC=EF,得BC-CF=EF-CF,即BF=EC.

6.解:(1)AB与AC,AE与AD,BE与CD是对应边,∠BAE与∠CAD是对应角.

(2)对应边所对的角是对应角,对应边所夹的角是对应角,对应角所对的边是对应边,对应角所夹的边是对应边.

7.D 点拨:分两种情况讨论:

(1)在等腰△ABC中,若BC=8cm为底边,

根据三角形周长计算公式可得腰长=5cm;

(2)在等腰△ABC中,若BC=8cm为腰,

根据三角形周长计算公式可得底边长18-2×8=2cm,

∵△ABC≌△A′B′C′,∴△A′B′C′与△ABC的边长及腰长相等.即△A′B′C′中一定有一条边等于2cm或5cm.

8.2 点拨:通过观察图中存在两对等腰直角三角形,它们都是全等的.

9.解:AD与BC的关系是AD∥BC.

理由如下:因为△ADF≌△CBE,所以∠1=∠2,∠F=∠E,点E,B,D,F在一条直线上,所以∠3=∠1+∠F,∠4=∠2+∠E,即∠3=∠4,所以AD∥BC.

10.解:如图.答案不唯一.

11.解:∵△ABC≌△ADE,

∴.

∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,

∠DGB=∠DFB-∠D=90°-25°=65°.

篇6:全等三角形说课稿

一、教材分析:

本节的教学内容是第13章第2节的第5小节,在本节课之前,学生已经进行了“边角边”、“角边角”、“角角边”的学习探索。三角形全等的证明既是几何推理证明的起始部分,对学生的后续学习起着铺垫作用,是后面等腰三角形、四边形与特殊四边形的学习基础,同时也是培养提高学生逻辑思维能力的良好素材,对学生的演绎推理能力锻炼有非常重要的作用。

二、学生情况分析

在本节学习之前,学生已经经历了一周的推理证明的训练,所以学生的证明能力已经有所提升,解题思路也有所凝练,相对而言储备了一定的方法和技巧,但是对于辅助线的引用练习的不是很多,因此学生还没有什么经验。

三、教学目标、重点和难点

(一)教学目标:

1、让学生通过实践操作探索出“边边边”的基本事实,并掌握其推理格式。

2、能够应用“边边边”的基本事实解决实际问题。

(二)教学重点:

掌握“边边边”的基本事实。

(三)教学难点:

灵活运用“边边边”解决问题。

四、教法学法

(一)教法

在本节课的课堂教学中我采用讲授、讨论式、演示、互动式、体验式、操作式、谈话、练习等教学方法,凸显学生的主体地位和教师的主导地位,突出课标的四性<实践性、趣味性、自主性、开放性>,适时启发点拨引导,适当采用多媒体教学手段,帮助学生更好地掌握知识、熟练技能、培养学生的能力,

(二)学法

我采用自主、探究、合作的学习方法,让学生在动手操作、动脑思考、交流讨论的过程中学习本节课的知识、掌握方法、提高技能、形成能力;达到体验中感悟情感、态度、价值观;活动中归纳知识;参与中培养能力;合作中学会学习。

五、教学过程

复习引入:复习已经学过的全等三角形的三种判定方法,为新知做好铺垫;然后引入新课,激发学生的学习兴趣。

明确目标:简洁明了的学习目标使学生在开始学习之初就能够明确目标,明确努力的方向,做到有的放矢。

定向学习:在整个自学过程中,我注意用语言引导学生,使其把握住主旨目标,充分利用教材和导学提纲完成自学。由于上一阶段的学习和练习,学生储备了一定的经验,所以要自主完成例1应该是不成问题,而且基础训练的内容学生也能比较容易完成。

精讲点拨:在“边边边”的简单应用的基础上,再稍加拓展。

巩固训练:在此环节中我着重加入了对辅助线的引导渗透,对学生的思维能力进行拓展、提升,以确保让尖子生吃的饱。

六、课后反思

在教学过程中,我注重调整了自己的“角色”,因为学生已经结合教材进行了自学,所以在课堂上,更应实现学生的自主,故课堂即是学生的演练场,教师就针对学生出现的问题进行点拨、指导,对于共性问题重点提示,引起全体同学重视,从而加深印象。正所谓问题即课题,有疑、有错才有讲解!本节课的教学,按照本人的设计非常顺畅的进行下去了,学生对于我在三角形全等这一部分知识的处理方式,都能够适应、接受,这也反映出这样的教学方式对于学生新知识的接受还是比较适合的。教无定法,不同的知识、不同的学生,可能要采用不同教学方式,需要我们因课因人灵活选择。

篇7:《全等三角形》说课稿

尊敬的各位评委老师:

大家好!今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》。下面,我将从教材分析、教学方法、教学过程等几个方面对本课的设计进行说明。

一、说教材

全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

二、说学情

学生在小学阶段已经学习了三角形的性质和类型,已经知道三角形可以分为锐角三角形、钝角三角形和直角三角形,但是对于全等三角形这一特殊的三角形却还是一个新的知识点。三角形是最基本的几何图形之一,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。学生对于研究它的全等的判定有着足够的感知经验,但是也存在着以下困难:全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前,学生所接触的逻辑判断中直观多余抽象,用自己的语言表述多于用数学语言表述。所以,怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。

三、说教学目标

本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的教学目标如下:

1.知识目标:

(1)理解全等三角形的概念。

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等。

(3)能熟练找出两个全等三角形的对应角、对应边。

2.能力目标:

(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力。

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3.情感目标:

(1)通过感受全等三角形的对应美激发热爱科学勇于探索的精神。

(2)通过自主学习的发展体验获取数学知识的感受,培养勇于创新,多方位审视问题的创造技巧。

四、说教学重、难点

教学重点:探究全等三角形的性质

教学难点:正确判断两个全等三角形的对应边,对应角

五、说教法

教学生观察、归纳的方法

为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。

六、说学法

学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与学法的有机统一:一是看听结合,形成表象。看教师演示,听教师讲解,形成表象。二是手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。

七、说教学过程

本节课的教学过程是:

首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。

其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。

再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。

最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

八、说板书设计

我以条理清楚为原则,既体现了学习目标,又突出了学习的重点,能够帮助学生更明了地理解这节课的知识点。特设计如下:

全等三角形

1.全等三角形的性质

2.找对应元素的方法

运动法:翻折、旋转、平移

位置法:对应角→对应边,对应边→对应角

经验:大边→大边,大角→大角.公共边是对应边,公共角是对应角

篇8:全等三角形证明题

全等三角形证明题

全等三角形证明题

1 在直角坐标系中,有两个点A(2,4) B(-2,-4), (即A.B两点是

关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别

连接A,A1和B,B1后,证AA1O和BB1O两三角行全等!

2有一个正方形,分别连接它的对角,求其中的全等三角形?

3 一个等腰三角形,做这个三角形的高线后,求其中的全等三角形?

4 在直角坐标系中,有一个直角三角形,将此三角形向左平移6格,

求平移后的三角形和原料的三角形是否全等?

5 有两个直三角形,其一个三角形三边的长为3,4,5,另一个三角形

的.直角边长为3和4.求证两三角形全等. (注:SAS)

6 一个等边三角形的边长为5cm,另一个等边三角形边长也是5cm,

求两个等边三角形全等. (注:SAS或SSS)

7.已知平行四边形ABCD,连接点AC,求三角形ABC和三

角形CDA全等.

8等腰梯形ABCD对角相连求全等的三角形?

9 在一个圆上,在圆内做两个三角形,圆心是公共的两个三角形

的端点,且这两个角度数都为30度,求两三角形全等.(由

于圆半径相等,且两边夹角相等,所以SAS)

10 .已知:三角形中AB=AC,

求证:(1)∠B=∠C

11 三角形ABC和三角形FDE,AB=FD,AC=FE,BC=DE,求全等(SSS)

12 三角形ABC和三角形FDE,∠C=∠E,AC=FE,∠A=∠F,求全等

(ASA)

三角形ADF是直角三角形

所以角EAD=90度-角BDA

三角形ADB是直角三角形

所以角BAD=90度-角BDA

所以角EAD=角BAD

CE平行AB

所以同旁内角互补

所以角BAD+角ACE=180度

角BAD=90度

所以角ACE=90度

所以角BAD=角ACE

所以三角形BAD和三角形ACE中

角EAD=角BAD

角BAD=角ACE

AB=AC

由ASA

三角形BAD≌三角形ACE

所以AD=CE

因为D是AC中点,且AB=AC

所以AB=2AD

所以AB=2CE

只要证明直角三角形 BAD 全等 ACE 就可以了

AE垂直 BD,所以 角 EAC=角 DBA (为什么?因为角EAC+角BAE=90度,而角 BAE+角DBA=90度,所以 角 EAC=角 DBA )

然后因为CE平行 AB,所以角ACE=90度

看三角形 BAD和ACE

角 EAC=角 DBA

角 BAD=角 ACE=90

又因为 AB=AC

所以两个直角三角形全等

所以AD=CE

又因为BD是中线,所以 AC=2AD

所以 AB=2CE

∵∠DEC=∠AEB(对顶角相等)

∠A=∠D

AE=ED

∴△ABE全等于△DEC(ASA)

∴EB=EC

∵∠DEC=50°

∴∠BEC=180°―∠EDC=180°―50°=130°

∵BE=EC

∴△BEC是等腰三角形

∴∠EBC=∠ECB=(180°―∠BEC)×(1/2)=25°

篇9:《全等三角形》说课稿

尊敬的各位评委老师:

大家好!今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》。下面,我将从教材分析、教学方法、教学过程等几个方面对本课的设计进行说明。

一、说教材

全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

二、说学情

学生在小学阶段已经学习了三角形的性质和类型,已经知道三角形可以分为锐角三角形、钝角三角形和直角三角形,但是对于全等三角形这一特殊的三角形却还是一个新的知识点。三角形是最基本的几何图形之一,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。学生对于研究它的全等的判定有着足够的感知经验,但是也存在着以下困难:全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前,学生所接触的逻辑判断中直观多余抽象,用自己的语言表述多于用数学语言表述。所以,怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。

三、说教学目标

本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的教学目标如下:

1.知识目标:

(1)理解全等三角形的概念。

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等。

(3)能熟练找出两个全等三角形的对应角、对应边。

2.能力目标:

(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力。

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3.情感目标:

(1)通过感受全等三角形的对应美激发热爱科学勇于探索的精神。

(2)通过自主学习的发展体验获取数学知识的感受,培养勇于创新,多方位审视问题的创造技巧,

四、说教学重、难点

教学重点:探究全等三角形的性质

教学难点:正确判断两个全等三角形的对应边,对应角

五、说教法

教学生观察、归纳的方法

为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。

六、说学法

学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与学法的有机统一:一是看听结合,形成表象。看教师演示,听教师讲解,形成表象。二是手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。

七、说教学过程

本节课的.教学过程是:

首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。

其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。

再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。

最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

八、说板书设计

我以条理清楚为原则,既体现了学习目标,又突出了学习的重点,能够帮助学生更明了地理解这节课的知识点。特设计如下:

全等三角形教案

初中全等三角形课件

全等三角形教学设计

《全等三角形》教学反思

全等三角形说课课件

全等三角形的判定课件

三角形全等的判定教案

人教版数学三角形全等教学设计

全等三角形的判断教学反思

相似三角形练习题

《全等三角形练习题含答案(共9篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档