欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

“圆的周长”片断赏析

时间:2022-12-04 08:39:00 其他范文 收藏本文 下载本文

下面是小编整理的“圆的周长”片断赏析,本文共9篇,希望能帮助到大家!

“圆的周长”片断赏析

篇1:“圆的周长”片断赏析

“圆的周长”片断赏析

“圆的周长”是九年义务教育六年制小学试用课本第十一册教学内容,本节课要达到的知识目标是使学生掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单实际问题;能力目标是引导学生体验科学的探索过程,初步学会用科学的方法探究问题;情感目标是结合教学内容进行爱国主义教育,激发学生民族自豪感。

现节选几个有创新的片断,与各位同行探讨。

片断一:

开始上课后,老师和同学们进行交谈,老师说:“从一年级到六年级,我们都学习了哪些数大家还记得吗?”“整数”、“小数”、“自然数”、“分数”学生纷纷回答,老师继续说:“你能说出一个小数吗?”学生举例:“0.3”、“5.2”……老师接着说:“你能说出一个无限不循环小数吗?”有的学生说:“我知道π是无限不循环小数!”老师问道:“还有哪些同学对π有一些了解,能给大家介绍一下吗?”生1:“π也就是圆周率。”生2:“祖冲之研究了圆周率。”生3:“圆周率是3.1415926……。在学生介绍的基础上,老师适时介绍圆周率的发展历史:

自古以来,古今中外的很多数学家都在研究它。公元480年,我国古代伟大的数学家祖充之就计算出π在3.1415926到3.1415927之间,是世界上把π值精确到小数点后七位的第一个人,直到一千多年后,欧洲人才求出来。祖充之在数学上的伟大贡献得到了世界的公认。1959年10月4日,前苏联发射了第三枚宇宙火箭,第一次拍摄了月球背面的照片,把其中一个。定名为“祖充之山”,由此可见,祖充之在国际上享有崇高荣誉。1946年,人们开始用计算机计算圆周率,试图把它算出来或发现它的规律,算到了620位,但是没有获得成功。到,日本的两位科学家把π值精确到2061亿位,如果把这些数字全部记录下来长度可达421185千米,如果用A4纸把这些数字一个挨一个的打印出来,这些纸落起来的高度和中央电视台的电视塔一样高,即使是这样,人们还是没有算出它的结果。

在老师讲述的过程中,教室里鸦雀无声,每个学生都聚精会神地听着,就连平时那些坐

不住的学生,此刻也深深地被故事所吸引。这时,老师抓住时机激发学生的探究欲望:“对于这样奇妙的一个数,你还想知道些什么?”生1:“我想知道π是怎样算出来的?”生2:“我想知道π到底是多少?”……老师顺势点题:“今天这节课我们就来认识π。”

《数学课程标准(实验稿)》强调让学生初步了解有关数学背景知识,帮助学生了解数学发生与发展过程,激发学习数学的兴趣。结合本节课的教学内容,我在网上查阅了大量的资料,找到一个体现新的教学理念的契机:通过介绍“圆周率”的发展历史,来开拓学生的视野,丰富学生的知识面,使学生了解知识的来龙去脉,激发学习兴趣。教学实践的效果:教师在讲述历史故事的过程中,我国古代数学家祖充之在数学上做出的伟大贡献,以及在世界上享有的胜誉,使学生的爱国主义情感油然而生,同时,在研究圆周率的漫漫历史中,古今中外的科学家们付出了很多艰辛,但至今仍没有计算出它的结果,使学生对这个奇妙的数产生了神秘感,产生了研究的欲望,因而提出了“圆周率是怎样计算出来的?”“圆周率到底能不能算出来?”等一系列疑问,学生的学习欲望被充分地调动起来,收到较好的效果。正如新大纲所要求的,不仅更好地激发了学生的求知欲,而且还调动起学生积极的情感,使探究、发现成为学生自身的需要,对学生进行情感、态度与价值观的陶冶。

片断二:

在探究圆周长的计算方法的过程中,老师请各小组讨论:要想研究圆的周长与直径的

倍数关系需要做哪些工作?根据学生的回答老师出示探究建议:(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。老师给每个小组提供的探究材料有:纸杯、硬币、圆形杯子垫、硬纸片剪的圆、纸剪的圆、布剪的圆、直尺,线绳、水彩笔,剪刀。每组学生可以从学具盒中选出2--3个圆形学具进行测量,把数据和结论填在表中。(表如下)

圆的直径 圆的周长 周长与直径的倍数关系

1

2

3

4

在汇报交流时,各组测量的方法多种多样:

方法1:用硬纸片剪出的圆或圆形纸片在直尺上滚动一周。

方法2:先用线绳绕在纸杯口,然后再把线绳拉直测量长度。

方法3:先用剪刀沿着布圆或纸圆的周长剪下一条,剪得越细越好,再测量布条或纸条的长度。

方法4:先用水彩笔沿着硬币的圆周长涂上颜色,然后将硬币在纸上滚动一周,测量纸上留下的痕迹的长度。

各组汇报自己的研究方法和结论之后,老师问学生:“虽然大家的算出的结果不完全相同,但它们有什么共同的特点?”学生观察后发现:“都是3倍多一些。”老师进一步激疑:“为什么大家算出的结果会不一样呢?”老师的问题激起了学生心中的疑问,引发了学生深入地思考,过了一会有同学说:“可能是我们在测量圆周长时有误差吧)?这时,老师借机介绍科学的研究方法“割圆术”(老师一边讲述,一边演示电脑课件):

我们的祖先也曾用这种方法研究圆的周长与直径的倍数关系,也遇到了同样的问题,后来,人们发现,圆的周长是无法精确地测量出来的,于是改进了研究的方法。把圆内接正六边形的周长看作是圆的周长的近似值,得出圆的周长是直径的3倍,后来,又把圆内接正六边形的边数加倍,得到圆内接正十二边形,再加倍得到正二十四边形,边数越多越接近于圆,它的周长也越接近于圆的周长,圆的周长与直径的倍数关系也越来越精确,但是人们发现,它永远也算不完,于是就产生了一个新的数,人们把它命名为希腊字母π,于是人们就用π来表示圆周长与直径的倍数,这种研究的方法叫“割圆术”。

听了关于“割圆术”介绍,有的学生恍然大悟地点着头,嘴里情不自禁地说着;“噢,原来这么回事)?,有的学生还在若有所思地回味着、思考着,……,从学生的表现来看,显然对“割圆术”颇感兴趣。

日本著名数学教育家米山国藏指出:学生对“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神、数学的思想、研究方法和着眼点等,这些随时随地发生作用,使他们终身受益”。数学教学内容始终反映着显性的数学知识(概念、法则、公式、性质等)和隐性的数学知识(数学思想方法)这两方面。数学思想方法是数学学科的精髓,是数学素养的重要内容之一。它是学生形成良好认知结构的纽带,是由知识转化为能力的桥梁,是培养学生数学意识、形成优良思维素质的关键。因此,《数学课程标准(实验稿)》强调必须重视数学思想方法的渗透。我在设计“引导学生探究圆周长的.计算方法”这一教学环节时,查阅了大量的资料,认为这正是一个渗透数学思想,让学生体验科学的研究方法,学会科学地思考问题的很合适的机会。在教学过程中,学生在想办法测量圆周长的过程中,由于圆的周长是曲线,无法直接用直尺测量长度,这对学生的原有认知是一个挑战,无论学生想到哪一种都方法,都是在想方设法把曲线变成直线去测量,渗透了“转化”的数学思想,培养了学生解决问题的能力。教师在激起学生心中的疑问之后,适时地介绍“割圆术”,不仅渗透了“极限”的思想,而且让学生感受和体验了科学家探索的历程,引发了学生爱科学,尊重科学的积极情感,学会了用科学的方法去思考问题、解决问题。这样的教学设计体现了新数学课程标准提出的“让学生获得适应未来社会生活和继续学习所必需的数学基本知识以及基本的数学思想方法。”

片断三:

在巩固应用部分,我以学生非常熟悉的校园作为素材,设计练习题:

第一组练习:

出示史家胡同小学操场的照片:

老师提问:“这是我们学校的操场,请同学们找一找,这里面有圆形吗?”学生一看是自己的学校,积极性很高,目不转睛地盯着屏幕找。学生很快观察到“罚球区是圆形的。”老师提出问题:“要想知道这个圆的周长是多少,你有什么办法?”学生回答:“测量圆的直径。”老师提供数据:“我们班的体育委员帮大家测量了一下,这个圆的直径是3.4米,你能算一算这个罚球区的圆周长是多少吗?”学生兴致很高地算了起来。

第二组练习:

出示史家胡同小学操场另一个角度的照片:

照片一出,学生立刻发现:“大树的围栏是圆形的。”“大树的树干是圆形的。”老师提出问题:“要求大树围栏的周长,该怎么办?”有的学生还是想先测量围栏的直径,再计算圆周长。但马上有学生提出异意,生1:“测量围栏的直径不方便,因为有大树在中间挡着。”生2:“测量围栏的半径也不方便,中间也有大树挡着。”听了生1和生2的发言,大家觉得有道理,那该怎样测量呢?这时,生3提出:“可以用皮尺直接测量围栏的周长。”很多同学恍然大悟:“噢,对了)?,生1自言自语“这么简单的方法,我怎么没想到)?正在学生颇有兴致地进行交流时,老师抓住时机又进一步提出新问题:“要想知道大树的直径,有什么办法?”生1:“先测量大树树干的周长,再算出它的直径。”生2:“先用两块很大的木板把大树夹在中间,然后测量两块木板之间的距离。”生3:“把大树锯开,测量横截面的圆的直径。”有的学生提出生3的方法不好,如果把大树锯开,就破坏了生态环境。通过讨论,大家一致认为第一种方法比较好,既方便可行,又不浪费。这时,老师提供数据:“我测量了一下,这棵大树树干的周长是3.6米,你能算一算树干的直径吗?”学生迫不及待地算了起来。

在计算第一组题和第二组题的过程中,所有学生都在积极地参与,脸上始终洋溢着成功的喜悦。

第三组练习:

出示史家胡同小学运动会六年级接力赛跑的照片:

在放录像的过程中,由于都是学生自己亲身经历的事情,让他们感到非常亲切,颇感兴趣。这时,老师提出问题:“这是我们六年级四个班在进行接力赛,他们为什么不在同一起跑线上起跑呢,你们知道吗?”学生争先恐后地回答:“他们沿着不同的圆周长跑,跑步的长度不同,所以不能在同一起跑线上起跑。”教师追问:“你们知道怎样确定他们的起跑位置吗?”有的学生怕没有机会回答问题,还没等老师叫他的名字,就迫不及待地站起来说:“应该根据圆周长的差来确定起跑位置相隔多远。”此时,课堂气氛达到了高潮,学习情绪非常高涨,直到下课铃响了,学生还意犹未京?

“数学要源于现实,扎根于现实”,这是荷兰数学教育家弗赖登塔尔提出的“数学现实”的教学原则。修订版数学教学大纲明确要求“使学生感受数学与现实生活的密切联系”,这是小学数学教学的基本任务,也是小学数学教学的指导思想和重要原则。通过生活化的数学问题,能让学生深深体会到生活离不开数学,数学是求解生活问题的钥匙,从而加强学生学习数学的目的性,增强学习数学的趣味性。在设计“巩固应用”这一教学环节时,我想在日常生活中,学生身边很多地方都有圆形,如果把他们熟悉的事物编成练习题,就会让他们感到更加亲切自然,更加有兴趣,使他们感受到运用学到的数学知识,能够解决自己身边的问题,获得成功感。于是,我选择了学生熟悉的校园操场作为研究题材,如篮球场的罚球区、大树围栏、大树等,并都是“以你……”的语气陈述,这样使学生身临其境,当解决问题的主人,提高了学生的应用意识。在教学过程中,不仅完成了知识目标,使学生掌握了圆周长的计算方法,而且激发了学生积极的情感,全体学生都在积极地参与。第三组练习本是一道思考题,但学生并没有感到很高深,而是觉得是自己身边的事,接受起来很容易。刚一下课,有一个同学高兴地跑到我面前说:“老师,今天做的题挺有意思,我特别喜欢)?由于这些问题就在学生的身边,就让他们感到有意思、有想头、不枯燥,他们就愿意深入思考这些问题,收到了较好的教学教学效果。正如华罗庚所说的:对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。

篇2:“圆的周长”片断赏析

“圆的周长”是九年义务教育六年制小学试用课本第十一册教学内容,本节课要达到的知识目标是使学生掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单实际问题;能力目标是引导学生体验科学的探索过程,初步学会用科学的方法探究问题;情感目标是结合教学内容进行爱国主义教育,激发学生民族自豪感。

现节选几个有创新的片断,与各位同行探讨。

片断一:

开始上课后,老师和同学们进行交谈,老师说:“从一年级到六年级,我们都学习了哪些数大家还记得吗?”“整数”、“小数”、“自然数”、“分数”学生纷纷回答,老师继续说:“你能说出一个小数吗?”学生举例:“0.3”、“5.2”……老师接着说:“你能说出一个无限不循环小数吗?”有的学生说:“我知道π是无限不循环小数!”老师问道:“还有哪些同学对π有一些了解,能给大家介绍一下吗?”生1:“π也就是圆周率。”生2:“祖冲之研究了圆周率。”生3:“圆周率是3.1415926……。在学生介绍的基础上,老师适时介绍圆周率的发展历史:

自古以来,古今中外的很多数学家都在研究它。公元480年,我国古代伟大的数学家祖充之就计算出π在3.1415926到3.1415927之间,是世界上把π值精确到小数点后七位的第一个人,直到一千多年后,欧洲人才求出来。祖充之在数学上的伟大贡献得到了世界的公认。1959年10月4日,前苏联发射了第三枚宇宙火箭,第一次拍摄了月球背面的照片,把其中一个。定名为“祖充之山”,由此可见,祖充之在国际上享有崇高荣誉。1946年,人们开始用计算机计算圆周率,试图把它算出来或发现它的规律,算到了620位,但是没有获得成功。到19,日本的两位科学家把π值精确到2061亿位,如果把这些数字全部记录下来长度可达421185千米,如果用A4纸把这些数字一个挨一个的打印出来,这些纸落起来的高度和中央电视台的电视塔一样高,即使是这样,人们还是没有算出它的结果。

在老师讲述的过程中,教室里鸦雀无声,每个学生都聚精会神地听着,就连平时那些坐

不住的学生,此刻也深深地被故事所吸引。这时,老师抓住时机激发学生的探究欲望:“对于这样奇妙的一个数,你还想知道些什么?”生1:“我想知道π是怎样算出来的?”生2:“我想知道π到底是多少?”……老师顺势点题:“今天这节课我们就来认识π。”

《数学课程标准(实验稿)》强调让学生初步了解有关数学背景知识,帮助学生了解数学发生与发展过程,激发学习数学的兴趣。结合本节课的教学内容,我在网上查阅了大量的资料,找到一个体现新的教学理念的契机:通过介绍“圆周率”的发展历史,来开拓学生的视野,丰富学生的知识面,使学生了解知识的来龙去脉,激发学习兴趣。教学实践的效果:教师在讲述历史故事的过程中,我国古代数学家祖充之在数学上做出的伟大贡献,以及在世界上享有的胜誉,使学生的爱国主义情感油然而生,同时,在研究圆周率的漫漫历史中,古今中外的科学家们付出了很多艰辛,但至今仍没有计算出它的结果,使学生对这个奇妙的数产生了神秘感,产生了研究的欲望,因而提出了“圆周率是怎样计算出来的?”“圆周率到底能不能算出来?”等一系列疑问,学生的学习欲望被充分地调动起来,收到较好的效果。正如新大纲所要求的,不仅更好地激发了学生的求知欲,而且还调动起学生积极的情感,使探究、发现成为学生自身的需要,对学生进行情感、态度与价值观的陶冶。

片断二:

在探究圆周长的计算方法的过程中,老师请各小组讨论:要想研究圆的周长与直径的

倍数关系需要做哪些工作?根据学生的回答老师出示探究建议:(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。老师给每个小组提供的探究材料有:纸杯、硬币、圆形杯子垫、硬纸片剪的圆、纸剪的圆、布剪的圆、直尺,线绳、水彩笔,剪刀。每组学生可以从学具盒中选出2--3个圆形学具进行测量,把数据和结论填在表中。(表如下)

圆的直径 圆的周长 周长与直径的倍数关系

1

2

3

4

在汇报交流时,各组测量的方法多种多样:

方法1:用硬纸片剪出的圆或圆形纸片在直尺上滚动一周。

方法2:先用线绳绕在纸杯口,然后再把线绳拉直测量长度。

方法3:先用剪刀沿着布圆或纸圆的周长剪下一条,剪得越细越好,再测量布条或纸条的长度。

方法4:先用水彩笔沿着硬币的圆周长涂上颜色,然后将硬币在纸上滚动一周,测量纸上留下的痕迹的长度。

各组汇报自己的研究方法和结论之后,老师问学生:“虽然大家的算出的结果不完全相同,但它们有什么共同的特点?”学生观察后发现:“都是3倍多一些。”老师进一步激疑:“为什么大家算出的结果会不一样呢?”老师的问题激起了学生心中的疑问,引发了学生深入地思考,过了一会有同学说:“可能是我们在测量圆周长时有误差吧)?这时,老师借机介绍科学的研究方法“割圆术”(老师一边讲述,一边演示电脑课件):

我们的祖先也曾用这种方法研究圆的周长与直径的倍数关系,也遇到了同样的问题,后来,人们发现,圆的周长是无法精确地测量出来的,于是改进了研究的方法。把圆内接正六边形的周长看作是圆的周长的近似值,得出圆的周长是直径的3倍,后来,又把圆内接正六边形的边数加倍,得到圆内接正十二边形,再加倍得到正二十四边形,边数越多越接近于圆,它的周长也越接近于圆的周长,圆的周长与直径的倍数关系也越来越精确,但是人们发现,它永远也算不完,于是就产生了一个新的数,人们把它命名为希腊字母π,于是人们就用π来表示圆周长与直径的倍数,这种研究的方法叫“割圆术”。

听了关于“割圆术”介绍,有的学生恍然大悟地点着头,嘴里情不自禁地说着;“噢,原来这么回事)?,有的学生还在若有所思地回味着、思考着,……,从学生的表现来看,显然对“割圆术”颇感兴趣。

日本著名数学教育家米山国藏指出:学生对“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神、数学的思想、研究方法和着眼点等,这些随时随地发生作用,使他们终身受益”。数学教学内容始终反映着显性的数学知识(概念、法则、公式、性质等)和隐性的数学知识(数学思想方法)这两方面。数学思想方法是数学学科的精髓,是数学素养的重要内容之一。它是学生形成良好认知结构的纽带,是由知识转化为能力的桥梁,是培养学生数学意识、形成优良思维素质的关键。因此,《数学课程标准(实验稿)》强调必须重视数学思想方法的渗透。我在设计“引导学生探究圆周长的计算方法”这一教学环节时,查阅了大量的资料,认为这正是一个渗透数学思想,让学生体验科学的研究方法,学会科学地思考问题的很合适的机会。在教学过程 中,学生在想办法测量圆周长的过程中,由于圆的周长是曲线,无法直接用直尺测量长度,这对学生的原有认知是一个挑战,无论学生想到哪一种都方法,都是在想方设法把曲线变成直线去测量,渗透了“转化”的数学思想,培养了学生解决问题的能力。教师在激起学生心中的疑问之后,适时地介绍“割圆术”,不仅渗透了“极限”的思想,而且让学生感受和体验了科学家探索的历程,引发了学生爱科学,尊重科学的积极情感,学会了用科学的方法去思考问题、解决问题。这样的教学设计体现了新数学课程标准提出的“让学生获得适应未来社会生活和继续学习所必需的数学基本知识以及基本的数学思想方法。”

片断三:

在巩固应用部分,我以学生非常熟悉的校园作为素材,设计练习题:

第一组练习:

出示史家胡同小学操场的照片:

老师提问:“这是我们学校的.操场,请同学们找一找,这里面有圆形吗?”学生一看是自己的学校,积极性很高,目不转睛地盯着屏幕找。学生很快观察到“罚球区是圆形的。”老师提出问题:“要想知道这个圆的周长是多少,你有什么办法?”学生回答:“测量圆的直径。”老师提供数据:“我们班的体育委员帮大家测量了一下,这个圆的直径是3.4米,你能算一算这个罚球区的圆周长是多少吗?”学生兴致很高地算了起来。

第二组练习:

出示史家胡同小学操场另一个角度的照片:

照片一出,学生立刻发现:“大树的围栏是圆形的。”“大树的树干是圆形的。”老师提出问题:“要求大树围栏的周长,该怎么办?”有的学生还是想先测量围栏的直径,再计算圆周长。但马上有学生提出异意,生1:“测量围栏的直径不方便,因为有大树在中间挡着。”生2:“测量围栏的半径也不方便,中间也有大树挡着。”听了生1和生2的发言,大家觉得有道理,那该怎样测量呢?这时,生3提出:“可以用皮尺直接测量围栏的周长。”很多同学恍然大悟:“噢,对了)?,生1自言自语“这么简单的方法,我怎么没想到)?正在学生颇有兴致地进行交流时,老师抓住时机又进一步提出新问题:“要想知道大树的直径,有什么办法?”生1:“先测量大树树干的周长,再算出它的直径。”生2:“先用两块很大的木板把大树夹在中间,然后测量两块木板之间的距离。”生3:“把大树锯开,测量横截面的圆的直径。”有的学生提出生3的方法不好,如果把大树锯开,就破坏了生态环境。通过讨论,大家一致认为第一种方法比较好,既方便可行,又不浪费。这时,老师提供数据:“我测量了一下,这棵大树树干的周长是3.6米,你能算一算树干的直径吗?”学生迫不及待地算了起来。

在计算第一组题和第二组题的过程中,所有学生都在积极地参与,脸上始终洋溢着成功的喜悦。

第三组练习:

出示史家胡同小学运动会六年级接力赛跑的照片:

在放录像的过程中,由于都是学生自己亲身经历的事情,让他们感到非常亲切,颇感兴趣。这时,老师提出问题:“这是我们六年级四个班在进行接力赛,他们为什么不在同一起跑线上起跑呢,你们知道吗?”学生争先恐后地回答:“他们沿着不同的圆周长跑,跑步的长度不同,所以不能在同一起跑线上起跑。”教师追问:“你们知道怎样确定他们的起跑位置吗?”有的学生怕没有机会回答问题,还没等老师叫他的名字,就迫不及待地站起来说:“应该根据圆周长的差来确定起跑位置相隔多远。”此时,课堂气氛达到了高潮,学习情绪非常高涨,直到下课铃响了,学生还意犹未京?

“数学要源于现实,扎根于现实”,这是荷兰数学教育家弗赖登塔尔提出的“数学现实”的教学原则。修订版数学教学大纲明确要求“使学生感受数学与现实生活的密切联系”,这是小学数学教学的基本任务,也是小学数学教学的指导思想和重要原则。通过生活化的数学问题,能让学生深深体会到生活离不开数学,数学是求解生活问题的钥匙,从而加强学生学习数学的目的性,增强学习数学的趣味性。在设计“巩固应用”这一教学环节时,我想在日常生活中,学生身边很多地方都有圆形,如果把他们熟悉的事物编成练习题,就会让他们感到更加亲切自然,更加有兴趣,使他们感受到运用学到的数学知识,能够解决自己身边的问题,获得成功感。于是,我选择了学生熟悉的校园操场作为研究题材,如篮球场的罚球区、大树围栏、大树等,并都是“以你……”的语气陈述,这样使学生身临其境,当解决问题的主人,提高了学生的应用意识。在教学过程 中,不仅完成了知识目标,使学生掌握了圆周长的计算方法,而且激发了学生积极的情感,全体学生都在积极地参与。第三组练习本是一道思考题,但学生并没有感到很高深,而是觉得是自己身边的事,接受起来很容易。刚一下课,有一个同学高兴地跑到我面前说:“老师,今天做的题挺有意思,我特别喜欢)?由于这些问题就在学生的身边,就让他们感到有意思、有想头、不枯燥,他们就愿意深入思考这些问题,收到了较好的教学教学效果。正如华罗庚所说的:对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。

篇3:《圆的周长》片断实录及评析

《圆的周长》片断实录及评析

注:本片断为教学过程第一步,创设情境,导入新课的实录。

1、播放课件

星期天,米老鼠和唐老鸭在草地上跑步,米老鼠沿着正方形路线跑,唐老鸭沿着圆形路线跑。

2、揭示课题

(1)师:要求米老鼠所跑的路线,实际上就是求这个正方形的什么?

生:周长。

师:要知道这个正方形的周长,只要量出它的什么就可以了?

生:只要量出它的周长就可以了。

师:能说出你的依据吗?

生:正方形的周长=边长×4

(2)师:那要求唐老鸭所跑的路程,实际上就是求圆的什么?

生:就是求圆的周长。

(师板书课题:圆的周长)

(评析:在新课的开始,播放学生熟悉的可爱的米老鼠、唐老鸭的课件,既创设了融融的教学情境场,演示了周长的概念,较好地激发了认知冲突、激发了学习的兴趣,又为后继教学埋下了伏笔,很自然的过渡到新课----圆的周长,一举多得,既有承继,又有创新)

年、月、日片断与评析

3、判断平年、闰年

(1)师:如果要知道某一年是平年还是闰年,可以怎样判断呢?现在老师既不看全年天数,也不看二月份的天数,同样能判断出某一年是平年还是闰年,你们相信吗?

生:信!

生:不信!

……

师:你们就用课前准备的年历卡片考考老师吧!

生:?

师:闰年。

生:1983年?

师:平年。

……

(2)师:老师为什么判断的又对又快呢?大家想不想知道这个方法?

生:想!

师:下面我们就一起来学习这种方法。(出示课件)

师:这是一些连续的年份,闰年显示为红色,请同学们观察并思考:这些连续的年份中闰年和平年的出现有没有规律?你们发现了什么规律?

生:每4年里有3个平年,1个闰年。

(3)师:看来闰年年份与4的关系比较密切,它们到底有什么关系呢?请你在这些年份中任意选一个闰年年份和一个平年年份,然后分别除以4,看看除得的结果怎样?

生:1995÷4=498---3

÷4=500

师:用闰年年份数和平年年份数除以4有什么不同?

生:平年年份数除以4有余数,闰年年份数除以4没有余数。

师:根据这一点,你觉得可以怎样判断平年和闰年呢?

生:除以4有余数的是平年,除以4没有余数的是闰年。

师小结:平年年份数除以4有余数,我们就说平年年份数不是4的倍数。闰年年份数除以4没有余数,我们就说,闰年年份数是4的倍数。

(4)师:1932年是平年还是闰年?

师指出:要看1932是不是4的倍数,老师教你个小技巧,就可以口算了,看一个多位数是不是4的位数,只要看它的后两位数是不是4的倍数就可以了,这是什么道理?上数学活动课的时候,老师再和大家一起研究。1932后两位数是32,32÷4=8,没有余数,也就是1932÷4

没有余数,所以1932年是闰年。

(5)练习(出示课件)

判断下面各年份是平年还是闰年?

1840年192000年

生:(答略)

师:1900年是平年还是闰年?

生:平年。

生:闰年。

师:像这样公历年份是整百数的有点特殊,必须是400的倍数才?

是闰年。

让生阅读教材P82面最下面的两行小字。

师:1900年是什么年?

生:平年。

师:2000年呢?为什么?

生:闰年,因为1900不是400的倍数,2000是400的倍数,所以1900年是平年,2000年是闰年。

(6)师:这就是说,在通常情况下,4年一闰,公历年份是4的倍数的一般是闰年。如果公历年份是整百,整千数,那就是特殊情况了,必须是400的倍数才是闰年。也就是说:“四年一闰,百年不全闰,四百年才闰。”(出示课件)

评析:在判断平年、闰年的教学片断中,教师充分发挥多媒体计算机的教学功能,直观、生动、形象地展现知识的形成过程,通过多媒体计算机的声、形、色等多种渠道形成鲜明的'表象,吸引学生的注意力,激发学生的兴趣,启迪学生的思维,提高课堂效率。

电脑先显示一些连续的年份(1989年--2000年),是闰年的年份显示为红色,然后观察闰年年份出现的规律(每4年有1个闰年),屏幕就任意闪烁四个连续的年份,让学生看看是不是四年一闰,紧接着通过试除找到了判断平、闰年的方法,并将得到的结论显示在屏幕上。最后的练习也很有趣,学生判断出现的年份是平年还是闰年,若判断对了电脑就会发出好听的声音。这样利用多媒体计算机教学,既节省了教学时间,又优化了课堂结构,还丰富了课堂的信息量,真正提高了课堂教学的效率。

篇4:圆的周长

预设目标:

使学生知道和圆周率的含义,掌握圆的周长的计算公式,能够正确计算圆的周长,介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。

教学重难点:

掌握圆的周长和和圆周率的含义及圆的周长的计算公式是重点;实际测量圆的周长是难点。

教学过程:

一、复习

教师:什么是长方形的周长?什么是正方形的周长?他们的计算结果用的是什么计量单位?然后让学生回答怎样计算周长,然后引出新课。

二、新课

1         圆的周长和和圆周率的含义。

教师拿出直径是10厘米的纸片,边演示便说明圆的周长的含义,指出:围成圆的曲线的长叫做圆的周长。然后让学生也拿出直径是10厘米的圆纸板,用手指出它的周长。

教师:我刚才用两种方法分别量了直径是10厘米的圆周长,量的的长度30厘米多一点,也就是说圆的周长是直径的3倍多一点,那么说圆的周长和直径的关系是什么?我们来做个实验。

教师让学生拿出圆纸板、铁圈、圆形铁桶、杯子,并让学生用上面两种方法分别量出纸板和铁圈的周长、直径,圆形铁桶和杯子底面的周长、直径,并把量的数据填在书上的表格里,教师可以巡视,稍作指导。

教师:通过这些实验和统计的结果,你发现圆的周长和直径有什么关系?

指名说一说自己算出的c/d的比值是什么,教师把这些数据写在黑板上。引导学生进行讨论。使学生看到:圆的周长总是直径的3倍多一点,教师接着指出:任何圆的周长和直径的比值都是3.14倍多一点,它们的比值是一个固定的不变的数,我们把圆的周长和直径的比值叫做圆周率,圆周率用字母“л”表示。人们在计算时,一般只取它的近似值如“3.14”。

教师让学生看教科书第6页下面方框的话,渗透爱国主义教育。

2         理解并掌握圆的周长的计算公式

教师:我们刚才学习了圆周率,谁能说一说圆的周长、直径和圆周率是什么关系?

指名说,圆的周长÷直径=圆周率

教师:如果用直径和圆周率来表示周长,怎样表示呢?

得出:圆的周长=圆周率× 直径。

叫:如果用c表示周长,л表示圆周率,d表示直径,那么圆的周长的字母怎样表示?学生说,

教师板书:c=лd

引导学生说出:因为直径是半径的2倍,2r代替公式中的d就可以求出的周长;因为数目一般写

在字母的前面,所以用圆周率和半径来表示圆的周长的公式是c=2лr

3         计算圆的周长

教师出示例题,指名读题,直接用公式计算就可以。

然后让学生在练习本上做题,指名板演,集体订正。

4         做例1下面“做一做”中的练习。

三、课堂练习

做练习二第三页1——6题。

四、课堂小结

这节课主要学习了圆的周长和圆周率的含义及怎样计算圆的周长。

创意作业:选一棵大树,在1米高的地方量出树干的周长,并计算出它的半径大约是多少米。

篇5:圆的周长

教学内容:数学第十一册第62――64页 。

教学目标:

1.知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握求圆的周长的计算公式,并能正确地计算圆的周长。

2.能力目标:通过对圆周长测量方法和圆周率的探索、圆的周长计算公式的推导等教学活动,培养学生观察、推理、分析、综合、抽象、概括的能力和解决简单的实际问题的能力,同时着力培养学生的动手操作能力、创新精神以及团结合作精神。

3.情感目标:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感。

教学重点:推导并总结出圆周长的计算公式。

教学难点:深入理解圆周率的意义。

教学过程

一、创设情境,激发兴趣,认识圆的周长。

(一)创设情境,激发兴趣:

播放课件:两只小狗在草地上跑步,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑。它们每跑一圈的路程各是多少?

(二)迁移类推,认识圆的周长。

1.要求小黄狗每跑一圈的路程,实际上就是求什么?什么叫正方形的周长?怎样计算正方形的周长?(板书:正方形的周长=边长×4)

可见正方形的周长与它的什么有关系?

2.要求小灰狗每跑一圈的路程,实际上就是求什么?(板书:圆的周长)什么叫圆的周长?

(三)实际感知,触摸圆的周长。

1.师拿出一个用铁丝围成的圆,这个圆的周长就是指哪一部分长?

2.同桌之间相互边指边说自己的圆片的周长就是指……

二、合作交流,探究新知,发现规律。

(一)测量圆的周长。

1.怎样能测量出圆的周长?请用你想到的方法跟同桌合作动手测一测你们的一个圆片的周长并记录下来。(师巡视指导)

2.生边汇报方法边演示,接着媒体演示(分别为测绳法和滚动法),引导学生发现测量时的操作要点及两种测量方法的相同点。

3.生再尝试与同桌合作测一测刚才测过的一个圆的周长,以加深认识。

4.小结:通过刚才的动手操作,你发现了两种测量方法的相同点吗?是什么?同桌交流后汇报。(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)

(板书:化曲为直)

5.通过测量花坛及物体转动的曲线,让学生发现刚才的两种方法都有一定的局限性,需要我们去探究出一种既简便又准确的`计算圆周长的方法。

(二)引导学生发现圆的周长与直径的关系。

1.探讨圆的周长与什么有关系。

(1)设疑启发思考:正方形的周长与它的边长有关系,那么圆的周长跟它的什么有关呢?猜猜看。

2. 探讨圆的周长与直径的关系。

(1)学生以小组为单位,测量自己的圆的直径和周长,通过观察,你发现了什么?小组交流后汇报。

(2)动手测量计算。

明确要求:同桌之间相互合作,用新学的方法测量出自己手中两个不同圆的直径和周长,并计算出圆的周长是直径的几倍,得数保留两位小数,并把相应的数据填在表格中。(师巡视指导) (3)指名小组汇报相关数据,师依次填写在黑板表格中。

(4)观察这些数据,四人小组交流自己发现了什么?然后汇报。

(5)小结:现在谁能说说圆的周长与它的直径有什么关系吗?

(板书:圆的周长总是它的直径的3倍多一些。)

三、推导出圆周长的计算公式。

1.根据圆周长与直径的关系,你能推导出圆的周长计算公式吗?(板书:圆的周长=直径×圆周率 )

能用字母表示吗?(板书:C=πd)

2.现在你能计算出刚才小灰狗每跑一圈的路程吗?只要测量出它的什么就可以?师报出其直径数据让学生尝试计算。

3.师在黑板上画一个圆,标出半径长度,会计算它的周长吗?试试看。汇报订正后小结出已知圆的半径求圆的周长的公式。

(板书:C=2πr)

四、介绍圆周率和祖冲之在圆周率研究方面作出的贡献。

(1)揭示圆周率的概念:表示这个3倍多一些的数是一个固定不变的数,我们称它为圆周率。能用式子来表示吗?请试一试。

(板书:圆的周长÷直径=圆周率)

(2)介绍圆周率的表示字母π及其读写法。

(3)介绍祖冲之及圆周率的有关知识,激发民族自豪感,同时指出圆周率的数值及小学阶段计算时所取的近似值π≈3.14。

五、回顾课堂,谈收获。

(一)请回顾这节课的学习,谈谈自己的收获。

(二)引导质疑。

(三)看书99页内容,内化新知。

六、初步运用新知,解决问题,巩固新知,形成能力。

七、课后要求:

1.复习本节所学知识点。

2.想办法计算出自己家中自行车轮的周长。

板书设计

篇6:圆的周长

化曲为直

圆的周长总是它的直径的3倍多一些。

圆的周长=直径×圆周率

C=πd

C=2πr

篇7:圆的周长

(31)圆的周长(1)

“圆的周长”教学设计

教学目标:

1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长,能利用圆周长计算公式解决简单的实际问题,发展应用意识。

2、经历动手测量的过程,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力。

3、在探究过程中,培养学生独立思考的习惯,发展学生的探究意识和合作交流的意识。

4、结合圆周率的学习,对学生进行爱国主义教育。

教学重点:能利用公式正确计算圆的周长。

教学难点:理解圆周率的意义,圆的周长计算公式的推导。

教学准备:

课件,圆规,细绳,软皮尺,直尺,计算器。

教学过程:

一、创设情境,故事导入

大家还记得《龟兔赛跑》的故事吗?在上次比赛跑步中,由于小兔子的麻痹大意,最后以失败告终。后来,它们都苦练本领,争取下次比赛拿第一。现在老对手又相遇了,看来一场精彩的比赛又要开始了??(课件演示比赛)跑完后,它们对自己跑的距离产生了怀疑,都说自己跑的远??小兔说:“我跑的是正方形,跑的距离是正方形的周长,也就是边长×

4。” 小乌龟说:“我跑的是圆形,可是我跑的距离有多少呢?”

大家想想小乌龟跑一圈的距离是指什么

(板书课题:圆的周长)

看到这个课题,你想知道什么?(简单板书学生所提问题)

同学们,你们能帮助小乌龟吗?请大家拿出手中的圆,用手摸一摸你手中的圆的一周,同桌之间互相比划,再轻声说一说:“什么是圆的周长?”(学生演示回答)

小结:小乌龟跑的距离有多少,也就是围成圆的曲线的长,即圆的周长,用字母C表示。下面我们就一起来想想办法,帮助小兔和小乌龟解决这个难题。

二、探究新知:

1测量圆的周长

你想知道你手中的圆的周长是多少吗?想一想你有什么方法知道你手中的圆的周长? 如果我们用直尺直接测量这个圆的周长(教师演示),你觉得怎么样?你能不能想出一个好办法来测量它的周长呢?

a.如果学生说:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长, 先请学生看课件演示,然后各组分工同桌合作。测量直径为1厘米和2厘米圆片的周长。并把结果记录在表格中。

追问:如果要知道那个圆形草坪的周长,也可以让它在直尺上滚着来量吗?

b.如果学生说:用绳子在圆上绕一周,再测出绳子的长短,得到这个圆的周长。同样,先请学生看课件演示,然后分工合作,测量直径为3厘米圆片的周长,并将结果记录在表格中。 c.教师甩动绳系小球,形成一个圆。

提问:小球的运动形成一个一一圆。你能用刚才的方法测量出圆的周长吗?

d.小结:看来,用滚动、绳绕的方法可以测量出圆的周长,但却有一定的局限性。这就需要我们找到一种既简单又能准确计算圆的周长的方法。研究圆的周长首先应考虑圆周长跟什么有关系。

2认识圆周率

1)探讨圆的周长与直径的关系

(1)启发思考:正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关?

(2)出示三个大小不同的圆:

组织学生观察比较,得出结论:圆的周长与它的直径有关。

(3).圆的周长与直径有什么关系。

a正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的.倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

b学生自己验证:用刚才测得表中的数据计算它们的比值,依次一组计算一个。

c.观察数据,得出结论圆的周长总是它直径的3倍多一些。板书:3倍多一些。

(2)揭示圆周率的概念

任何圆的周长总是直径的3倍多一些。这个3倍多一些的数,也就是任何圆的周长与直径的比值是一个固定不变的数,我们都称它为圆周率。

对圆周率你了解多少?(教师课件演示圆周率的由来和祖冲之)圆周率一般用字母π来表示。圆周率实质上是圆周长与直径的比,这种比的关系用字母表示出来,就是(板书C÷d=π)圆周率是一串无限不循环的小数,为了计算简便往往取它的近似值,最常用的是取它的两位小数3.14。(板书:π≈3.14)

3、推导圆周长的计算公式

(l)提问:已知一个圆的直径,该怎样计算它的周长?板书:c =πd

建议学生从刚刚表格中任意挑一个圆片的直径,计算出它的周长,然后跟测量的

结果比比看,是不是差不多?

(2)提问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:c=2πr

提问:甩小球形成的圆的周长你会求吗?

(3)小结:要求圆的周长,一般需要知道它的直径或半径。知道圆的直径,怎样来计算周长?知道圆的半径,怎样来计算周长?

三、初步运用,巩固新知

1、下面的说法对吗?

①π=3.14。 ( )

②半圆的周长就是圆周长的一半。 ( )

③大圆的圆周率比小圆的圆周率大。 ( )

④半径是1厘米的圆的周长是3.14米。 ( )

(2、课件出示例1

(1)学生读题理解题意

(2)学生尝试练习,反馈评价。

(3)提问:如果告诉你的不是花坛的半径而是直径,该怎样解答?不计算,谁知道结果是多少吗?

3、小红量得一个古代建筑中的大圆柱的周长是3.77米。这个圆柱的直径是多少米?(得数保留一位小数)

4、今天我们学习了圆的周长的计算方法,你们能说说小兔和小乌龟各跑了多少米吗?(小兔跑的距离是正方形的周长,小乌龟跑的距离是圆的周长)

四、总结全课,提高认识

这节课你学会了什么?

五、延伸拓展:

看,小乌龟和小白兔又要比赛了,这一次小白兔沿大圆跑一圈,小乌龟沿两个小圆“∞”跑一圈,谁跑的路程长呢?好好想一想。

六、作业布置

50米

教学反思:

《国家数学课程标准》明确指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式,数学学习活动应当是一个生动活泼、主动探索和富有个性的过程。”也就是说,学生学圆的周长 并非单纯的依赖模仿和记忆,数学学习过程的实质上学生主体富有思考性的探索过程。所以,数学知识的探索轨迹,作为学生是否主动参与的标志,展现于课堂教学的全过程。

本节课探究的课题“圆的周长”,课伊始,通过创设龟兔赛跑的故事情境,提出问题“你们能帮小兔子解决这个难题吗?”以此来激发学生的兴趣及强烈的探索欲,使他们以最佳的状态投入到新知识的探究中;然后借助学生已有的学习经验从“圆周长意义”的理解,立足于学生的亲身体验和自由表达;“圆周长公式”的建构,则是借助于学生主体的测量、计算、自学、推导、论证等充分的实践活动而展开的。可以说,每个知识点的发现,都是学生自主探索的成果,而不是学生被动接受的结论。探索,作为学生学习数学的重要方式,在本节课的教学中达到了最大化。

课堂上,生动有趣的探索内容,可以给予学生愉悦的人文体验;开放宽松的课堂环境,可以给予学生充分的人文自由;恰到好处的鼓舞激励,可以给予学生强烈的人文尊严;各抒己见的思想交锋,可以培养学生民主的人文作风;标准严密的知识表达,可以培养学生严谨的人文精神;课堂生活的亲生经历,可以培养学生初步的人文道德。

“你对这个新朋友了解多少?” “你们能帮小兔子解决这个难题吗?”“究竟什么是圆的周长呢?谁能试着用自己的话说一说?”“请你大胆猜想,圆的周长与什么有关呢?”“究竟圆周长与直径存在着怎样的关系呢?下面,我们就来研究这个问题。”“要求圆周长,只要知道什么就可以了?请举例证明你的想法。”都是探索过程中人文交融的真实体现。

篇8:圆的周长教案

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用“几何画板”《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示“几何画板”《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。( )

②大圆的圆周率小于小圆圆周率。( )

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么? 2、你是怎么学到的?

篇9:圆的周长教案

教学内容:教材第62-64页圆的周长。

教学目标:

1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

教学设计:

创设情境,揭示课题

创设情境,认识圆的周长。

师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

引导探究,展开新课

1.情境导入,借助教具直观感知,认识圆的周长。

(1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

(2)你知道圆的周长指的是什么吗?

让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

(3)围成圆周长的是一条什么线?

明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

2.测量圆的周长。

(1)滚动法。

拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

(2)绕绳法。

课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量;②绳子是无弹性的。

(3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

经过对比,感受滚动法和绕绳法两种测量方法的局限性。

3.操作实验,探究圆的周长和直径的关系。

(1)观察猜想:圆的周长与它的什么有关呢?

学生猜想:可能与它的直径或半径有关。

课件演示:圆的周长随着直径或者半径的变化而变化。

(2)动手操作,找出规律。

四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:

周长c(cm)直径d(cm)的比值(保留两位小数)

3.14213.14

9.533.17

12.643.15

15.853.16

31.4103.14

(3)观察表中记录的测量数据和计算结果。

①你发现周长与直径的比值有什么特点?(比值都是三点几)

②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)

(4)进一步验证圆的周长总是直径的3倍多一些。

下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

(5)认识圆周率。

①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

④感受文明,激发情感。

结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

(6)总结圆的周长的计算公式。

①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

③小结:圆的周长总是它直径的π倍。

(7)进一步明确复习题答案。

结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

4.学以致用。

课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

学生读题后自己完成。让学生板演。

c=2πr

2×3.14×33=207.24(cm)≈2(m)

1km=1000m

1000÷2=500(圈)

答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

巩固练习,提升能力

1.完成教材64页1题。

2.判断。

(1)圆的周长是直径的3.14倍。( )

(2)圆的周长等于圆周率与直径的乘积。( )

(3)当半径为3cm时,圆的周长为18.84cm。( )

(4)半圆的周长是圆周长的一半。( )

3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

4.完成教材66页7、8题。

课堂总结,评价拓展

本节课你有什么收获?

布置作业,巩固新知

教材66页9、10题。

板书设计:

圆的周长

圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。

圆的周长总是直径的3倍多一些。

圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。

圆周长说课稿

圆的周长课件

圆的周长教案

圆的周长教案

圆周长教学反思

《圆的周长》说课稿

《圆的周长》教学反思

圆的周长教学设计

圆的周长教学反思

圆的周长教学反思

《“圆的周长”片断赏析(集锦9篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档