欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

平均数课件参考

时间:2023-02-01 08:49:30 其他范文 收藏本文 下载本文

下面就是小编给大家分享的平均数课件参考,本文共15篇,希望大家喜欢!

平均数课件参考

篇1:平均数课件参考

平均数课件参考

一、教学内容

人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、例2

二、教学准备

小黑板、姓名笔划数统计表。

三、教学目标:

1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。

2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。

3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。

(二)教学重点:理解平均数的意义和求平均数的方法。

(三)教学难点:理解平均数的意义。

四、教学过程:

(一)创设情境,激发兴趣

师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)

师:谁又能知道老师的姓名呢?

学生说一说后,出示一个姓名。

师:能完成这表格吗?(学生数一数,完成表格)

姓名王振方

笔画数

师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)

师巡视指导,搜集、选择教学信息。学生完成后作简单交流。

(二)解决问题,探索新知

1、在解决问题中感知概念

师:请观察姓氏的笔画数,你能提出什么数学问题?引导到求笔画总数和平均数上。

2、在对话交流中明晰概念

师:王振方的姓名平均笔画数是6画,这又表示什么?

引导学生认识(1)表示三个字笔画数的平均水平。(2)表示王振方这个姓名笔画数的一般水平。

师:那这6画与王振方这三个字的笔画数之间还有关系吗?

(学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)

引导学生注意:(1)有关系的,是他们的中间数。(2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。(3)平均笔画数在笔画最多的数字与笔画最少的数字之间。(4)平均笔画数就在这三个字笔画数的中间位置。

师:从同学们的'发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把6叫做王振方姓名笔画数的——平均数。(板书课题)

师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)

师生交流计算的方法与结果。

3、在比较应用中深化概念

出示教师巡视时搜集的三个学生的姓名笔画数统计表。(有学生姓名两个字,有学生姓名三个字。)

师:比较他们姓名中每个字的笔画数,你有什么方法?

引导学生认识从(1)比笔画数的总数。(2)比平均笔画数。

(让学生先在小组内讨论,然后组织全班汇报交流。)

引导学生认识:(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。(2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。

学生运用平均数进行比较,然后组织交流。

师:比完后你有什么感想?(生回答略)

师:假如用这三个字姓名的笔画数与王振方的姓名笔画数相比,那又可以怎么比呢?

预设生:既可以用平均数来比,也可以用总数来比。

师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。

出示:(1)龙滚中心学校五年级平均每班有学生45人。

(2)四(1)班上学期期末考试数学平均分是72分。

师:你猜这些数据是怎么得来的,是什么意思,有什么用处?

(学生小组讨论,然后全班汇报交流。)

引导学生懂得:(1)45是五年级总人数除以班级数得来的,表示五年级每班人数的平均水平,不一定每班就是45人,但可以预测每班的大致人数。(2)72分是四(1)班上学期期末数学总分除以全班人数所得到的。

(三)尝试解题,自主归纳

师出示例题:

有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?

师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。

(学生小组合作,交流看法,教师参与讨论。)

学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。

(四)联系实际,应用新知

1、选择

(1)四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了( )棵

A、181 B、165 C、145

(2)自行车商店第一天卖出自行车54辆,第二天上午卖出25辆,下午卖出23辆,平均每天卖出多少辆?正确的列式是( )

A、(54+25+23)÷3 B、(54+25+23)÷2

2、李老师家今年1——3月用水吨数如下:

月份1月2月3月

吨数687

(1)从中你能知道什么?

(2)能否预测出今年全年的用水吨数?

(3)你还想对老师说什么?

篇2:平均数课堂教学课件

平均数课堂教学课件

教学要求:

使学生进一步认识平均数的含义和求平均数的数量关系,能根据已知条件求出相应的平均数。

教学过程:

一、揭示课题

我们在进行统计或分析统计结果时,经常要用到平均数。(板书课题)这节课,重点复习求平均数。

二、复习求平均数

1.平均数的含义。

(1)提问:谁能举例说说什么是几个数量的平均数吗?

(2)下面说法对不对?

①前3天平均每天织布200米,就是实际每天各织200米。

②身高1.5米的人在平均水深1.2米的池塘里没有危险。

2.提问:那么,求几个数量的平均数需要哪些条件?平均数要怎样求?(板书:总数量÷总份数=平均数)

3.做“练—练”第1题。

让学生读题。指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一部分求的是什么。

4.做“练一练”第2题。

学生默读题目。指名学生说一说题意。让学生在练习本上列出算式。提问学生怎样列式的,老师板书。让学生说明每一步求的是什么。提问:这两题在解题方法上有什么相同的地方?为什么列式不一样?说明:按照求平均数的'数量关系解题时,要注意找准总数量与总份数之间的对应关系,再根据数量关系式正确列式解答。(板书:注意:找准总数量与总份数的对应关系)

三、综合练习

1.做练习二十三第11题。

指名一人板演,其余学生做在练习本上。集体订正,让学生说说是按怎样的数量关系列算式的,(总路程除以时间等于平均速度)每一步求的什么数量。追问:为什么总路程是140×2?为什么时间是4.5加5.5的和?指出:解答时要认真看题,弄清题意,理解条件和问题的意思。

2.做练习二十三第12题。

让学生默读题目。提问:三人的“平均成绩是110分”是什么意思?怎样才能求出另一位同学的成绩是多少分?指名学生口答算式,老师板书。追问:110×3表示什么?为什么三人的总分数要用110乘3?

3.做练习二十三第13题。

指名学生说一说统计图的意思。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的。追问:为什么要用12做除数?说明:要根据问题要求的结果,确定应该用哪个量做被除数,哪个量做除数。

4.做练习二十三第14题。

让学生观察统计图。提问:你从图里了解了哪些情况?想到了哪些问题?请大家在小组里估计一下,平均每月水费、电费大约各要多少元,并且说说怎样想的。指名学生交流估计的结果和想法。再让学生求出平均数。

四、课堂小结

通过这节课的复习,你进一步明确了哪些问题?

五、课堂作业

练习二十三第8~10题。

篇3:平均数教学课件

平均数教学课件

平均数是统计中的一个重要概念。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。

一、教材分析

“求平均数”是人教版小学三年级第六册第三单元42页的内容。它是新教材“统计与概率”领域内容的一部分。小学数学里所讲的平均数一般是算术平均数,用来表示统计对象的一般水平,它是描述数据集中程度的一个统计量。它与我们的现实生活紧密联系,现代社会的公共媒体大量使用统计图表示信息,所以看懂统计图表是现代公民必备的数学素养。基于此本课教学把重点放在运用平均数的理念分析数据、理解数据的意义上,放在根据数据做出必要推断上,另外,平均数的概念与过去学过的平均分的意义是不完全一样的。平均数是一个“虚拟”的数,是借助平均分的意义,通过计算得到的。

二、学情分析

我校是一所农村小学,多数孩子来自农村,因此我在教学是选材尽量贴近孩子们的生活,我在课堂中运用了多媒体辅助教学,让学生能在直观形象的情境中学到知识。兴趣是最好的老师,新课程标准指出:数学教学必须注意从学生感兴趣的事物出发为学生创造成功的机会,使他们体会到数学就在身边,对数学产生亲切感。在这一理念下,为他们创造一个发现、探究的空间,使学生能更好地去发现、去创造。

三、教学目标

1、初步掌握求“平均数”的基本思想(移多补少的统计思想),理解“平均数”的概念。

2、掌握简单的求“平均数”的方法,并能根据具体情况灵活选用方法进行解答。

3、培养学生估算的能力和应用数学知识解决实际问题能力。

四、教学重难点

教学重点:灵活选用“求平均数”的方法解决实际问题。

教学难点:平均数的意义

五、教学准备:多媒体课件、秒表、绳子

六、教学流程

(一)创设情境,激发兴趣

师:我听体育老师贾老师说咱们班的第一小组和第二小组的6名同学的“跳绳”成绩挺不错的!我很想知道两个小组,哪个更好些?有什么办法?

生:比赛,在规定1分钟内看哪个小组跳的总数多,就是胜利者。

师:哦,好建议。不过,一节课只有40分钟,谁来出个好主意,在短时间内得出结果?

生:6人一起跳,分组数数。

师:哦,好主意!那就按你的方法比赛吧!

{课伊始,趣已生。从同学们体育测试项目——跳绳入手,激发起他们的学习兴趣,让同学们自己想出比赛方法,把自主权留给了学生}

(二)解决问题,探求新知

1、引出“平均数”,体验“平均数”产生价值。

6名学生开始比赛,其余学生认真地数着。生汇报,师板书如下:

第一组:82、86、81第二组:78、83、82

师:请同学们以最快的口算算出结果,并汇报补充板书如下:

第一组:82+86+81=249第二组:78+83+82=243

师:(热情洋溢)通过比总数,第一组以248大于243获胜了,恭喜你们(师与他们一一握手表示祝贺,这时发现第二组同学鸦雀无声,面无表情)

师:我加入第二组,让老师也来跳一跳,你们帮我数着。(学生欢呼)

师跳了83下,改板书如下:第二组:78+83+82+(83)=326,现在第二组获胜了吧,你们高兴吗?

生:(议论纷纷,有几个喊叫)不公平的,第二组4个人,当然获胜了。

师(面带疑惑)哎呀,看来人数不相等时,用比总数办法来决定胜负是不公平的。难道就没有更好的办法来比较这两组总体跳绳水平的高低了吗?

(全班寂然无声,学生思索着,半晌,有学生举手了)

生:我在电视上看到过这种类似的情况,比较平均数就可以了。

(这时有很多学生表示赞同,并投去了赞赏的目光)

师:(赞赏)哦,你知道的知识真多,老师佩服你!

{在学生的认知思维冲突中,在解决问题的`需要中,学生请出“平均数”。学生们感受着“平均数”此时出现的价值,产生了学习的迫切需求。}

2、探索求平均数的方法

师:怎样计算每个组跳绳的平均数呢?

(在老师的引导下,学生提出了方法,师要求任选一组说想法)

生1:我用算术法求第一组的平均数,我是这样算的:(82+86+81)/3=83

生2:我从86里拿出3个,给82加1也变成83,给81加2也变成83,每人都是83,那平均数就是83

师:谁听明白了吗?(再指5名学生说)

师:(看着生2)你能给你的这种方法取个名字吗?

(由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)

师板书:算术法移多补少法

师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的平均数了?

(生摇头,大胆学生说:除不尽的)

师:(乘机)那你们有什么好办法?

生:用我们学过的“估算”

师:好,那你们试试吧!(指1名板演)

板书:(78+83+82+83)/4~81

师:从两组平均数83和81中,你知道了什么?

生:第一组平均数大,所以还是第一组总体水平好一些。

{通过创设情境,让学生自己发现并解决问题,提高了学生的解题应用能力,而且在教学中,强调生生交流,使每个学生成为学习的主人}

3、理解平均数的意义

师:第一组的83表示什么?你怎么理解“83”这个数?

(引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)

师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?

生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。

生2:平均数,因为有了你,世界上才会太平

。。。。。。

{让学生根据自己的体会描述对平均数意义的理解,并通过学生自由发言增强对平均数应用价值的理解,有助于将抽象知识内化为自己头脑中的知识}

4、沟通平均数与生活的联系。

师:在平时生活中,你们见过平均数吗?

生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数。。。。。。

师:我这儿有一些生活中的信息:

(1)我国10周岁儿童的平均身高为140厘米,平均体重为34千克;

附:中国10周岁儿童身高、体重的正常值

(3)我国地下水有8300亿吨,河流流量2.7亿吨,总数量居世界前列,但是人平均占有量却只有2600吨,低于世界平均水平。(2)2月27日我市的平均气温为6摄氏度,2月28日我市的平均气温为3摄氏度;

师:看了这些信息,你知道了什么?有什么感想?

生自由发言,渗透营养学、锻炼身体、关注天气变化、节约用水,保护环境。。。。。。及“平均数”是“虚数”的理解。

{让学生用自己的语言谈了对平均数的感受,进一步理解了平均数的意义,感受平均数与社会生活的密切联系。同时,思想品德教育润物细无声地寓于教学之中。}

(三)、联系生活,拓展应用

1、多媒体呈现:下面是某县—家庭电脑拥有量的统计图。

图略:350台,600台,1000台,1600台,202500台

(1)求出这五年来,平均每年拥有电脑多少台?

(出现算术法和移多补少法两种方法)

(2)估计一下,到这个县的家庭电脑拥有量是多少?为什么?

(3)从图上你还知道些什么?

2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨

师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?

(1)(16+24+36+27)/4

(2)(16+24+36+27)/12

(3)(16+24+36+27)/365

a、生举手表决

b、辩论交流得出正确答案(2)

c、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数

3、判断并说理由

(2)四(3)班每个人的分数都要比另两个班的同学分数高(1)四(1)班每个人的分数都是85()

(3)四(3)班的总体成绩最好,四(2)班最差()

4、星期天,小明高高兴兴去学游泳。他碰到一个难题,原来游泳池的水平均深度是126厘米,小明身高是134厘米。他在这个游泳池学游泳会有危险吗?

会()不会()可能会()可能不会()

a、把自己想法与同桌交流

b、指名汇报后交流

c、学生评价

d、师小结:平均水深只是一个代表数,它的实际水深并不知道,可能比126厘米浅,也可能比126厘米深,还可能正好是126厘米。我们在对待实际问题时就应该根据实际情况分别对待。

{从生活中搜集、整理数据,求出平均数,使学生体会“平均数”反映的是某段时间内具有代表的数据,在实际的数据,在实际生活,在工作中人们可以运用它对未来发展趋势进行预测}

5、拓展练习:小强刚发下的成绩单不小心被墨水弄污了,你能帮他算出数学成绩吗?

a、学生先独立思考后同桌交流

b、汇报说想法(算术法或移多补少)

(四)、总结评价,提高认识

师:通过这节课的学习,你有什么收获?

师:你觉得这些知识对你以后生活或学习有什么影响或作用?

{通过学生的自我反思,不仅对知识有整理效果,而且让学生体验数学与生活的关系:数学源于生活,回归于生活,并高于生活,增强了学习数学的兴趣,培养了解题能

七、板书设计

求平均数(算术法移多补少法)

第一组:(82+86+81)/3=83第二组:(78+83+82+83)/4~81

当人数不相等,比总数不公平时,我们就得看“平均数”。

“平均数”是个“虚数”(大于平均数 ;小于平均数 ; 等于平均数)“平均数”可用来预测未来发展趋势。

八、教学反思

根据儿童追求公平心理,创设了“跳绳”人数不相等时比较总数来决定胜负这样一个不公平的问题情境,引出“平均数”这个概念。让学生初步感知平均数的意义,领悟可以用算术法或移多补少法求平均数。在教学时,我结合班级学生的实际情况,开发、挖掘教材,便于学生在循序渐进过程中不断地掌握新知。鼓励学生进行积极的反思性的学习,在课堂上经常问这样的问题,“说说你是怎么想的?”“你有什么好主意?”“谁明白你说什么?”这样让学生充分地把他们的思维过程展示出来,而且调动了生生间的交流,教学效果大大提高。

篇4:平均数教学课件

教学内容:人教版数学三年级下册第42~45页。

教材分析:

平均数是统计中的一个重要概念,对于三年级的学生来说它非常抽象。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中突出了让学生在具体情境中体会为什么要学习习近平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决问题,了解它的价值。

教学目标:

1.知道平均数的含义和求法。

2.加强学生对平均数在统计学上意义的理解。

3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

教学重点:

理解平均数的实际意义,掌握求平均数的方法。

教学难点:

理解平均数的实际意义。

教学方法:悟学式教学法

教学过程:

一、预习思考:(感动、感觉)

《课前小研究》

1. 整理自己家里的书架,怎么使每层书架上的数一样多?

2.2人1个小组比赛跳绳,并记下每个人跳的次数,和另一个小组比,说说哪个小组赢?

二、问题讨论:课前小研究的交流与汇报(感知)

师:昨天,蒙老师给大家布置了课前小研究,请各小组拿出来,在小组内交流一下。

师:哪个小组来汇报一下这2小题?

【设计意图:“悟学式教学”中强调了学生的课前预习与汇报交流的重要性,让我们充分相信学生的能力,全面依靠学生。因此,我紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设了课前小研究环节,让学生通过自己动手等途径,丰富平均数的相关知识,感知平均数在生活中的重要作用,激发学生的探究欲望。并通过交流汇报,体验成功的喜悦。】

三、教材分析:(感悟)

(一)创设情境、激趣导入

1.谈话引入:(出示幻灯教师家的书橱)现在我的书架上上层有12本书,下层有10本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。

2.感知

(1)学生思考,想象移的过程。

(2)教师操作并问:现在每层都有11本书了,这个11是它们的什么数?

(3)师:像这样把几个不同的数,通过移多补少,先合并再平分等方法,得到的相同数,就是这几个数的平均数。

今天,我们就来认识一下“平均数”这个新朋友,好吗?

(板书:平均数)

【设计意图:从现实生活导入,自然引出平均数概念,并巧妙渗透了平均数的区间范围,让学生初步感知平均数是表示一组数据的一般情况,并不表示一个实际存在的数量,为后面深化对“平均数”意义的理解和把握作好预设。】

(二)探究新知

1.理解含义,探求方法。

提出问题:小组合作按要求叠圆片,第一排叠2个,第二排叠7个;第三排叠3个。

师:看着面前的圆片,你能提出什么问题

生:我想使每排的圆片同样多?

师:是个好问题!下面我们就以小组为单位来研究怎样才能使三排圆片同样多。先动手活动,再互相说说法。

小组活动讨论。

【设计意图:让学生自己提出问题,然后解决问题,极大地激发了学生探索的热情。

汇报交流。

生1:我们先从7个里拿出1个给3个,再从7个里拿出2个给2个,这样每排的圆片就同样多了。

生2:我们是以最少的一排2为标准。从7个里拿出5个,再从3个里拿出5个,然后把这6个平均放到三排,每排放2个,和原来2个合起来,每排都是4个,也同样多。

师:不管怎样移,我们都是把个数多的移给个数少的

请你想一想:在刚才移动过程中,有什么相同的规律?

根据学生回答板书:从不相等到相等

小结:像这样,在总数不变的前提下,几个不相同的数通过移多补少变得同样多,同样多的那个数就是原来这几个数的平均数。

【设计意图:“平均数”与“平均分得的结果”是不同的概念。平均分得的结果是一个实实在在的量,而平均数只是一个表示中间状态的抽象数量,这里又一次让学生真切地感受到“平均数”的实际意义。

2.初步应用,内化拓展。

师:刚才同学们用各种方法示出了平均数,请你选择最喜欢的方法,并说说你是怎样想的?(出示:7,3,6,4的平均数是多少?)

生1:我是这样想的(7+3+6+4)+4=5,所以7,3,6,4,的平均数是5,我在加的时候还用了凑十法。

生2:我是从7拿出2给3;6拿出1给4,通过移多补少得出7,3,6,4的平均数是5。

出示幻灯:身高情况

先估计一下平均身高大约是多少?(148,147,149,……)算一算,比较一下估计准不准,谁先算好自己上来写到黑板上。

生1:我是这样想的,152拿出3个给146,151拿出2个给147,那么这组数据的平均数就是149。

生2:我是这样想的,这列数从146到153,里面少148与150,148与150的中间数是149,所以这些平均数是149。

【设计意图:创设与学生生活环境、知识背景密切相关的,学生感兴趣的学习情境,让学生主动进行观察、估计、验证、推理与交流等教学活动,及时内化了各种求平均数的.方法,鼓励解决问题策略多样化。

(三)拓展练习

1.应用一。

小组活动:拿出准备好的调查表,先用计算器求出平均数,再互相交流看法与观点。(调查表有小组成员的体重,身高,家里近几个月的电话费、电费,上周的气温情况等)

交流反馈。

【设计意图:从生活中搜集,整理数据,并求出平均数,使学生体令“平均数”反映的某段时间内具有代表的数据,在实际的数据,在实际生活、工作中人们可以运用它对未来的发展趋势进行预测。计算器的引入,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去。】

2.应用二。

请用计算器帮这位小选手算算最后得分。

生1:最后得分(84+70+88+94+82+86)÷6=84(分)。(大部分学生表示赞同)

生2:我不同意,我认为应该去掉一个最高分、一个最低分。最后得分(84+88+82+86)÷4=85(分),这样才公平、合理。

师:这种求平均数的方法,你有没有在哪里见过?(奥运会、电视比赛等)为了使比赛更公平,通常在比赛中采用这种方法求平均数。

【设计意图:结合实际问题引导学生展开交流、思考。让学生感受到数学就在我们身边,从而深刻认识到数学的价值与魅力。】

3.应用三。

师:星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?

□会 □不会 □可能会 □可能不会

(1)把自己的想法与同桌交流。

(2)指名说说(3个)

(3)学生评价。

师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,也可能正好是126厘米,我们在对待实际问题时就应该根据实际情况分别对待。

【设计意图:深化了学生对“平均数”概念的理解,让学生体验了事件发生的可能性,提升了他们数学交流的能力。】

(四)课堂总结

师:这节课你有哪些收获?还有问题吗?

(五)课外延伸

推荐作业:1、现在你对教师上课开始的问题“我们班的平均身高是多少?”

能解决吗?这一问题就留给大家课后去解决。

【设计意图:呼应开头,并通过课外实践活动延伸,进一步提高学生运用所学知识解决实际问题的能力。】

教学反思:

悟学理念提出,学习目标应由“关注知识”转向“关注学生的学习过程”,指出“五感”是一个循环的过程。课堂设计应由“给出知识”转向“引起活动”得到“感动、感觉、感知、感悟、感恩”。从本节课的教学可知,学生在生活中已经储备了“平均数” 的相关知识,因而我就需要根据学生的实际情况去设计教学的各个环节,注重学生的课前小研究,让学生借助各种资源——同学的互助等,进行自主的探究学习,主动建构关于平均数的知识体系,让学生在学习中获得自信、科学态度和理性精神,实现教学的发展功效和育人的本质功能。

悟学理念认为,要让学生获得知识经验和发展,就必须教他们参与各种实践活动。新课程改革也视学习为“做”的过程、“经验”的过程,凸现学生学习的实践性特点。在本节课的教学中,我不是把教材内容的移植和照搬,而是进行了创造加工,将教材内容变成学生自己去学习、去研究、去感悟的活动内容,并把它纳入到学生的“生活世界”中加以组织,这才是我们在当前设计教学时必须遵循的重要原则。

篇5:认识平均数课件

认识平均数课件

第八单元平均数和条形统计图

8.1认识平均数

答案:

平均数的求法 教学片断

板书是课堂教学的重要组成部分,板书是对一节课教学内容的浓缩与精华的提炼。本课时的板书,紧紧抓住了平均数的本质“移多补少”得到的虚拟数以及计算方法的感悟和体验来设计,既有计算平均数的方法,还有计算平均数的.算式,这样感性和理性的结合,给学生知识生成的有利的具象载体。

(五)课堂小结

数据: 15万元 二季度20万元 三季度22万元 四季度27万元

答案:

1、(9+6+8+7+5+10+4)÷7+30=37(千克)

2、用水总吨数:8×8+4×14+10×5=170(吨)

总户数:8+4+5=17(户)

平均每户用水的吨数:170÷17=10(吨)

3、(8+5+6+9)÷4=7(人) (8+4+11+9)÷4=8(人)

4、平均每季度产值 (15+20+22+27)÷4=21万元

平均每月的产值 (15+20+22+27)÷12=7万元

篇6:小学平均数课件

小学平均数课件

教学目标:

知识与能力

1.具体的生活情景中,通过操作和思考进一步理解平均数的意义。

2.学会求较复杂平均数的方法,能运用平均数分析与解决简单的实际问题。

方法与过程

1.学生在运用学到的平均数的知识分析实际生活中的实际问题。

2.进一步积累分析和处理数据的方法,发展统计观念。

情感、态度、价值观

1.进一步增强于他人交流的意识与能力。

2.体验已学过的统计知识解决问题的乐趣,树立学习数学的信心。

教学重点:

掌握实际生活中的求平均数的方法。

教学难点:

运用平均数知识解决实际问题。

教学方法:

演示法、练习法。

教具准备:

课件

教学进程:

一、导入

1.同学们,上节课我们一起研究了求平均数的方法,那怎样求平均数?谁能说一说?

生:总数量÷总份数=平均数

2.播放学乐师生精彩的导学作业。

二、学习新课

1.出示课本问题,学生看图并读打分结果

师:思考:哪个组对方案A的评分高?用什么来衡量?总分还是平均分?

生:教师组有5人,学生组有12人,不能用总分来衡量,要用平均分来衡量。可以用数据的和除以数据个数,求出平均数来比较评分的高低。21教育网

师:怎样计算方案A中每组评分的平均分?

生:教师组

(5+7×2+3+8)÷5 =30÷5 =6(分)

学生组

(7+5×5+4+8×3+9×2)÷12 =78÷12 =6.5(分)

师:哪个组更喜欢方案A? 生:由于6﹤6.5,所以学生组更喜欢方案A。

2.师:怎样计算方案A的'平均分?

生:总分数÷总人数=平均分

方法一:方法二:
(30+78)÷(5+12)(6×5+6.5×12)÷(5+12)
=108÷17=108÷
≈6.35(分)≈6.35(分)

3.师:用同样的方法,我们计算出方案B的总分和平均分,并填在表中。

生:独立进行计算。

师:说说哪个方案的评分比较高。

生:经过计算,方案B的平均分大约是6.41分,所以方案B的评分比较高。

三、课堂小结

师生共同总结

总数量÷总份数=平均数

平均数×总份数=总数量

总数量÷平均数=总份数

求总数量的方法

(1)连加法

(2)有相同的数量时乘加混合较简便

四、巩固练习

师:怎样求华华走的总米数?

生:45×5+63×4 生独立列式解答。

交流:(45×5+63×4)÷(4+5)

=477÷9 =53(米)

提取有价值的问题:文文从家到游乐宫平均每分钟走多少米?

预设

解法一:(336+64)÷(7+9)

解法二:(336×7+64×9)÷(7+9)

解法三:(336+64×9)÷(7+9)

讨论:前两种解法为什么错。

五、作业

课本46页1、2题

板书设计:

平均数的应用

方案A教师组平均分方案A学生组平均分
(5+7×2+3+8)÷5(7+5×5+4+8×3+9×2)÷12
=30÷5=78÷12
=6(分)=6.5(分)

篇7:数学平均数课件

数学平均数课件

第一教时

教学内容:

平均数(一)(P116例1、例2)

教学目标:

1、知道平均数的意义。

2、掌握求平均数应用题的数量关系和解题方法。

3、会正确解答简单的平均数应用题。

4、初步建立平均数的统计思想。

5、用求平均数的方法解决问题。

教学过程:

一、复习

1、要求下列问题,必须已知哪两个条件,并说出数量关系式。

(1)平均每天加工零件多少个?

(2)平均每人植树多少棵?

(3)平均每组分到几本书?

(4)平均每筐重多少千克?

2、导入

(1) 象以上这些问题都是要求平均每一份是多少。类似题

称之为求“平均数”。所谓平均数,就是把不相等的几个数量,在其总量不变的前提下,通过“移多补少”的方法,使其相等。

揭示课题:

平均数

(2)求平均数用什么方法?

求平均数首先从问题中判断:把什么作为总数平均分;

是按什么平均分的,即与总数对应的总份数是什么;然

后用“总数÷总份数=平均数”,求出平均数。

二、探究

1、例1:

有4组小长方体,第一组有9个,第二组有5个,

第三组有7个,第四组有3个。平均每组有多少个?

(1)默读题目,想一想这到题的数量关系式

长方体的总个数÷组数=平均每组的个数

总 数 ÷ 份 数

(2)生列式,并说明是怎样想的?

(9+5+7+3)÷4

问:平均每组的个数会不会比最多一组9个多,会不会

比最少一组3个少,为什么?

(3)阅书P116的例1

2、例2:

陈小红期中考试成绩,数学和英语都是98分,语文

96分,自然常识100分。她的平均成绩多少分?

(1)自学例2的解题过程:

A.你有什么问题要问吗?

(括号中为什么会出现两个98相加?

总份数为什么是4?)

B.你能完整说说这题的数量关系式吗?

总分÷科数=平均成绩

(2)练习:

书P117的`练一练的1、2(只列式)

三、运用

1、根据问题找总数、总份数

(1)平均每辆车运煤多少吨?

(2)平均每季度生产多少台?

(3)平均每人踢毽子多少个?

(4)平均每组踢毽子多少个?

(5)平均每次踢毽子多少个?

2、列式解答

(1)第一组植树12棵,第二、第三小组共植树20棵。平均

每组植树多少棵?

(12+20)÷3

括号中只有两个数字相加,后面为什么要除以3,不除以2?

(2)书P117的试一试

书P118/2

3、深化

(1)5个同学身高分别为145厘米、150厘米、144厘米、

142厘米、147厘米,他们的平均身高在大于( )

厘米和小于( )厘米之间。

(2)小芳、小华各有一些书,小芳的书比小华多4本。要使

两人的书同样多,小芳应给小华( )本书。

(3)选择正确的算式

学校举行科技小制作展览会。高年级4个班,选出172

件作品;中年级5个班,选出188件作品;低年级3个

班,选出96件作品。平均每个年级选出多少件作品?

A.(172+188+96)÷(4+5+3)

B.(172+188+96)÷3

(4)书P119/8

四、回家作业:

篇8:平均数的课件设计

平均数的课件设计

教学目标:

1.学生在具体的情境中,感受平均数是解决一些实际问题的需要,体会平均数的意义,学会计算简单数据的平均数。(结果是整数)

2.运用平均数的知识解释简单的生活现象,能解决简单的实际问题。

3.操作、交流的过程中,建立学习数学的信心,发展统计观念。

教学重点:理解平均数的意义,学会求简单数据的平均数。

学具准备:移动学具板 、作业纸

教具准备:移动示范板 、课件

教学过程:

一、放情景录像,预设认知冲突

1.谈话导入、回顾情景。

2.读懂统计图,获取相关信息

从这两幅图中你能知道哪些信息?

3.提出预设问题

这一组同学在套圈比赛中,谁获得了胜利?是男生套得准一些,还是女生套得准一些呢?

二、自主探索方法,理解平均数的意义

1.引起争议,探求公正的策略

当两组人数不相等时,怎样判断哪组套的更准一些?你们有没有公平的办法?

2.萌发求平均数的需求,得出有效途径求平均成绩

3.小组动手操作,探索求平均数的方法

那我们应该怎样求男生、女生各组的平均成绩呢?

4.全班交流,感知方法

(1)移多补少

(2)一般方法

男生:6+9+7+6=28(个) 284=7(个)

女生:10+4+7+5+4=30(个) 305=6(个)

男生组算式中的9、6、7、6和28各代表什么呢 ?

为什么女生求出的总数30除以5,而不是除以4呢?

5.理解平均数的意义

我们求出男生组平均每人套中7个 ,是不是每个男生都套中7个,女生组平均每人套中6个,是不是每个女生都套中6个呢?那7和6分别是指什么?

小结:7是男生组的平均成绩,也就是6、9、7、6这组数的平均数。6是女生组的平均成绩,也就是10、4、7、5、4这组数的平均数。

6.新课小结,揭示课题 ,体会求平均数是解决这类问题的有效方法之一

三、感受平均数与生活的联系,体会平均数的.作用

平均数的用途可大了;我们的学习、生活、工作中,处处要用到平均数,你们瞧!这里是有关平均数的一些资料。

1.盐城去年全年平均气温在18摄氏度。

2.盐城市某小学三年级有10个班,平均每班人数为47人。

3.小明的语、数、外,三门考试,平均成绩为92分。

4.盐城市某小学三( 5 )班同学平均年龄为8岁。

现在我们就带着新朋友平均数,来解决我们生活中的实际问题吧!

四、巩固强化,拓展应用

1.移铅笔 (93页第1题)

目的:体会移多补少的思想,加深对平均数意义的理解。

2.三条丝带的平均长度 (94页第2题)

目的:体会一般方法的优越性,上升数学的真正特征,自主领悟平均数一定在最大值和最小值之间。

3.辨析题(第94页 第3题)

目的:加深理解平均数的意义

4.综合性训练:

目的:进一步理解平均数的意义,训练学生根据问题收集相关信息、分析数据、有根据预测的能力。

篇9:小学四年级平均数课件

素质教育目标

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解平均数的意义,会计算一组数据的平均数 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .

(二)能力训练点

培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的`学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点·难点·疑点及解决办法

1.教学重点:平均数的概念及其计算 .

2.教学难点:平均数的简化计算 .

3.教学疑点:平均数简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲 7 8 6 8 6 5 9 10 7 4

乙 9 5 7 8 7 6 8 6 7 7

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习习近平均数.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

86 91 100 72 93 89 90 85 75 95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .

2.平均数的概念及计算公式

一般地,如果有n个数 .

那么 ①叫做这n个数的平均数, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.平均数计算公式①的应用

例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 .

篇10:平均数

教学目标:

1、使学生理解的含义,初步学会简单的求平均数的方法。

2、理解平均数在统计学上的意义,感受数学与生活的联系。

3、发展学生解决问题的能力。

重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。

教学过程:

一、理解平均数

1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?

2、老师(出示两个笔筒分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。

3、引入“平均数”象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。

4、学生讨论:你们喜欢刚才谁的方法?

二、学习计算平均数

1、出示情景图:说说老师和同学们在干什么?

2、出示统计图:引导学生收集信息。

3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。

4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?

5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。

6、小结求平均数的方法。

三、巩固训练

1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?

2、根据统计表算一算,三年段平均每班踢几下?

班级三(1)三(2)三(3)三(4)

踢的次数632654668646

四、小结:通过这节课的学习,你们有什么收获,还有什么问题?

五、布置作业:练习十一1、2、3

篇11:平均数

第一课时

素质教育目标

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解的意义,会计算一组数据的 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的 .

(二)能力训练点

培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点·难点·疑点及解决办法

1.教学重点:的概念及其计算 .

2.教学难点:的简化计算 .

3.教学疑点:简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a.

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲 7 8 6 8 6 5 9 10 7 4

乙 9 5 7 8 7 6 8 6 7 7

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

86 91 100 72 93 89 90 85 75 95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识 .

2.的概念及计算公式

一般地,如果有n个数 .

那么 ①

叫做这n个数的, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.计算公式①的应用

例1  一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 .

让学生动手计算,以巩固计算公式(一名学生板演)

教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,计算结果保留的位数与原数据相同 .

例2  从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

计算它们的平均质量 .(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

那么  ,

因此,

即 ②

为了加深学生对公式②的认识,再让学生指出例2的 、、各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

2.求n个数据的的公式① .

3.的简化计算公式② .这个公式很重要,要学会运用 .

方法小结:通过本节课我们学到了示一组数据的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

八、布置作业

教材P153中1、2、3、4 .

九、板书设计

第 1 2 页

篇12:平均数

平均数 - 初中数学第三册教案

平均数

平均数

教学目标 :

1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

教学重点:会求一组数据的算术平均数和加权平均数.

教学难点 :体会平均数在不同情境中的应用.

教学方法:引导-讨论-交流.

教学手段:多媒体

教学过程 :

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流.

找同学回答后,给出算术平均数的定义.

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术平均数,简称平均数,记为 .读作“x拔”.

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁 16 18 21 23 24 26 29 34

相应队员数 1 2 4 1 3 1 2 1

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)

你能说说小明这样做的道理吗?找同学回答.

巩固练习一:

1. 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下:(单位:元)

10,12,13.5,21,40.8,19.5,20.8,25,16,30.

这10名同学平均捐款 元.(课本P216随堂练习1)

2.一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中 环(精确到0.1)

3.小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?

A 93分 B 95分 C 92.5分 D 94分

例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:

测试项目 测试成绩

A B C

创新 72; 85; 67

综合知识 50; 74; 70

语言 88; 45; 67

(1)如果根据三项测试的平均成绩确定录用人选,那么l将被录用?

(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时l将被录用?

解:(1)A的平均成绩为 (分).

B的平均成绩为 (分).

C的平均成绩为 (分).

因此候选人A将被录用.

(2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用.

思考:(1)(2)的结果不一样说明了什么?

实际问题中,一组数据里的各个数据的“重要程度”未必相同.因此,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称

为A的三项测试成绩的加权平均数.

巩固练习二:

1. 某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩依次是92分、80分、84分,则小颖这学期的.体育成绩是多少?

变形训练:(小组交流)

1.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克 元;

2.某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16.5,18,18.5.如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为 .

小结:先由学生总结,教师再补充.通过本节的学习,我们掌握了:1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.

布置书面作业 :课本P216习题8.1 1、2

课外作业 :(两题任选一题)

1. 到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数.

2. 请设计一个利用“加权平均数”方法来求平均数的应用题,再将其“权”作适当改变,观察平均值的变化.观察“权”的变化对结果的影响.

板书设计

1.平均数

算术平均数:

对于n个数x1,x2,…xn我们把

叫做这个n数的算术平均数,简称平均数,记为 .

读作“x拔”

例1解:(1)A的平均成绩为

B的平均成绩为 .

C的平均成绩为 .

因此候选人A将被录用 (2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用.

加权平均数:称

为A的三项测试成绩的加权平均数.

平均数

平均数

教学目标 :

1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

教学重点:会求一组数据的算术平均数和加权平均数.

教学难点 :体会平均数在不同情境中的应用.

教学方法:引导-讨论-交流.

教学手段:多媒体

教学过程 :

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流.

找同学回答后,给出算术平均数的定义.

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术平均数,简称平均数,记为 .读作“x拔”.

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁 16 18 21 23 24 26 29 34

相应队员数 1 2 4 1 3 1 2 1

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)

你能说说小明这样做的道理吗?找同学回答.

巩固练习一:

1. 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下:(单位:元)

10,12,13.5,21,40.8,19.5,20.8,25,16,30.

这10名同学平均捐款 元.(课本P216随堂练习1)

2.一名射手连续射靶20次,其中2次射中10环,7

篇13:平均数

第一课时

素质教育目标

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解平均数的意义,会计算一组数据的平均数 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .

(二)能力训练点

培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点・难点・疑点及解决办法

1.教学重点:平均数的概念及其计算 .

2.教学难点 :平均数的简化计算 .

3.教学疑点:平均数简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲 7 8 6 8 6 5 9 10 7 4

乙 9 5 7 8 7 6 8 6 7 7

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习习近平均数.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

86 91 100 72 93 89 90 85 75 95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .

2.平均数的概念及计算公式

一般地,如果有n个数 .

那么 ①

叫做这n个数的平均数, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.平均数计算公式①的应用

例1  一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 .

让学生动手计算,以巩固平均数计算公式(一名学生板演)

教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .

例2  从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

计算它们的平均质量 .(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x――撇――拨”;;简化计算的结果与前面毛算的结果相同 .

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

那么  ,

因此,

即 ②

为了加深学生对公式②的认识,再让学生指出例2的 、、各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

2.求n个数据的平均数的公式① .

3.平均数的简化计算公式② .这个公式很重要,要学会运用 .

方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

八、布置作业

教材P153中1、2、3、4 .

九、板书设计

教学设计示例2

教学目标

(一)使学生了解平均数的意义,会计算一组数据的平均数.了解加权平均数的意义,并会求加权平均数;

(二)会运用平均数的简化运算方法.

教学重点和难点

重点:会计算平均数及运用平均数的简化方法,会运用加权平均数公式.

教学过程 设计

(一)引入新课

在初中一年级代数课本P106的“读一读”那一节,讲的是求平均数.有这样一例题:

女子排球队共有10名队员,身高(单位:米)分别为:

1.73,1.74,1.70,1.76,1.80,1.75,1.77,1.79,1.74,1.72.

求这个队的队员平均身高是多少?

解:求这个平均数的计算方法有两个.

方法1:直接计算

方法2:简化计算

观察一下这些数都在1.75的上、下,这时,可以这样考虑:先计算各数与1.75的差,也就是先都减去1.75(为了不出现小数,不妨把单位换成厘米)得到-2厘米,-1厘米,-5厘米,1厘米,5厘米,0厘米,2厘米,4厘米,-1厘米,-3厘米.

计算这组数的平均数,得:

因为前面计算时,每个数都减去了175厘米,所以把这里的得数0加上175,就得出这个排球队全体队员的平均身高是175厘米

在求一组数的平均数时,只要这组数都接近某一个数,就可以采用这种简化的计算方法.

以上例子告诉我们什么是平均数,怎样求平均数.如果这组数存在着大致在某一个数的上、下波动的情况,可以用简便方法计算.

(二)新课

1.平均数

在统计里,平均数是重要概念之一,它是显示出一组数据的集中趋势的特征数字,也就是说这组数据都“接近”哪个数.

上面的公式①,就是我们在求女排队员身高平均数的“直接算法”.

当一组数据x1,x2,…,xn的各个数值较大时,可将各数据同时减去一个适当

公式②就是我们在求女排队员身高平均数的“简便方法”

例1 某食品厂为了加强质量管理,对某天生产的罐头抽查了10个,样本净重如下(单位:克)

342,348,346,340,344,341,343,350,340,342.

篇14:平均数

解法2:把已知数据都减去342,得0,6,4,-2,2,-1,1,8,-2,0,

例2 从一批货物中取出20件,称得它们的重量如下(单位:千克):

310,308,300,305,302,318,306,314,315,307,

295,307,318,292,302,316,285,327,287,315.

求样本的平均数(结果保留到个位)

即样本平均数为306千克.

解法2:

由于题中数据都较大,而且都在常数300上、下波动,把原数据都减去300,得:

10,8,0,5,2,18,6,14,15,7,-5,7,18,-8,2,16,-15,27,-13,15.

2.加权平均数

设有甲、乙、丙三种可混合包装的食品,它们的单价分别是1.8元,2.5元,3.2元,现取甲种食品50公斤,乙种食品40公斤,丙种食品10公斤,把这三种食品混合后每公斤的单价是多少?

答:混合后的单价为2.50元.这个答案是不对的,因为混合后的售价不仅与每种食品的单价有关,而且还与每种食品的重量(公斤数)有关.这些食品混合后的售价应该等于

这种平均数叫做加权平均数.

一般说来,如果在n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次(这里f1+f2+……+fk=n),那么根据平均数公式①,这n个数的平均数可以表示为

计算加权平均数的公式③,与计算平均数的公式①,实际上是一回事.当一组数据中有不少数据多次重复出现时,用加权平均数公式计算简便些.在公式③中,相同数据xi的个数fi叫做权.这个“权”,含有所占分量轻重的意思.fi越大,表示xi的个数越多,于是xi的.“权”就越重.

例3 某班有50名学生,数学期中考试成绩90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(结果保留到小数点后第一位).

在例1~例3的求平均数问题中可以看到,平均数能够反映出数据的集中趋势.

(三)课堂练习

若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是______.

(四)小结

1.用样本平均数去估计总体平均数,这是学习习近平均数的目的.

2.平均数计算公式,平均数简化计算公式,加权平均数计算公式都很重要,应根据具体情况,恰当选取哪个公式

(五)作业

1.数据15,23,17,18,22的平均数是________.

2.5个数据的和为405,其中一个数据为85,那么另4个数据的平均数是______.

(1)105,103,101,100,114,108,110,106,98,102;(共10个)

(2)4203,4204,4200,4194,4204,4210,4195,4199.(共8个)

4.在一个班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人.求这个班学生的平均年龄.

5.抽查了一个商店某月里5天的日营业额,结果如下(单位:元):

14845,25306,18954,11672,16330

(1)求样本平均数;

(2)根据样本平均数估计,这个商店在该月里平均日营业额约是多少?

6.在一段时间里,一个学生记录了其中8天他每天完成家庭作业 所需要的时间,结果如下(单位:分):

80,70,90,70,60,50,80,60.

在这段时间里,该学生平均每天完成家庭作业 所需要的时间约是多少?

作业 答案与提示:

1.19.

5.(1)样本平均数是17421元;

(2)根据上面计算结果,可估计在该月里平均日营业额约为17421.

根据样本平均数,可估计该学生平均每天完成家庭作业 所需时间约为70分.

课堂教学设计说明

1.平均数是统计中的重要概念之一,通过样本平均数来估计总体平均数.样本容量取得越大,则用样本平均数估计的总体平均数越精确,也就是所表示的总体平均的变化趋势越集中于准确值.作业 中的第5,6两题就是为体现这种思想而设计的.

2.这一节课的目标是要弄清两个概念(平均数、加权平均数),三个公式(求平均值公式,求平均值的简化公式和求加权平均数公式).

教学设计中,先从初中一年级代数课本的内容引出平均数概念、计算公式及简化公式.所以很自然地转入新课,在介绍了平均数概念后,紧接着对计算公式作出一般性的证明.

在加权平均数一节,先列举一个易犯的错误,分析其错误原因,然后推导出公式.

篇15:初二数学下册平均数教学课件

初二数学下册平均数教学课件

平均数(第二课时)

一、教学目标:

1、加深对加权平均数的理解

2、会根据频数分布表求加权平均数,从而解决一些实际问题

3、会用计算器求加权平均数的值

二、重点、难点和难点的突破方法:

1、重点:根据频数分布表求加权平均数

2、难点:根据频数分布表求加权平均数

3、难点的突破方法:

首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的`好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析

1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

3、P141利用计算器计算平均值

这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

四、课堂引入

采用教材原有的引入问题,设计的几个问题如下:

(1)、请同学读P140探究问题,依据统计表可以读出哪些信息

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

五、随堂练习

1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

所用时间t(分钟)人数

0<t≤104

0<≤6

20<t≤2014

30<t≤4013

40<t≤509

50<t≤604

(1)、第二组数据的组中值是多少?

(2)、求该班学生平均每天做数学作业所用时间

平均数说课稿

平均数教学设计

《平均数》教学反思

平均数听课心得体会

《平均数》的说课稿

小学数学教案平均数

《平均数》教学设计

数学平均数说课稿

平均数教学反思

四年级平均数教学反思

《平均数课件参考(通用15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档