以下是小编精心整理的3.3金属晶体的教学设计,本文共12篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

篇1:3.3金属晶体的教学设计
3.3金属晶体的教学设计
3.3金属晶体
教材分析:
《金属晶体》选择人教版选修3第三单元课题三,本单元主要介绍四种晶体的结构及其性质。课题一《晶体与非晶体》中学习的晶体的辨别、晶体与晶胞的关系以及晶胞中原子数的计算,为下几个课题的学习打下了基础,课题二《分子晶体与原子晶体》的学习,有利于学生初步形成一定的空间思维能力,通过分子晶体与原子晶体中对结构决定性质的讲解,有利于学生探究金属晶体的教学思路,本节学习也为下个课题《离子晶体》的学习起到一定的铺垫作用。
学情分析:
学生在初三下已经学了金属的通性(物性),了解了合金的一些特点。高中必修1、必修2都有关于金属的学习,对金属原子结构以及金属的化学性质也相当熟悉,加之日常生活中经常与金属接触,对金属应是相当了解,此外高二学生已具备一定的微粒观,这都有利于本课题的'学习。但这阶段的学生的抽象化思维能力相对较弱,这也是本节课的难点之一。
教学目标、知识与技能:
了解“电子气”理论,能用电子气理论解释金属的一些物理性质。通过电子气理论的学习,了解合金性能有别与纯金属的本质原因。了解原子化热,知道影响金属键强弱的因素。通过动手操作以及图片展示、教师讲解,了解金属晶体的四种堆积模型。
过程与方法:
通过电子气理论的学习,学会从化学独特的视角“微观”去探究物质结构。通过对微粒特点的复习,加强“微粒观”通过金属晶体四种堆积模型的学习以及空间利用率的讲解,提升动手能力、空间想象能力与计算能力。
情感、态度、价值观:
通过电子气理论解释合金与纯金属性质的差异,感知化学学习在生产生活中的应用。通过小组合作搭建金属晶体模型,体会合作乐趣,感知众人力量的强大。
教学重点:
电子气理论、金属原子堆积模型
教学难点:
微粒观、抽象思维
教学环节 | 教师活动 | 学生活动 | 教学设计意图及教具 |
引入环节 | 1.前面我们学习了分子晶体与原子晶体,知道分子晶体熔点低、硬度小主要是因为分子晶体中分子间作用力小所致,而原子晶体熔点高、硬度大主要因为原子间通过共价键连接所致。可见物质的结构对其表现出来的 起着决定性作用。今天我们来学习金属晶体,对于金属,同学们应该很熟悉,从初三化学到高中我们的必修1、必修2我们都有学过金属的有关知识,那么,关于金属的一些通性,你还记得多少? 2.同学们答的很全,那么你们是否了解金属为什么会有这些通性呢?或者通过前面分子、原子晶体的学习,你能否知道应从哪个方面去探究金属共性的原因? | 1.1聆听 1.2思考 2.1金属光泽、导电性、导热性、延展性、、、、、 2.2金属结构 | 由复习上课内容自然引出本节内容 |
课堂展开 | 1.我们已经知道金属是由原子构成的,我们也可以猜想出这些原子应该通过某种力相聚集,使金属晶体能量达到最低,那么这种力可以是由共价键提供的吗?(提示:从金属的原子结构角度思考、共价键特性) 2.现在我们知道金属中原子间作用力不是共价键提供的但通过前面的学习,我们也确定这些原子间必定存在某种力使其聚集,我们不妨把其称为“金属键”,那么形成金属键的作用粒子是哪些呢?同学们不妨从金属的原子结构角度思考。 3.通过分析金属的原子结构我们知道,金属最外层电子数少,很易脱落,脱落电子后的原子便形成金属阳离子,那么请问各位同学,电子有方向吗?与原子相比,电子个头大小?电子是静止还是运动的? 4.因为电子与原子相比,电子很小并且电子是运动的,我们可以认为某些原子脱落下来的电子因运动遍布整个金属晶体,为所以原子所共用,从而把所有的金属原子维系在一起,我们把这个理论叫“电子气”理论。(描述金属键本质的简单理论) 5.通过刚刚我们对电子性质的一些探讨,你能猜想出金属键是否像共价键一样有饱和性与方向性?说出理由。 6.我们已经知道金属晶体间存在金属键,那么,你能否运用电子气理论解释金属的某些物性呢? (1)导电性? (2)导热性? (3)延展性? (4)金属光泽? 7.通过电子气理论的学习,我们已经可以解释金属的一些物性,同样,由这一理论我们也可以大致解释合金与纯金属性质的差异,请同学们自行阅读资料卡片。 8.我们知道金属的许多性质与金属键强弱有关,那么有哪些因素影响金属键强弱呢?观察对比表格,总结影响金属键的因素。 9.一般而言,金属键越强,金属晶体的熔点越大。但影响金属熔点的因素除了金属键强弱外,还有金属晶体中原子堆积模型。下面我们一起来学习金属晶体的原子堆积模型。在空间构建金属堆积模型前,我们先探讨金属的平面模型有几种。我们假设金属晶体中的原子是直径相等的球体,同学们试试看,你能堆出几种? 10.讲解密置层与非密置层,配位数。 11.金属晶体的平面结构我们已经知道了,只要把平面加以堆积,便是空间构型,小组合作动手试试看,哪个小组的方案最多。 12.同学们想出的方法挺全,我们先从最简单的堆积来分析这种堆积的特点。(模型名称、配位数、空间利用率、代表物、晶胞图像) 13.简单介绍混合晶体(石墨) | 1.1不可以,金属最外层电子数少,无法形成共用电子对。有的金属熔点低,不符合共价键特性。 2.1电子 2.2金属阳离子 3.1电子无方向 3.2电子比原子小的多 3.3电子是运动的 4.1聆听 5.1思考 5.2无饱和性、方向性。电子无方向且不同金属脱落电子数不同,电子无饱和性。 6.1思考 6.2讨论 6.3回答 7.1阅读 8.1思考 9.1思考 9.2原子半径、电子数、原子化热 9.3动手操作 10.1聆听 11.1动手操作 11.2小组合作 12.1聆听 13.1思考 | 1.复习共价键特性、金属的原子结构引出金属键。 2.引导学生从“微粒观”理解电子气理论 3.Ppt 4.引导学生从微粒本身具有能量,微粒间存在相互作用力等“微粒观”进行思考。 5.Ppt 6.资料卡片“合金性质与结构” 7.Ppt表格 8.(简单讲解原子化热) 9.Ppt图片 10.动手操作与图片结合,给予学生触觉与视觉感受,调动学习积极性。 11.结合图片进行讲解 |
小结 | 总结四种基本堆积模型 | 思考 | 表格填写 |
篇2:金属晶体
金属晶体
1.使学生了解金属晶体的模型及性质的一般特点。
2.使学生理解金属晶体的类型与性质的关系。
3.较为系统地掌握化学键和晶体的几种类型及其特点。
三、学习难点:
四、学习过程
[投影]选一位同学的家庭作业(以表格形式比较离子晶体、原子晶体和分子晶体结构与性质的关系)。要求全体同学对照分析各自作业,在教师的引导下进行必要的修正和补充。然后投影一张正确的表格。
表一:离子晶体、分子晶体、原子晶体结构与性质关系的比较
晶体类型
离子晶体
分子晶体
原子晶体
结构
构成晶体粒子
阴、阳离子
分子
原子
粒子间的作用力
离子键
分子间作用力
共价键
性
质
硬度
较大
较小
较大
溶、沸点
较高
较低
很大
导电
固体不导电,溶化或溶于水后导电
固态和熔融状态都不导电
不导电
溶解性
有些易溶于等极性溶剂
相似相溶
难溶于常见溶剂
[展示金属实物]展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。
[教师诱导]从上述金属的应用来看,金属有哪些共同的物理性质呢?
[学生分组讨论]请一位同学归纳,其他同学补充。
[板书] 一、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
[教师诱启]前面我们知道离子晶体、分子晶体、原子晶体有着不同的物理性质特点,且分别由它们的晶体结构所决定,那么金属的这些共同性质是否也是由金属的结构所决定呢?
[板书] 第二节 金属晶体
[flash动画] 点击“金属晶体内部结构”条目, 让学生看金属晶体内容组成微粒内容为,然后再听画外音兼字幕。
再点击 “金属晶体内部结构”内部画面左上角“内部结构”条目,让学生看几种常见金属晶体空间构型。硬球一个一个地堆积给同学观察,成形后再旋转让同学从不同角度进行观察,且拆散、堆积给学生分析。
[画外音兼有字幕]金属(除汞外)在常温下一般都是固体。通过X射线进行研究发现,在金属中,金属原子好像许多硬球一层层紧密地堆积着,每一个金属原子周围有许多相同的金属原子围绕着,
[设疑]金属中堆积的就是中性原子吗?
[阅读并讨论]金属中由于金属原子的外层电子比较少,金属原子容易失去外层电子变成金属离子,在金属内部结构中,实际上按一定规律紧密堆积的是带正电荷的金属阳离子。
[教师诱启]同样的带正电荷的金属阳离子本应相互排斥,为何还可以紧密地堆积在一起呢?
[提示设疑]电子到哪里去了呢?
[讨论]学生分组讨论,教师引导分析:要使带正电荷的金属阳离子按一定规律紧密堆积,除非金属原子释出的电子在各金属离子间自由地运动,这样依靠金属阳离子与带负电荷的自由电子之间强烈的相互作用使金属离子紧密地堆积在一起。
[板书] 二、金属晶体结构
金属晶体:通过金属离子与自由电子之间的较强作用形成的单质晶体。
[教师设问]构成金属晶体的粒子有哪些?
[学生归纳]金属晶体由金属离子和自由电子构成。
[引言]金属晶体的结构与其性质有哪些内在联系呢?
[板书] 三、金属晶体的结构与金属性质的内在联系
1.金属晶体结构与金属导电性的关系
[演示多媒体动画3]画面内容:金属晶体中的自由电子在没有外加电场存在时是自由移动的,在外加电场作用下,自由电子则发生定向移动而形成电流。
[画外音兼有字幕]在金属晶体中,存在着许多自由电子,这些自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向运动,因而形成电流,所以金属容易导电。
表二
晶体类型
离子晶体
金属晶体
导电时的状态
导电粒子
[分析对比]让学生充分讨论、对比,并让一位同学归纳填写,然后教师点评上述表格,
[板书]2.金属晶体结构与金属的导热性的关系
[教师诱启]导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中金属离子和自由电子担当什么角色?
[学生阅读]教材中有关内容。
[分组讨论]①金属晶体导热过程中粒子运动情况如何?
②这些粒子通过什么方式传递热量?
③热量传递方向及最后整个金属晶体温度高低情况怎样?
[学生汇报]选一位学生汇报学生讨论结果,其他学生补充。
[投影小结]金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
[板书]3.金属晶体结构与金属的延展性的关系
[演示多媒体动画4]画面为一原子晶体和金属晶体结构模型,当其分别受到外力作用时,原子晶体中原子间的位移使共价键受到破坏,而金属晶体中各原子层发生相对滑动时,却保持了金属离子与自由电子之间的较强相互作用。
[画外音兼有字幕]原子晶体受外力作用时,原子间的位移必然导致共价键的断裂,因而难以锻压成型,无延展性,而金属晶体中由于金属离子与自由电子间的相互作用没有方向性,各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。
[讨论]组织学生分组讨论、归纳,然后在教师的指导下,得出正确的答案。
[投影小结]表三 金属晶体的结构与性质的关系
(见下页表)
导电性
导热性
延展性
金属离子和自由电子
自由电子在外加电场的作用下发生定向移动
自由电子与金属离子碰撞传递热量
晶体中各原子层相对滑动仍保持相互作用
[投影课堂反馈练习]
1.金属晶体的形成是因为晶体中存在
A.金属离子间的相互作用
B.金属原子间的相互作用
C.金属离子与自由电子间的相互作用
D.金属原子与自由电子间的相互作用
2.金属能导电的原因是
A.金属晶体中金属阳离子与自由电子间的相互作用较弱
B.金属晶体中的自由电子在外加电场作用下可发生定向移动
C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动
D.金属晶体在外加电场作用下可失去电子
3.下列叙述正确的是
A.任何晶体中,若含有阳离子也一定含有阴离子
B.原子晶体中只含有共价键
C.离子晶体中只含有离子键,不含有共价键
D.分子晶体中只存在分子间作用力,不含有其他化学键
[作业布置]本节教材习题1、习题2
课后阅读材料
1.超导体――一类急待开发的材料
一般说来,金属是电的良好导体(汞的很差)。 19荷兰物理学家H・昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即―269、)时汞的电阻“奇异”般地降为零,表现出超导电性。后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。
2.合金
两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。合金的'特点①仍保留金属的化学性质,但物理性质改变很大;②熔点比各成份金属的都低;③强度、硬度比成分金属大;④有的抗腐蚀能力强;⑤导电性比成分金属差。
3.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。
(1)状态:通常情况下,除Hg外都是固体。
(2)金属光泽:多数金属具有光泽。但除Mg、Al、Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。
(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。
(4)延展性
(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。金属除有共同的物理性质外,还具有各自的特性。
①颜色:绝大多数金属都是银白色,有少数金属具有颜色。如Au 金黄色 Cu 紫红色 Cs 银白略带金色。
②密度:与原子半径、原子相对质量、晶体质点排列的紧密程度有关。最重的为锇(Os) 铂(Pt) 最轻的为锂(Li)
③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为 28.4℃ Ca为30℃
④硬度:最硬的金属为铬(Cr),最软的金属为钾 (K),钠(Na),铯(Cs)等,可用小刀切割。
⑤导电性:导电性能强的为银(Ag),金(Au),铜 (Cu)等。导电性能差的为汞(Hg)
⑥延展性:延展性最好的为金(Au),Al
第二节针对性训练
(A组)
一、选择题
1.不仅与金属的晶体结构有关,而且与金属原子本身的性质有关的是金属的 ( )
A.导电性 B.导热性
C.密度 D.熔点
2.某晶体不导电,在熔融状态下能被电解,则该晶体是 ( )
A.分子晶体 B.原子晶体
C.离子晶体 D.金属晶体
3.下列叙述中,一定是金属元素的是 ( )
A.最外层只有一个电子
B.核外最外电子层有1-2个电子
C.在反应中很容易失去电子
D.具有金属光泽的单质
4.下列叙述的各项性质中,不属于金属的通性的是( )
A.导电、导热性 B.延展性
C.光亮而透明 D.熔点都很高
5.下列说法中正确的是 ( )
A.金属氧化物一定是碱性氧化物
B.金属的导电性随温度的升高而增强
c.金属在反应中都表现还原性
D.金属对应的固态时形成金属晶体
6.与金属的导电性和导热性有关的是 ( )
A.原子半径大小
B.最外层电子数的多少
C.金属的活泼性
D.自由电子
7.下列叙述中可以说明金属甲的活泼性比金属乙的活泼性强的是 ( )
A.甲中“金屑离子与自由电子之间的作用”比乙电的强
B.甲的自由电子比乙中的少
C.甲能跟稀HCl反应,乙不能
D.甲在常温时被浓HN03钝化而乙不能
8.某同学在实验牛观察到:
①金属X不和1 mol・L-1的Y2+溶液反应
②金属Y可溶解在1 mol・L-1Z2+溶液中,并析出金属Z
③金属Z不和1 mol・L-1 x2+溶液反应,由此判断三种金属还原性由强到弱的顺序是 ( )
A.X>Y>Z B.X>Z>Y
C.Y>Z>X D.Y>X>Z
9.填写下列表格
晶体类型
组成晶体的粒子
粒子间作用力
物理特性
离子晶体
分子晶体
原子晶体
10.A B两元素的最外层都只有一个电子。A的原子序数等于B的原子序数的11倍,A的离子的电子层结构与周期表中非金属性最强的元素的阴离子的电子层结构相同;元素C与B易形成化合物B2C,该化合物常温下呈液态。则:
(1)A的原子结构示意图为 ____________在固态时属于______________晶体。
(2)C在固态时属于_________晶体.B与C形成化合物B2C的化学式____________电子式___________;它是由___________键形成的_________分子,在固态时属于___________晶体。
(B组)
一、选择题
1.下列晶体中含有离子的是 ( )
A.离子晶体 B.分子晶体
C.原子晶体 D.金属晶体
2.下列叙述正确的是 ( )
A.含有非金属元素的离子不一定都是阴离子
B.分子晶体中也可能含有离子键
C.含有离子键的晶体一定是离子晶体
D.含有金属元素的离子一定是阴离子 3.下列四种物质中,有较高溶、沸点,且固态时能导电的是 ( )
A.铜 B.冰醋酸
C.食盐 D.石墨
4.金属Mg中含有的结构粒子是 ( )
A.Mg原子 B.只有Mg2+
C.Mg原子和Mg2+ D.Mg2+与自由电子
5.下列物质所属晶体类型分类正确的是 ( )
原子晶体
分子晶体
离子晶体
金属晶体
A
石墨
冰
金刚石
硫酸
B
生石灰
固态氨
食盐
汞
C
石膏
氯化铯
明矾
氯化镁
D
金刚石
干冰
芒硝
铁
6.铬的最高正价为+6价,由此可推断五氧化铬(CrO5)的结构
7.下列叙述错误的是
A.组成金属的粒子是原子
B.金属晶体内部都有自由电子
C.金属晶体内自由电子分布不均匀
D.同一类晶体间熔点(或沸点)相差最大的是金属晶体
8.共价键一定不会出现在
A.分子晶体中 B.原子晶体中
C.离子晶体中 D.金属晶体中
9.下列叙述正确的是 ( )
A.同周期金属的原子半径越大熔点越高
B.同周期金属的原子半径越小熔点越高
C.同主族金属的原子半径越大熔点越高
D.同主族金属的原子半径越小,熔点越高
10.可以用自由电子在与金属离子的碰撞中有能量传递来解释金属的物理性质的是 ( )
A.热的良导体
B.电的良导体
C.优良的延展性
D.有金属光泽,不透明
二、填空题
11.在下列各元素组中,除一种元素外,其余都可能按某种共性归属一类,请选出各组的例外元素,并将该组其他元素的可能归属按六种类型的编号填入表内:
元素组
例外元素
其他元素所属类型编号
(1)S、N、Na、Mg
(2)P、Sb、Sn、As
(3)Rb、B、Te、Fe
归属类型:A 主族元素 B 过渡元素C 同周期元素 D 同族元素
E 金属元素 F 非金属元素
12.在元素周期表中,元素的金属性和非金属性及其强弱比较与周期数(n)和主族数(A)有如下经验公式:K=A/n(K为A与n的比值)则:
(1)当n一定时,K值越大,则元素的_________性越强。
(2)当A一定时,K值越小,则元素的_________性越强
(3)当K=0,则该元素系 ________元素(请选编号)
当K=1时,则该元素系_____________元素
当K<1时,则该元素系___________元素
当K>1时,则该元素系____________元素
a 两性 b 金属 c 非金属 d 稀有气体
第二节 金属晶体训练答案
(A组)答案
一、选择题
1.CD 2.C 3.C 4.CD 5.CD 6.D 7.C 8.D
二、填空题
9.
离子晶体:阴、阳离子 离子键 硬度较高密度较大 熔、沸点高,难压缩
分子晶体:分子 范德华力 硬度较小 熔、沸点较低
原子晶体:原于 共价键 硬度很大 熔、沸点高
10.(1)Na+ 金属
2 8 1 +11
(2)分子,H2O H2O 的电子式略 极性 分子
(B组题)答案
一、选择题
1.AD 2.AC 3.AD 4.D 5.D 6.D 7.AC 8.D 9.BD 10.A
二、填空题
11.(1)N C (2)Sn D (3)Pe A
12.(1)C (2)b (3)d;a;b
篇3:金属晶体
一、学习目标
1.使学生了解金属晶体的模型及性质的一般特点。
2.使学生理解金属晶体的类型与性质的关系。
3.较为系统地掌握化学键和晶体的几种类型及其特点。
二、学习重点:
金属晶体的模型;晶体类型与性质的关系。
三、学习难点:
金属晶体结构模型。
四、学习过程
[投影]选一位同学的家庭作业 (以表格形式比较离子晶体、原子晶体和分子晶体结构与性质的关系)。要求全体同学对照分析各自作业 ,在教师的引导下进行必要的修正和补充。然后投影一张正确的表格。
表一:离子晶体、分子晶体、原子晶体结构与性质关系的比较
晶体类型
离子晶体
分子晶体
原子晶体
结构
构成晶体粒子
阴、阳离子
分子
原子
粒子间的作用力
离子键
分子间作用力
共价键
性
质
硬度
较大
较小
较大
溶、沸点
较高
较低
很大
导电
固体不导电,溶化或溶于水后导电
固态和熔融状态都不导电
不导电
溶解性
有些易溶于等极性溶剂
相似相溶
难溶于常见溶剂
[展示金属实物]展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。
[教师诱导]从上述金属的应用来看,金属有哪些共同的物理性质呢?
[学生分组讨论]请一位同学归纳,其他同学补充。
[板书] 一、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
[教师诱启]前面我们知道离子晶体、分子晶体、原子晶体有着不同的物理性质特点,且分别由它们的晶体结构所决定,那么金属的这些共同性质是否也是由金属的结构所决定呢?
[板书] 第二节 金属晶体
[flash动画] 点击“金属晶体内部结构”条目, 让学生看金属晶体内容组成微粒内容为,然后再听画外音兼字幕。
再点击 “金属晶体内部结构”内部画面左上角“内部结构”条目,让学生看几种常见金属晶体空间构型。硬球一个一个地堆积给同学观察,成形后再旋转让同学从不同角度进行观察,且拆散、堆积给学生分析。
[画外音兼有字幕]金属(除汞外)在常温下一般都是固体。通过X射线进行研究发现,在金属中,金属原子好像许多硬球一层层紧密地堆积着,每一个金属原子周围有许多相同的金属原子围绕着,
[设疑]金属中堆积的就是中性原子吗?
[阅读并讨论]金属中由于金属原子的外层电子比较少,金属原子容易失去外层电子变成金属离子,在金属内部结构中,实际上按一定规律紧密堆积的是带正电荷的金属阳离子。
[教师诱启]同样的带正电荷的金属阳离子本应相互排斥,为何还可以紧密地堆积在一起呢?
[提示设疑]电子到哪里去了呢?
[讨论]学生分组讨论,教师引导分析:要使带正电荷的金属阳离子按一定规律紧密堆积,除非金属原子释出的电子在各金属离子间自由地运动,这样依靠金属阳离子与带负电荷的自由电子之间强烈的相互作用使金属离子紧密地堆积在一起。
[板书] 二、金属晶体结构
金属晶体:通过金属离子与自由电子之间的较强作用形成的单质晶体。
[教师设问]构成金属晶体的粒子有哪些?
[学生归纳]金属晶体由金属离子和自由电子构成。
[引言]金属晶体的结构与其性质有哪些内在联系呢?
[板书] 三、金属晶体的结构与金属性质的内在联系
1.金属晶体结构与金属导电性的关系
[演示多媒体动画3]画面内容:金属晶体中的自由电子在没有外加电场存在时是自由移动的,在外加电场作用下,自由电子则发生定向移动而形成电流。
[画外音兼有字幕]在金属晶体中,存在着许多自由电子,这些自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向运动,因而形成电流,所以金属容易导电。
表二
晶体类型
离子晶体
篇4:金属晶体
导电时的状态
导电粒子
[分析对比]让学生充分讨论、对比,并让一位同学归纳填写,然后教师点评上述表格,
[板书]2.金属晶体结构与金属的导热性的关系
[教师诱启]导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中金属离子和自由电子担当什么角色?
[学生阅读]教材中有关内容。
[分组讨论]①金属晶体导热过程中粒子运动情况如何?
②这些粒子通过什么方式传递热量?
③热量传递方向及最后整个金属晶体温度高低情况怎样?
[学生汇报]选一位学生汇报学生讨论结果,其他学生补充。
[投影小结]金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
[板书]3.金属晶体结构与金属的延展性的关系
[演示多媒体动画4]画面为一原子晶体和金属晶体结构模型,当其分别受到外力作用时,原子晶体中原子间的位移使共价键受到破坏,而金属晶体中各原子层发生相对滑动时,却保持了金属离子与自由电子之间的较强相互作用。
[画外音兼有字幕]原子晶体受外力作用时,原子间的位移必然导致共价键的断裂,因而难以锻压成型,无延展性,而金属晶体中由于金属离子与自由电子间的相互作用没有方向性,各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。
[讨论]组织学生分组讨论、归纳,然后在教师的指导下,得出正确的答案。
[投影小结]表三 金属晶体的结构与性质的关系
(见下页表)
导电性
导热性
延展性
金属离子和自由电子
自由电子在外加电场的作用下发生定向移动
自由电子与金属离子碰撞传递热量
晶体中各原子层相对滑动仍保持相互作用
[投影课堂反馈练习]
1.金属晶体的形成是因为晶体中存在
A.金属离子间的相互作用
B.金属原子间的相互作用
C.金属离子与自由电子间的相互作用
D.金属原子与自由电子间的相互作用
2.金属能导电的原因是
A.金属晶体中金属阳离子与自由电子间的相互作用较弱
B.金属晶体中的自由电子在外加电场作用下可发生定向移动
C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动
D.金属晶体在外加电场作用下可失去电子
3.下列叙述正确的是
A.任何晶体中,若含有阳离子也一定含有阴离子
B.原子晶体中只含有共价键
C.离子晶体中只含有离子键,不含有共价键
D.分子晶体中只存在分子间作用力,不含有其他化学键
[作业 布置]本节教材习题1、习题2
课后阅读材料
1.超导体――一类急待开发的材料
一般说来,金属是电的良好导体(汞的很差)。 19荷兰物理学家H・昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即―269、)时汞的电阻“奇异”般地降为零,表现出超导电性。后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。
2.合金
两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。合金的特点①仍保留金属的化学性质,但物理性质改变很大;②熔点比各成份金属的都低;③强度、硬度比成分金属大;④有的抗腐蚀能力强;⑤导电性比成分金属差。
3.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。
(1)状态:通常情况下,除Hg外都是固体。
(2)金属光泽:多数金属具有光泽。但除Mg、Al、Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。
(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。
(4)延展性
(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。金属除有共同的物理性质外,还具有各自的特性。
①颜色:绝大多数金属都是银白色,有少数金属具有颜色。如Au 金黄色 Cu 紫红色 Cs 银白略带金色。
②密度:与原子半径、原子相对质量、晶体质点排列的.紧密程度有关。最重的为锇(Os) 铂(Pt) 最轻的为锂(Li)
③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为 28.4℃ Ca为30℃
④硬度:最硬的金属为铬(Cr),最软的金属为钾 (K),钠(Na),铯(Cs)等,可用小刀切割。
⑤导电性:导电性能强的为银(Ag),金(Au),铜 (Cu)等。导电性能差的为汞(Hg)
⑥延展性:延展性最好的为金(Au),Al
第二节针对性训练
(A组)
一、选择题
1.不仅与金属的晶体结构有关,而且与金属原子本身的性质有关的是金属的 ( )
A.导电性 B.导热性
C.密度 D.熔点
2.某晶体不导电,在熔融状态下能被电解,则该晶体是 ( )
A.分子晶体 B.原子晶体
C.离子晶体 D.金属晶体
3.下列叙述中,一定是金属元素的是 ( )
A.最外层只有一个电子
B.核外最外电子层有1-2个电子
C.在反应中很容易失去电子
D.具有金属光泽的单质
4.下列叙述的各项性质中,不属于金属的通性的是( )
A.导电、导热性 B.延展性
C.光亮而透明 D.熔点都很高
5.下列说法中正确的是 ( )
A.金属氧化物一定是碱性氧化物
B.金属的导电性随温度的升高而增强
c.金属在反应中都表现还原性
D.金属对应的固态时形成金属晶体
6.与金属的导电性和导热性有关的是 ( )
A.原子半径大小
B.最外层电子数的多少
C.金属的活泼性
D.自由电子
7.下列叙述中可以说明金属甲的活泼性比金属乙的活泼性强的是 ( )
A.甲中“金屑离子与自由电子之间的作用”比乙电的强
B.甲的自由电子比乙中的少
C.甲能跟稀HCl反应,乙不能
D.甲在常温时被浓HN03钝化而乙不能
8.某同学在实验牛观察到:
①金属X不和1 mol・L-1的Y2+溶液反应
②金属Y可溶解在1 mol・L-1Z2+溶液中,并析出金属Z
③金属Z不和1 mol・L-1 x2+溶液反应,由此判断三种金属还原性由强到弱的顺序是 ( )
A.X>Y>Z B.X>Z>Y
C.Y>Z>X D.Y>X>Z
9.填写下列表格
篇5:金属晶体
导电时的状态
导电粒子
[分析对比]让学生充分讨论、对比,并让一位同学归纳填写,然后教师点评上述表格,
[板书]2.金属晶体结构与金属的导热性的关系
[教师诱启]导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中金属离子和自由电子担当什么角色?
[学生阅读]教材中有关内容。
[分组讨论]①金属晶体导热过程中粒子运动情况如何?
②这些粒子通过什么方式传递热量?
③热量传递方向及最后整个金属晶体温度高低情况怎样?
[学生汇报]选一位学生汇报学生讨论结果,其他学生补充。
[投影小结]金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
[板书]3.金属晶体结构与金属的延展性的关系
[演示多媒体动画4]画面为一原子晶体和金属晶体结构模型,当其分别受到外力作用时,原子晶体中原子间的位移使共价键受到破坏,而金属晶体中各原子层发生相对滑动时,却保持了金属离子与自由电子之间的较强相互作用。
[画外音兼有字幕]原子晶体受外力作用时,原子间的位移必然导致共价键的断裂,因而难以锻压成型,无延展性,而金属晶体中由于金属离子与自由电子间的相互作用没有方向性,各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。
[讨论]组织学生分组讨论、归纳,然后在教师的指导下,得出正确的答案。
[投影小结]表三 金属晶体的结构与性质的关系
(见下页表)
导电性
导热性
延展性
金属离子和自由电子
自由电子在外加电场的作用下发生定向移动
自由电子与金属离子碰撞传递热量
晶体中各原子层相对滑动仍保持相互作用
[投影课堂反馈练习]
1.金属晶体的形成是因为晶体中存在
A.金属离子间的相互作用
B.金属原子间的相互作用
C.金属离子与自由电子间的相互作用
D.金属原子与自由电子间的相互作用
2.金属能导电的原因是
A.金属晶体中金属阳离子与自由电子间的相互作用较弱
B.金属晶体中的自由电子在外加电场作用下可发生定向移动
C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动
D.金属晶体在外加电场作用下可失去电子
3.下列叙述正确的是
A.任何晶体中,若含有阳离子也一定含有阴离子
B.原子晶体中只含有共价键
C.离子晶体中只含有离子键,不含有共价键
D.分子晶体中只存在分子间作用力,不含有其他化学键
[作业布置]本节教材习题1、习题2
课后阅读材料
1.超导体——一类急待开发的材料
一般说来,金属是电的良好导体(汞的很差)。 1911年荷兰物理学家H·昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即—269、)时汞的电阻“奇异”般地降为零,表现出超导电性。后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。
2.合金
两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。合金的'特点①仍保留金属的化学性质,但物理性质改变很大;②熔点比各成份金属的都低;③强度、硬度比成分金属大;④有的抗腐蚀能力强;⑤导电性比成分金属差。
3.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。
(1)状态:通常情况下,除Hg外都是固体。
(2)金属光泽:多数金属具有光泽。但除Mg、Al、Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。
(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。
(4)延展性
(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。金属除有共同的物理性质外,还具有各自的特性。
①颜色:绝大多数金属都是银白色,有少数金属具有颜色。如Au 金黄色 Cu 紫红色 Cs 银白略带金色。
②密度:与原子半径、原子相对质量、晶体质点排列的紧密程度有关。最重的为锇(Os) 铂(Pt) 最轻的为锂(Li)
③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为 28.4℃ Ca为30℃
④硬度:最硬的金属为铬(Cr),最软的金属为钾 (K),钠(Na),铯(Cs)等,可用小刀切割。
⑤导电性:导电性能强的为银(Ag),金(Au),铜 (Cu)等。导电性能差的为汞(Hg)
⑥延展性:延展性最好的为金(Au),Al
第二节针对性训练
(A组)
一、选择题
1.不仅与金属的晶体结构有关,而且与金属原子本身的性质有关的是金属的 ( )
A.导电性 B.导热性
C.密度 D.熔点
2.某晶体不导电,在熔融状态下能被电解,则该晶体是 ( )
A.分子晶体 B.原子晶体
C.离子晶体 D.金属晶体
3.下列叙述中,一定是金属元素的是 ( )
A.最外层只有一个电子
B.核外最外电子层有1-2个电子
C.在反应中很容易失去电子
D.具有金属光泽的单质
4.下列叙述的各项性质中,不属于金属的通性的是( )
A.导电、导热性 B.延展性
C.光亮而透明 D.熔点都很高
5.下列说法中正确的是 ( )
A.金属氧化物一定是碱性氧化物
B.金属的导电性随温度的升高而增强
c.金属在反应中都表现还原性
D.金属对应的固态时形成金属晶体
6.与金属的导电性和导热性有关的是 ( )
A.原子半径大小
B.最外层电子数的多少
C.金属的活泼性
D.自由电子
7.下列叙述中可以说明金属甲的活泼性比金属乙的活泼性强的是 ( )
A.甲中“金屑离子与自由电子之间的作用”比乙电的强
B.甲的自由电子比乙中的少
C.甲能跟稀HCl反应,乙不能
D.甲在常温时被浓HN03钝化而乙不能
8.某同学在实验牛观察到:
①金属X不和1 mol·L-1的Y2+溶液反应
②金属Y可溶解在1 mol·L-1Z2+溶液中,并析出金属Z
③金属Z不和1 mol·L-1 x2+溶液反应,由此判断三种金属还原性由强到弱的顺序是 ( )
A.X>Y>Z B.X>Z>Y
C.Y>Z>X D.Y>X>Z
9.填写下列表格
晶体类型
组成晶体的粒子
粒子间作用力
物理特性
离子晶体
分子晶体
原子晶体
10.A B两元素的最外层都只有一个电子。A的原子序数等于B的原子序数的11倍,A的离子的电子层结构与周期表中非金属性最强的元素的阴离子的电子层结构相同;元素C与B易形成化合物B2C,该化合物常温下呈液态。则:
(1)A的原子结构示意图为 ____________在固态时属于______________晶体。
(2)C在固态时属于_________晶体.B与C形成化合物B2C的化学式____________电子式___________;它是由___________键形成的_________分子,在固态时属于___________晶体。
(B组)
一、选择题
1.下列晶体中含有离子的是 ( )
A.离子晶体 B.分子晶体
C.原子晶体 D.金属晶体
2.下列叙述正确的是 ( )
A.含有非金属元素的离子不一定都是阴离子
B.分子晶体中也可能含有离子键
C.含有离子键的晶体一定是离子晶体
D.含有金属元素的离子一定是阴离子 3.下列四种物质中,有较高溶、沸点,且固态时能导电的是 ( )
A.铜 B.冰醋酸
C.食盐 D.石墨
4.金属Mg中含有的结构粒子是 ( )
A.Mg原子 B.只有Mg2+
C.Mg原子和Mg2+ D.Mg2+与自由电子
5.下列物质所属晶体类型分类正确的是 ( )
原子晶体
分子晶体
离子晶体
篇6:金属晶体
A
石墨
冰
金刚石
硫酸
B
生石灰
固态氨
食盐
汞
C
石膏
氯化铯
明矾
氯化镁
D
金刚石
干冰
芒硝
铁
6.铬的最高正价为+6价,由此可推断五氧化铬(CrO5)的结构
7.下列叙述错误的是
A.组成金属的粒子是原子
B.金属晶体内部都有自由电子
C.金属晶体内自由电子分布不均匀
D.同一类晶体间熔点(或沸点)相差最大的是金属晶体
8.共价键一定不会出现在
A.分子晶体中 B.原子晶体中
C.离子晶体中 D.金属晶体中
9.下列叙述正确的是 ( )
A.同周期金属的原子半径越大熔点越高
B.同周期金属的原子半径越小熔点越高
C.同主族金属的原子半径越大熔点越高
D.同主族金属的原子半径越小,熔点越高
10.可以用自由电子在与金属离子的碰撞中有能量传递来解释金属的物理性质的是 ( )
A.热的良导体
B.电的良导体
C.优良的延展性
D.有金属光泽,不透明
二、填空题
11.在下列各元素组中,除一种元素外,其余都可能按某种共性归属一类,请选出各组的例外元素,并将该组其他元素的可能归属按六种类型的编号填入表内:
元素组
例外元素
其他元素所属类型编号
(1)S、N、Na、Mg
(2)P、Sb、Sn、As
(3)Rb、B、Te、Fe
归属类型:A 主族元素 B 过渡元素C 同周期元素 D 同族元素
E 金属元素 F 非金属元素
12.在元素周期表中,元素的金属性和非金属性及其强弱比较与周期数(n)和主族数(A)有如下经验公式:K=A/n(K为A与n的比值)则:
(1)当n一定时,K值越大,则元素的_________性越强。
(2)当A一定时,K值越小,则元素的_________性越强
(3)当K=0,则该元素系 ________元素(请选编号)
当K=1时,则该元素系_____________元素
当K<1时,则该元素系___________元素
当K>1时,则该元素系____________元素
a 两性 b 金属 c 非金属 d 稀有气体
第二节 金属晶体训练答案
(A组)答案
一、选择题
1.CD 2.C 3.C 4.CD 5.CD 6.D 7.C 8.D
二、填空题
9.
离子晶体:阴、阳离子 离子键 硬度较高密度较大 熔、沸点高,难压缩
分子晶体:分子 范德华力 硬度较小 熔、沸点较低
原子晶体:原于 共价键 硬度很大 熔、沸点高
10.(1)Na+ 金属
2 8 1 +11
(2)分子,H2O H2O 的电子式略 极性 分子
(B组题)答案
一、选择题
1.AD 2.AC 3.AD 4.D 5.D 6.D 7.AC 8.D 9.BD 10.A
二、填空题
11.(1)N C (2)Sn D (3)Pe A
12.(1)C (2)b (3)d;a;b
篇7:金属晶体教案
一、学习目标
1.使学生了解金属晶体的模型及性质的一般特点。
2.使学生理解金属晶体的类型与性质的关系。
3.较为系统地掌握化学键和晶体的几种类型及其特点。
二、学习重点:
金属晶体的模型;晶体类型与性质的关系。
三、学习难点:
篇8:金属晶体教案
四、学习过程
[投影]选一位同学的家庭作业(以表格形式比较离子晶体、原子晶体和分子晶体结构与性质的关系)。要求全体同学对照分析各自作业,在教师的引导下进行必要的修正和补充。然后投影一张正确的表格。
表一:离子晶体、分子晶体、原子晶体结构与性质关系的比较
晶体类型 离子晶体 分子晶体 原子晶体 结构 构成晶体粒子 阴、阳离子 分子 原子 粒子间的作用力 离子键 分子间作用力 共价键 性
质 硬度 较大 较小 较大 溶、沸点 较高 较低 很大 导电 固体不导电,溶化或溶于水后导电 固态和熔融状态都不导电 不导电 溶解性 有些易溶于等极性溶剂 相似相溶 难溶于常见溶剂
[展示金属实物]展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。
[教师诱导]从上述金属的应用来看,金属有哪些共同的物理性质呢?
[学生分组讨论]请一位同学归纳,其他同学补充。
[板书] 一、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
[教师诱启]前面我们知道离子晶体、分子晶体、原子晶体有着不同的物理性质特点,且分别由它们的晶体结构所决定,那么金属的这些共同性质是否也是由金属的结构所决定呢?
[板书] 第二节 金属晶体
[flash动画] 点击“金属晶体内部结构”条目, 让学生看金属晶体内容组成微粒内容为,然后再听画外音兼字幕。
再点击 “金属晶体内部结构”内部画面左上角“内部结构”条目,让学生看几种常见金属晶体空间构型。硬球一个一个地堆积给同学观察,成形后再旋转让同学从不同角度进行观察,且拆散、堆积给学生分析。
[画外音兼有字幕]金属(除汞外)在常温下一般都是固体。通过X射线进行研究发现,在金属中,金属原子好像许多硬球一层层紧密地堆积着,每一个金属原子周围有许多相同的金属原子围绕着,
[设疑]金属中堆积的就是中性原子吗?
[阅读并讨论]金属中由于金属原子的外层电子比较少,金属原子容易失去外层电子变成金属离子,在金属内部结构中,实际上按一定规律紧密堆积的是带正电荷的金属阳离子。
[教师诱启]同样的带正电荷的金属阳离子本应相互排斥,为何还可以紧密地堆积在一起呢?
[提示设疑]电子到哪里去了呢?
[讨论]学生分组讨论,教师引导分析:要使带正电荷的金属阳离子按一定规律紧密堆积,除非金属原子释出的电子在各金属离子间自由地运动,这样依靠金属阳离子与带负电荷的自由电子之间强烈的相互作用使金属离子紧密地堆积在一起。
[板书] 二、金属晶体结构
金属晶体:通过金属离子与自由电子之间的较强作用形成的单质晶体。
[教师设问]构成金属晶体的粒子有哪些?
[学生归纳]金属晶体由金属离子和自由电子构成。
[引言]金属晶体的结构与其性质有哪些内在联系呢?
[板书] 三、金属晶体的结构与金属性质的内在联系
1.金属晶体结构与金属导电性的关系
[演示多媒体动画3]画面内容:金属晶体中的自由电子在没有外加电场存在时是自由移动的,在外加电场作用下,自由电子则发生定向移动而形成电流。
[画外音兼有字幕]在金属晶体中,存在着许多自由电子,这些自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向运动,因而形成电流,所以金属容易导电。
表二
晶体类型 离子晶体 金属晶体 导电时的状态 导电粒子 [分析对比]让学生充分讨论、对比,并让一位同学归纳填写,然后教师点评上述表格,
[板书]2.金属晶体结构与金属的导热性的关系
[教师诱启]导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中金属离子和自由电子担当什么角色?
[学生阅读]教材中有关内容。
[分组讨论]①金属晶体导热过程中粒子运动情况如何?
②这些粒子通过什么方式传递热量?
③热量传递方向及最后整个金属晶体温度高低情况怎样?
[学生汇报]选一位学生汇报学生讨论结果,其他学生补充。
[投影小结]金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
[板书]3.金属晶体结构与金属的延展性的关系
篇9:金属晶体教案
【教材内容分析】
在必修2中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等知识。本节内容是在介绍了分子晶体和原子晶体等知识的基础上,再介绍金属晶体的知识,可以使学生对于晶体有一个较全面的了解,也可使学生进一步深化对所学的知识的认识。教材从介绍金属键和电子气理论入手,对金属的通性作出了解释,并在金属键的基础上,简单的介绍了金属晶体的几种常见的堆积模型,让学生对金属晶体有一个较为全面的认识。
教学目标
1.理解金属键的概念和电子气理论
2.初步学会用电子气理论解释金属的物理性质
重 点:金属键和电子气理论
难 点:金属具有共同物理性质的解释。
【教学过程设计】
【引入】大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?
【板书】一、金属键
金属晶体中原子之间的化学作用力叫做金属键。
【讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。
【强调】金属晶体是以金属键为基本作用力的晶体。
【板书】二、电子气理论及其对金属通性的解释
1.电子气理论
【讲解】经典的金属键理论叫做“电子气理论”。它把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子形成可与气体相比拟的带负电的“电子气”,金属原子则“浸泡”在“电子气”的“海洋”之中。
2.金属通性的解释
【展示金属实物】展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。
【教师引导】从上述金属的应用来看,金属有哪些共同的物理性质呢?
【学生分组讨论】请一位同学归纳,其他同学补充。
【板书】金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
⑴.金属导电性的解释
在金属晶体中,充满着带负电的“电子气”,这些电子气的运动是没有一定方向的,但在外加电场的条件下电子气就会发生定向移动,因而形成电流,所以金属容易导电。
【设问】导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中电子气中的自由电子担当什么角色?
金属容易导热,是由于电子气中的自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
⑶.金属延展性的解释
当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性。
【课堂练习】
1.金属晶体的形成是因为晶体中存在
A.金属离子间的相互作用
B.金属原子间的相互作用
C.金属离子与自由电子间的相互作用
D.金属原子与自由电子间的相互作用
2.金属能导电的原因是
A.金属晶体中金属阳离子与自由电子间的相互作用较弱
B.金属晶体中的自由电子在外加电场作用下可发生定向移动
C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动
D.金属晶体在外加电场作用下可失去电子
课后阅读材料
1.超导体——一类急待开发的材料
一般说来,金属是电的良好导体(汞的很差)。 19荷兰物理学家H·昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即—269、)时汞的电阻“奇异”般地降为零,表现出超导电性。后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。
2.合金
两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。合金的特点①仍保留金属的化学性质,但物理性质改变很大;②熔点比各成份金属的都低;③强度、硬度比成分金属大;④有的抗腐蚀能力强;⑤导电性比成分金属差。
3.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。
(1)状态:通常情况下,除Hg外都是固体。
(2)金属光泽:多数金属具有光泽。但除Mg、Al、Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。
(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。
(4)延展性
(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。金属除有共同的物理性质外,还具有各自的特性。
①颜色:绝大多数金属都是银白色,有少数金属具有颜色。如Au金黄色Cu紫红色Cs银白略带金色。
②密度:与原子半径、原子相对质量、晶体质点排列的紧密程度有关。最重的为锇(Os)铂(Pt)最轻的为锂(Li)
③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为28.4℃ Ca为30℃
④硬度:最硬的金属为铬(Cr),最软的金属为钾 (K),钠(Na),铯(Cs)等,可用小刀切割。
⑤导电性:导电性能强的为银(Ag),金(Au),铜 (Cu)等。导电性能差的为汞(Hg)
⑥延展性:延展性最好的为金(Au),Al
篇10:金属晶体教案
【教学目标】
1.了解金属晶体内原子的几种常见排列方式
2.训练学生的动手能力和 空间想象能力。
3. 培养学生的合作意识
【教学重点】金属晶体内原子的空间排列方式
【教学难点】金属晶体内原子的空间排列方式
【教学方法】讲授法、讨论,探究法,归纳总结
流程 教 师 活 动 学 生 活 动 活动目标 引入
上堂课学习了金属原子二维平面的排列及非密置层在三维空间排列的两种情况,请两位同学分别描述一下二维及简单立方和钾型堆积的特点 倾听、回顾、思考、交流
代表发言 温故知新
情景
设计 非 密置层堆积有简单立方和钾型两种,思考密置层的原子按钾型堆积 方式堆积,又会得到几种基本堆积方式? 自己动手把密置层的小球粘合在一起,再一层一层地堆积起来,使上层球填入下层球的空隙中。仔细比较两种类型的不同。
交流讨论。 培养分析问题和解决问题的能力,激发学生空间想象能力 巡视 对学生交流进行适当的点拨。 互动 和学生交流,鼓励学生大胆想象踊跃发言 代表发言 总结归纳的能力培养。 课件展示 观看,思考,。
培养 观察分析能力 设疑 如图两种堆积方式原子的空间利用率多大,如何计算? 思考、动手计算,讨论、回答。
培养解决问题的能力 板书讲解算法 首先 把堆积方式抽象成晶胞模型
均摊法计算晶胞的微粒个数,计算微粒所占的体积
计算晶胞的总体积
空间利用率等于微粒总体积比晶胞总体积 思考记录
培养思维和计算能力
板书
一、密置层的原子按钾型堆积方式堆积,会得到两种基本堆积方式,(1)镁型如下图左侧,按ABABABAB……的方式堆积;
(2)铜型如图右侧,按ABCABCABC……的方式堆积.
这两种堆积方式都是金属晶体的最密堆,配位数均为12,空间利用率均为74℅,但所得的晶胞的形式不同.
整理记录 归纳总结能力培养
投影总结 堆积模型
采用这种堆积的典型代表
空间利用率
篇11:金属晶体教案
第2课时
【教材内容分析】
晶体知识和分子晶体、原子晶体已经做了介绍,学生对晶体内微粒的空间排列有了初步的认识。学生自己探究金属晶体的结构有了可能。晶体知识和分子晶体、原子晶体已经做了介绍,学生对晶体内微粒的空间排列有了初步的认识。学生自己探究金属晶体的结构有了可能。
篇12:高中化学金属晶体教案
教材分析:
在《普通高中化学课程标准(实验)》中,涉及金属晶体的内容标准包括:
(1)知道金属键的涵义;
(2)能用金属键理论解释金属的一些物理性质(良好的导电性、导热性和延展性);
(3)能列举金属晶体的基本堆积模型;
(4)知道金属晶体与其它晶体的结构微粒、微粒间作用力的区别。
关于金属键的涵义,教材上的说法有些模糊,不利于学生的理解,教学中应点明金属键是脱落下来的自由电子跟形成的金属正离子的相互作用,而所谓的“电子气”,不过是一种比较形象的说法,指的是脱落下来的电子好像气体一样遍布整块晶体。
在这四点中,第二点要求的程度是“解释”,显然比其余三点高,因此,第二点应该作为本节的教学重点之一,而教材除对延展性有较为详细的解释外,其它物理性质的解释都是一笔带过,所以教学过程中应作详细讲解。
第三点的要求虽然较低,但在前面分子晶体和原子晶体的学习中,《课程标准》里要求学生学会运用模型来研究结构问题,因此本节教学中可以利用讲解该部分知识的机会继续培养学生运用模型研究结构问题的能力,所以也作为教学重点之一。教师的演示模型可将不同颜色的弹珠用胶水黏合制得,而学生实验所需的小球则可使用自行车中所用的那种轴承滚珠,也可提前要求学生自己准备,培养学生的创造力。
第四点的教学则可以在讲解完金属键的本质后,与分子晶体和原子晶体的相关知识进行比较、区分。也可以在讲新课之前先进行复习。另外一种处理方法则是等讲完离子晶体后再全面对四种晶体进行对比。以下教学设计将采用第一种方法,并将在本章复习中对四种晶体进行更全面的比较。
此外,教材中出现了“配位数”这个名词,这涉及到第二章第二节中有关配位化合物的知识,但配位数的涵义在《课程标准》中并无要求,而且在配位化合物这部分的知识中也没有出现该名词,因此不宜作深入探讨,可简单解释为:配位数是指任意一个原子周围与之相接触的原子的数目。资料卡片中有两个内容,一个是“金属晶体的四种堆积模型对比”,另一个是“混合晶体”,前者在教学中可以引导学生进行阅读,后者理解起来较难,可视各所学校学生的具体情况灵活处理。以下教学设计将不涉及“混合晶体”的引导阅读。
基于以上分析,本节教学设计如下:
【教学目标】
(1)知道金属键的涵义;
(2)能用电子气理论解释金属的一些物理性质,如延展性、导电性、导热性等;
(3)能运用模型研究晶体的结构;
(4)知道金属晶体与分子晶体、原子晶体在结构微粒、微粒间作用力上的区别
【教学重点】
用金属键理论解释金属的物理性质,金属晶体的原子堆积模型
【教学难点】
电子气理论,镁型和铜型堆积模型
【教学方法】
问题探究、实验探究
文档为doc格式