以下是小编精心整理的五年级数学知识点的,本文共3篇,供大家阅读参考。

篇1:五年级数学常用知识点
五年级上册数学《简易方程》练习知识点
一、填空。
1、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。
2、一本书100页,平均每页有a行,每行有b个字,那么,这本书一共有( )个字。
3、用字母表示长方形的周长公式( )
4、根据运算定律写出:
9n+5n=( + )n= a×0.8×0.125=( × )
ab=ba运用( )定律。
5、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )
6、一块长方形试验田有4.2公顷,它的长是420米,它的宽是( )米。
7、一个等腰三角形的周长是43厘米,底是19厘米,它的腰是( )。
8、甲乙两数的和是171.6,乙数的小数点向右移动一位,就等于甲数。甲数是( );乙数是( )。
二、判断题。(对的打√,错的打×)
1、含有未知数的算式叫做方程。( )
2、5x表示5个x相乘。( )
3、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。( )
4、一个三角形,底a缩小5倍,高h扩大5倍,面积就缩小10倍。( )
三、解下列方程。
3.5x=140 2x+5=40 15x+6x=168
5x+1.5=4.5 13.7—x=5.29 4.2×3—3x=5.1(写出检验过程)
四、列出方程并求方程的解。
(1)、一个数的5倍加上3.2,和是38.2,求这个数。
(2)、3.4比x的3倍少5.6,求x。
五、列方程解应用题。
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能运完?
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
6.用一部收割机收大豆,5天可以收割20.8公顷,照这样计算,7天可以收割多少公顷?60.4公顷大豆需要多少天才能收完
7、服装厂做一件男上衣用2.5米布料,现在有42米布料,可以做多少件这样的男上衣?
8、每一个油桶最多装4.5千克油,购买62千克,至少要准备多少只这样的油桶?
9、某工厂五月份用煤125吨,是四月份用煤量的2.5倍,四月份和五月份共用煤多少吨?
10、15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?
11、明明买了6本练习本,兰兰买了3本同样的练习本,明明比兰兰多花1.35元。
(1)每本练习本多少元?
(2)明明和兰兰买练习本共花了多少钱?
五年级数学下册知识点:图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:
①对称点到对称轴的距离相等;
②对称点的连线与对称轴垂直;
③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:
①旋转中心;
②旋转方向;
③旋转角度。
旋转只改变物体的位置,不改变物体的形状、大小。
小学五年级数学怎么提升
1、上课时专心一致
上课时要全心投入课堂活动,这项要求是老生常谈,却是学好数学最简单的途径。孩子有时会自恃数学能力很好,或许是在补习班已学过相关的课程内容,或许是挑战权威,认为老师不够专业,解题能力不比自己厉害,也或者受到其他同学的干扰或自己主动与同学交谈,以致未跟上课堂的学习,更忽视了老师的讲解,这种行为实在是不太聪明。因为上课不专心通常会遭到老师的指正,若再答不出老师问的问题,可是大大的失了面子;若是因不专心而漏失应学而未学的重点,可就连里子也失去了。
2、下课后认真习写题目并检视解题方法
五年级的数学题目不但题目难度提升,计算亦较复杂,计算能力不佳的孩子,会发现自己常常计算错误,在教学经验中还常发现孩子连九九乘法都背错,例如:8×4=36等。
要提高计算的准确度及速度,适度的练习是必要的,所以孩子应每日准时完成功课,老师通常会考量孩子们的需求,分派数学功课让孩子回家写,孩子应积极完成,并建议习写完后,自行检视自己的解题方式是否又快又好?若不然,则尝试其他的解题方式。如此一来,不仅可透过写作业,加强解题的熟练度,更可透过多一次的尝试,练习不同的解题方式,活化自己的思考。
3、遇到问题勇于发问
五年级孩子常因好面子或怕自曝其短,而不愿主动询问师长,不耻下问是学习知识的方式之一,更何况是不耻“上”问;请孩子勇于发问,课堂上遇到不懂之处则问;习写作业时,不懂则问;遇到生活中的数学问题,不懂则问;问师长、问爸妈、问同学,多询问可触发思考,有时在问答的过程中,灵机一动,困难的数学问题一下子就迎刃而解了,何乐而不为?
4、多涉猎有趣的数学问题
数学学习不应局限于教科书中,在生活中,可以尽量增加孩子接触数学问题的机会,有许多儿童书籍、儿童杂志或数学网站中呈现了经典又有趣的数学问题,例如:河内塔问题、渡河问题等,不仅可以让孩子多方尝试不同的数学题目,从解题中得到乐趣,而且独乐乐不如众乐乐,可将解题做为亲子之间共同的任务,让解题也变成家庭乐趣来源之一!
篇2:新版五年级数学知识点
分数的加法和减法
重点知识
同分母分数加、减法
1.分数加法的意义:和整数加法的意义相同,就是把两个数合并成一个数的运算。
2.分数减法的意义:与整数减法的意义相同,已知两个数的和与其中的一个加数,求另一个加数的运算。
3.分数加、减法的计算方法:分母不变,分子相加减。
4.同分母分数连加的计算方法:从左到右依次计算,也可以直接把加数的分子连加起来,分母不变。
5.同分母分数连减的计算方法:从左到右依次计算,也可以直接用被减数的分子连续减去两个减数的分子,分母不变。
异分母分数加、减法 异分母分数加、减法的计算方法:一般先通分,化成同分母的分数,然后按照同分母分数加、减法的方法计算。
分数加减混合运算 1.分数加减混合运算的顺序:与整数加减混合运算的顺序相同。没有括号的,按照从左到右的顺序进行计算;有括号的,先算括号里的,然后算括号外的
2.分数加法的简算:整数加法的运算定律在分数加法中同样适用。
统计
重点知识
统计
1.众数的意义:在一组数据中,出现次数最多的数,是这组数据的众数。
2.众数的特征:能够反映一组数据的集中情况。
3.复式折线统计图:在计量过程中存在两组数据,而又需要在一个统计图中表示这两组数据时,就要用两种不同形式的折线来表示不同数量变化情况的折线统计图。
4. 复式折线统计图的特点:能表示两组数据数量的多少,数量的增减变化情况,还能比较两组数据的变化趋势。
5.复式折线统计图的制作:(1)根据两组数据量多少和图纸大小,画出两条相互垂直的射线;(2)在水平射线上确定好各点的距离,分配各点的位置;(3)在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示的数量;(4)用不同的图例表示两组不同的数据;(5)按照数据大小描出各点,再用线段顺次连接;(6)标出题目,注明单位、日期。
数学广角
重点知识 找次品的方法:把待测物体分成3份,要分得尽量平均,不能够平均分的,也应该使多的一份与少的一份只相差1.
篇3:五年级数学知识点
第一单元 小数乘法
1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
(1)四舍五入法;(2)进一法;(3)去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元 小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
12、除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
13、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32。
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第三单元 观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元 简易方程
16、在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a•a或a² ,a²读作a的平方。2a表示a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数
一个加数=和-两一个加数
减法:差=被减数-减数
被减数=差+减数
减数=被减数-差
乘法:积=因数×因数
一个因数=积÷另一个因数
除法:商=被除数÷除数
被除数=商×除数
除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的检验过程:
方程左边=……
23、方程的解是一个数;
=……解方程是一个计算过程。
=方程右边
所以,X=…是方程的解。
第五单元 多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】
字母公式:C=(a+b)×2
面积=长×宽
字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长
字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转
27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形,知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元 统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元 数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证号码:18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
文档为doc格式