欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

静电场的描绘实验报告

时间:2023-11-10 07:42:32 其他范文 收藏本文 下载本文

下面是小编为大家整理的静电场的描绘实验报告,本文共3篇,如果喜欢可以分享给身边的朋友喔!

静电场的描绘实验报告

篇1:静电场描绘实验报告

【实验目的】

1.学习用模拟法测绘静电场的原理和方法。

2.加深对电场强度和电位要领的理解。

3.用作图法处理数据。

【实验仪器】

静电场描绘仪、静电场描绘仪信号源、导线、数字电压表、电极、同步探针、坐标纸等。

【实验原理】

在一些科学研究和生产实践中,往往需要了解带电体周围静电场的分布情况。一般来说带电体的形状比较复杂,很难用理论方法进行计算。用实验手段直接研究或测绘静电场通常也很困难。因为仪表(或其探测头)放入静电场,总要使被测场原有分布状态发生畸变;除静电式仪表之外的一般磁电式仪表是不能用于静电场的直接测量,因为静电场中不会有电流流过,对这些仪表不起作用。所以,人们常用“模拟法”间接测绘静电场分布。

1、模拟的理论依据

模拟法在科学实验中有极广泛的应用,其本质上是用一种易于实现、便于测量的物理状态或过程的研究,以代替不易实现、不便测量的状态或过程的研究。 为了克服直接测量静电场的困难,我们可以仿造一个与静电场分布完全一样的电流场,用容易直接测量的电流场模拟静电场。

静电场与稳恒电流场本是两种不同场,但是它们两者之间在一定条件下具有相似的空间分布,即两场遵守的规律在形式上相似。它们都可以引入电位U,而且电场强度E=-△U/△l;它们都遵守高斯定理:对静电场,电场强度在无源区域内满足以下积分关系

∮E·ds = 0 ∮E·d l = 0

对于稳恒电流场,电流密度矢量J在无源区域内也满足类似的积分关系

∮J·ds = 0 ∮J·d l = 0

由此可见,E和J在各自区域中满足同样的数学规律。若稳恒电流空间均匀充满了电导率为σ的不良导体,不良导体内的电场强度E′与电流密度矢量J之间遵循欧姆定律

J=σE′

因而,E和E′在各自的区域中也满足同样的数学规律。在相同边界条件下,由电动力学的理论可以严格证明:像这样具有相同边界条件的相同方程,其解也相同。因此,我们可以用稳恒电流场来模拟静电场。也就是说静电场的电力线和等势线与稳恒电流场的电流密度矢量和等位线具有相似线的分布,所以测定出稳恒电流场的电位分布也就求得了与它相似的静电场的电场分布。

2、模拟条件

模拟方法的使用有一定条件和范围,不能随意推广,否则将会得到荒谬的结论。用稳流电场模拟静电场的条件可归纳为几点:

(1)稳流场中电极形状应与被模拟的静电场的带电体几何形状相同。

(2)稳流场中的导电介质应是不良导体且电阻率分布均匀,并满足σ

才能保证电流场中的电极(良导体)的表面也近似是一个等位面。

(3)模拟所用电极系统与被模拟电极系统的边界条件相同。

3、同轴圆柱形电缆的静电场

利用稳恒电流的电场和相应的静电场其空间形成一致性,则只要保证电极形状一定,电极电位不变,空间介质均匀,在任何一个考察点,均应有U稳恒=U静电,或E稳恒电极≥σ导电质=E静电。下面

图 1

以同轴圆柱形电缆的“静电场”和相应的模拟场—“稳恒电流场”来讨论这种等效性。如图10(a)所示,在真空中有一半径a的长圆柱导体A和一个内径b的长圆筒导体B,它们同轴放置,分别带等量异号电荷。由高斯定理可知,在垂直于轴线上的任何一个截面S内,有均匀分布辐射状电力线,这是一个与坐标Z无关的二维场。在二维场中电场强度E正平行于xy平面,其等位面为一簇同轴圆柱面。因此,只需研究任一垂直横截面上的电场分布即可。

距轴心O半径为r处(图1(b))的各点电场强度为

E 20r

式中λ为A(或B)的电荷线密度。其电位为

UrUaEdrUaarr1n (1) 20a

Ua 201na若rb时,Ub = 0则有

代入式(1)得 UrUa

距中心r 处场强为 Er1n(b/r) (2) 1n(b/a)UadUr1 (3) dr1n(b/a)r

其中A、B间不是真空,而是充满一种均匀的不良导体,且A和B分别与电流的正负极相连,见图2同轴电缆模拟电极间形成径向电流,建立一个稳恒电流场Er。可以证明不良导体中的电场强度Er与原真空中的静电场Er是相同的。

4、同轴圆柱形电级间的电流场

取厚为t的圆柱形同轴不良导体片来研究,材料的电阻率为ρ则半径r的圆周到半径为(r+dr)的圆周之间的不良导体薄块的电阻为

dRdr (4) 2tr

半径r到b之间的圆柱片电阻为

Rrbbdrb1n (5) r2tr2tr

由此可知半径a到b之间圆柱片的电阻为

(a)

图2 同轴电缆模拟电极 Rabb1n (6) 2ta

若设U0 = 0,则径向电流为

IUa2tUa (7) Rab1n(b/a)

1n(b/r) (8) 1n(b/a)距中心r处的电位为 UrIRrbUa

则稳恒电流场Er′为

UadUr1Er (9) dr1n(b/a)r

可见式(2)与式(8)具有相同形式,说明稳恒电流场与静电场的电位分布函数完全相同。即柱面之间的电位Ur与1nr均为直线关系。并且(Ur/Ua)相对电位仅是坐标的函数,与电场电位的绝对值无关。显而易见,稳恒电流的电场E′与静电场E的分布也是相同的。因为EdUrdUrE (10) drdr

实际上,并不是每种带电体的静电场及模拟场的电位分布函数都能计算出来,只有在σ分布均匀几种形状对称规则的特殊带电体的场分布才能用理论严格计算。上面只是通过一个特例,证明了用稳恒电流场模拟静电场的可行性。

5、电场的测绘方法

由(10)式可知,场强E在数值上等于电位梯度,方向指向电位降落的方向。考虑到E是矢量,U是标量,从实验测量来讲,测量电位比测定场强容易实现,所以可先测绘等位线,然后根据电力线与等位线正交原理,画出电力线。这样就可由等位线的间距,电力线的疏密和指向,将抽象的电场形象地反映出来。

静电场描绘仪(包括水槽、双层固定支架、同步探针等),如图3所示,支架采用双层式结构,上层放记录纸,下层放带电极水槽。并将电极引线接出到外接线柱上,电极间有电导率远小于电极且各向均匀的导电介质水。接通交流电源就可进行实验。在导电玻璃和记录纸上方各有一探针,通过金属探针臂把两探针固定在同一手柄座上,两探针始终保持在同一铅垂线上。移动手柄座时,可保证两探针的运动轨迹是一样的。由水槽上方的穿梭针找到待测点后,按一下记录纸上方的探针,在记录纸上留下一个对应的标记。移动同步探针在水槽中找出若干电位相同的点,由此即可描绘出等位线。

使用方法:

(1)接线

静电场测试仪信号源的输出接线柱与电极接线柱相连,将探针架放好,并使探

针下探头置于放有电极的水槽中,开启开关,指示灯亮,有数字显示。电压表示值图3 K为电场中某点对负极的电压值。

(2)测量

调节静电场测试仪电源前面板上电压调节旋钮,将开关K打在电源电压上,电表显示所加的电压值,单位为伏特,一般调到10V,便于运算。然后将开关打在测量,横移动探针架,数显示表示值随着运动而变化,从而测出每条等位线上的几个电压相等的点。

(3)记录

在描绘架上铺平坐标纸,用螺钉夹住,当电压表显示读数认为需要记录时,轻轻按下记录纸上的探针并在坐标纸上,记录电压,为实验清楚快捷,每等位线不少于8个点,然后用光滑曲线连接即可。

【实验内容】

1、长直同轴圆柱面电极间的电位分布

(1)将电极水槽中加入适量的水,然后把它放在上层静电场描绘仪的下层;

(2)按图连接好电路,电压表及探针联合使用。

(3)把坐标纸放在静电场描绘仪的上层,并用四个螺钉夹好。

(4)调节静电场描绘仪的电源(大约10V)。

(5)移动探针座使探针在水中缓慢移动,用数字电压表测量电位差,找到等位点时按下坐标纸上的标记指针,做出标记。分别作出6V、5 V、4 V、3 V、2V的五条等位线,每条等位点不得少于8个。

(6)根据等位点描绘等位线,并标出每条等位线的电位。

(7)根据电力线和等位线垂直的提点,描绘被模拟空间中的电力线。

2、不规则电极间电位分布

(1)将水槽中的电极更换成两圆柱面型。

(2)重复内容一中的操作,分别作出8V、7 V、6V、5 V、4 V、3 V、2V的7条等位线。

【数据记录与处理】

1、同轴圆柱面型电极间电位分布

(1)根据等位点描绘被模拟空间中的等位线。

(2)根据电力线和等位线垂直的提点,画出被模拟空间中的电力线。 (3)测量每条电位线的半径计算对应的电位理论值,并与实验值比较计算相对误差,将数据填入以下表格。

表:Ua V a mm b mm

(1)根据等位点描绘被模拟空间中的等位线。

(2)根据电力线和等位线垂直的提点,画出被模拟空间中的电力线。 注意:将图线粘贴在实验报告上

【思考题】

(1)用模拟法测的电位分布是否与静电场的电位分布一样?

(2)如果实验时电源电压有效值不稳定,那么是否会改变电力线和等位线的分布?为什么?

(3)试从你测绘的等位线和电力线分布图,分析何处电场强度较强,何处电场强度较弱。

【注意事项】

(1)水槽由有机玻璃制成的,实验时要轻拿轻放,以免破碎。

(2)水层厚度要保持一致,即水槽要水平放置,以保证导电介质的均匀性,且水不要过多也不要过少,水面要到达探针但不要淹没电极。

(3)电极、探针要和导线接触良好。

(4)实验完毕后,要将电极从水槽中拿出来放在毛巾上,以免电极生锈。并将仪器摆放整齐。

篇2:静电场描绘实验报告

静电场描绘实验报告

【实验目的】

1.学习用模拟法测绘静电场的原理和方法。

2.加深对电场强度和电位要领的理解。

3.用作图法处理数据。

【实验仪器】

静电场描绘仪、静电场描绘仪信号源、导线、数字电压表、电极、同步探针、坐标纸等。

【实验原理】

在一些科学研究和生产实践中,往往需要了解带电体周围静电场的分布情况。一般来说带电体的形状比较复杂,很难用理论方法进行计算。用实验手段直接研究或测绘静电场通常也很困难。因为仪表(或其探测头)放入静电场,总要使被测场原有分布状态发生畸变;除静电式仪表之外的一般磁电式仪表是不能用于静电场的直接测量,因为静电场中不会有电流流过,对这些仪表不起作用。所以,人们常用“模拟法”间接测绘静电场分布。

1、模拟的理论依据

模拟法在科学实验中有极广泛的应用,其本质上是用一种易于实现、便于测量的物理状态或过程的研究,以代替不易实现、不便测量的状态或过程的研究。 为了克服直接测量静电场的困难,我们可以仿造一个与静电场分布完全一样的电流场,用容易直接测量的电流场模拟静电场。

静电场与稳恒电流场本是两种不同场,但是它们两者之间在一定条件下具有相似的空间分布,即两场遵守的规律在形式上相似。它们都可以引入电位U,而且电场强度E=-△U/△l;它们都遵守高斯定理:对静电场,电场强度在无源区域内满足以下积分关系

∮E·ds = 0 ∮E·d l = 0

对于稳恒电流场,电流密度矢量J在无源区域内也满足类似的积分关系

∮J·ds = 0 ∮J·d l = 0

由此可见,E和J在各自区域中满足同样的数学规律。若稳恒电流空间均匀充满了电导率为σ的不良导体,不良导体内的电场强度E′与电流密度矢量J之间遵循欧姆定律

J=σE′

因而,E和E′在各自的区域中也满足同样的数学规律。在相同边界条件下,由电动力学的理论可以严格证明:像这样具有相同边界条件的相同方程,其解也相同。因此,我们可以用稳恒电流场来模拟静电场。也就是说静电场的电力线和等势线与稳恒电流场的电流密度矢量和等位线具有相似线的分布,所以测定出稳恒电流场的电位分布也就求得了与它相似的静电场的电场分布。

2、模拟条件

模拟方法的使用有一定条件和范围,不能随意推广,否则将会得到荒谬的结论。用稳流电场模拟静电场的条件可归纳为几点:

(1)稳流场中电极形状应与被模拟的静电场的带电体几何形状相同。

(2)稳流场中的导电介质应是不良导体且电阻率分布均匀,并满足σ

才能保证电流场中的电极(良导体)的表面也近似是一个等位面。

(3)模拟所用电极系统与被模拟电极系统的边界条件相同。

3、同轴圆柱形电缆的静电场

利用稳恒电流的电场和相应的静电场其空间形成一致性,则只要保证电极形状一定,电极电位不变,空间介质均匀,在任何一个考察点,均应有U稳恒=U静电,或E稳恒电极≥σ导电质=E静电。下面

图 1

以同轴圆柱形电缆的“静电场”和相应的模拟场—“稳恒电流场”来讨论这种等效性。如图10(a)所示,在真空中有一半径a的长圆柱导体A和一个内径b的长圆筒导体B,它们同轴放置,分别带等量异号电荷。由高斯定理可知,在垂直于轴线上的任何一个截面S内,有均匀分布辐射状电力线,这是一个与坐标Z无关的`二维场。在二维场中电场强度E正平行于xy平面,其等位面为一簇同轴圆柱面。因此,只需研究任一垂直横截面上的电场分布即可。

距轴心O半径为r处(图1(b))的各点电场强度为

E 20r

式中λ为A(或B)的电荷线密度。其电位为

UrUaEdrUaarr1n (1) 20a

Ua 201na若rb时,Ub = 0则有

代入式(1)得 UrUa

距中心r 处场强为 Er1n(b/r) (2) 1n(b/a)UadUr1 (3) dr1n(b/a)r

其中A、B间不是真空,而是充满一种均匀的不良导体,且A和B分别与电流的正负极相连,见图2同轴电缆模拟电极间形成径向电流,建立一个稳恒电流场Er。可以证明不良导体中的电场强度Er与原真空中的静电场Er是相同的。

4、同轴圆柱形电级间的电流场

取厚为t的圆柱形同轴不良导体片来研究,材料的电阻率为ρ则半径r的圆周到半径为(r+dr)的圆周之间的不良导体薄块的电阻为

dRdr (4) 2tr

半径r到b之间的圆柱片电阻为

Rrbbdrb1n (5) r2tr2tr

由此可知半径a到b之间圆柱片的电阻为

(a)

图2 同轴电缆模拟电极 Rabb1n (6) 2ta

若设U0 = 0,则径向电流为

IUa2tUa (7) Rab1n(b/a)

1n(b/r) (8) 1n(b/a)距中心r处的电位为 UrIRrbUa

则稳恒电流场Er′为

UadUr1Er (9) dr1n(b/a)r

可见式(2)与式(8)具有相同形式,说明稳恒电流场与静电场的电位分布函数完全相同。即柱面之间的电位Ur与1nr均为直线关系。并且(Ur/Ua)相对电位仅是坐标的函数,与电场电位的绝对值无关。显而易见,稳恒电流的电场E′与静电场E的分布也是相同的。因为EdUrdUrE (10) drdr

实际上,并不是每种带电体的静电场及模拟场的电位分布函数都能计算出来,只有在σ分布均匀几种形状对称规则的特殊带电体的场分布才能用理论严格计算。上面只是通过一个特例,证明了用稳恒电流场模拟静电场的可行性。

5、电场的测绘方法

由(10)式可知,场强E在数值上等于电位梯度,方向指向电位降落的方向。考虑到E是矢量,U是标量,从实验测量来讲,测量电位比测定场强容易实现,所以可先测绘等位线,然后根据电力线与等位线正交原理,画出电力线。这样就可由等位线的间距,电力线的疏密和指向,将抽象的电场形象地反映出来。

静电场描绘仪(包括水槽、双层固定支架、同步探针等),如图3所示,支架采用双层式结构,上层放记录纸,下层放带电极水槽。并将电极引线接出到外接线柱上,电极间有电导率远小于电极且各向均匀的导电介质水。接通交流电源就可进行实验。在导电玻璃和记录纸上方各有一探针,通过金属探针臂把两探针固定在同一手柄座上,两探针始终保持在同一铅垂线上。移动手柄座时,可保证两探针的运动轨迹是一样的。由水槽上方的穿梭针找到待测点后,按一下记录纸上方的探针,在记录纸上留下一个对应的标记。移动同步探针在水槽中找出若干电位相同的点,由此即可描绘出等位线。

使用方法:

(1)接线

静电场测试仪信号源的输出接线柱与电极接线柱相连,将探针架放好,并使探

针下探头置于放有电极的水槽中,开启开关,指示灯亮,有数字显示。电压表示值图3 K为电场中某点对负极的电压值。

(2)测量

调节静电场测试仪电源前面板上电压调节旋钮,将开关K打在电源电压上,电表显示所加的电压值,单位为伏特,一般调到10V,便于运算。然后将开关打在测量,横移动探针架,数显示表示值随着运动而变化,从而测出每条等位线上的几个电压相等的点。

(3)记录

在描绘架上铺平坐标纸,用螺钉夹住,当电压表显示读数认为需要记录时,轻轻按下记录纸上的探针并在坐标纸上,记录电压,为实验清楚快捷,每等位线不少于8个点,然后用光滑曲线连接即可。

【实验内容】

1、长直同轴圆柱面电极间的电位分布

(1)将电极水槽中加入适量的水,然后把它放在上层静电场描绘仪的下层;

(2)按图连接好电路,电压表及探针联合使用。

(3)把坐标纸放在静电场描绘仪的上层,并用四个螺钉夹好。

(4)调节静电场描绘仪的电源(大约10V)。

(5)移动探针座使探针在水中缓慢移动,用数字电压表测量电位差,找到等位点时按下坐标纸上的标记指针,做出标记。分别作出6V、5 V、4 V、3 V、2V的五条等位线,每条等位点不得少于8个。

(6)根据等位点描绘等位线,并标出每条等位线的电位。

(7)根据电力线和等位线垂直的提点,描绘被模拟空间中的电力线。

2、不规则电极间电位分布

(1)将水槽中的电极更换成两圆柱面型。

(2)重复内容一中的操作,分别作出8V、7 V、6V、5 V、4 V、3 V、2V的7条等位线。

【数据记录与处理】

1、同轴圆柱面型电极间电位分布

(1)根据等位点描绘被模拟空间中的等位线。

(2)根据电力线和等位线垂直的提点,画出被模拟空间中的电力线。 (3)测量每条电位线的半径计算对应的电位理论值,并与实验值比较计算相对误差,将数据填入以下表格。

表:Ua V a mm b mm

(1)根据等位点描绘被模拟空间中的等位线。

(2)根据电力线和等位线垂直的提点,画出被模拟空间中的电力线。 注意:将图线粘贴在实验报告上

【思考题】

(1)用模拟法测的电位分布是否与静电场的电位分布一样?

(2)如果实验时电源电压有效值不稳定,那么是否会改变电力线和等位线的分布?为什么?

(3)试从你测绘的等位线和电力线分布图,分析何处电场强度较强,何处电场强度较弱。

【注意事项】

(1)水槽由有机玻璃制成的,实验时要轻拿轻放,以免破碎。

(2)水层厚度要保持一致,即水槽要水平放置,以保证导电介质的均匀性,且水不要过多也不要过少,水面要到达探针但不要淹没电极。

(3)电极、探针要和导线接触良好。

(4)实验完毕后,要将电极从水槽中拿出来放在毛巾上,以免电极生锈。并将仪器摆放整齐。

篇3:实验一静电场的描绘

实验性质:综合性实验

教学目的和要求:1、学习用模拟法研究静电场。

2、描绘等势线,绘画电场线。

一.检查学生的预习情况

检查学生预习报告:内容是否完整,表格是否正确。

二.实验仪器和用具:YJ―MJ―III模拟静电场描绘仪(包括电源、点电极、激光探针、连接线等)。

三.讲解实验原理:

1.静电场的基本性质

静电场是由静止电荷激发的电场。电场的基本特性是对静止或运动的电荷有作用力,由于电是一种力场,场具有“能”与“力”的性质,因此其他带电粒子在具有电场的空间中将具有“势能”并受到一定的“作用力”。也就是我们所说的电势和电场强度。为形象地描述场强的分布,在电场中人为地画出一些有方向的曲线,曲线上一点的切线方向表示该点场强的.方向,也是电势降低的方向。电场线的疏密程度与该处场强大小成正比。

2.静电场不能直接测量的原因

静电场可以用电场强度E或电势U的空间分布来描述,本实验讨论的静电场的描绘是探索它的电势U的空间分布,因为场强E是矢量,电势是标量,在测量上要简单一些。但是直接测量静电场中各点的电势也是很困难的,这是因为静电场中不会有电流,不能用直流电表直接测量,除非用静电式的仪表测量,但是用静电式的仪表测量就要用到金属做的探头,金属探头放到静电场中就会使原来的电场分布发生显著的变化,就算测量得到了数据也是不准确的。所以,通常用“模拟法”间接测量静电场的分布。

3.模拟法的原理

模拟法就是使用一种易于实现、便于测量的物理状态或过程模拟不易实现、不便测量的状态和过程,但是要求这两种状态或过程有一一对应的两组物理量,满足相同的物理或数学规律和边界条件。在相同的边界条件下,具有相似的解或表达式。模拟法在科学实验和其他领域中有广泛的应用。

4.什么是稳恒电流场?为什么可以用稳恒场来模拟静电场?

带电粒子的定向运动就叫做电流。描述电流场的物理量有场强和电流密度矢量,各点的电流密度都不随时间而变化的电流叫做稳恒电流。简单的说就是在稳恒电流的情况下,从闭合面流进去的电流强度必然等于从该闭合面流出去的电流强度。因此可以肯定,在稳恒电流场中,导体各处的电荷分布都不随时间而变。

稳恒电流场与静电场是两种不同性质的场,但是它们在一定条件下具有相似的空间分布,即两种场遵守规律在形式上相似,都可以引入电位U ,电场强度E = -?U,都遵守高斯定律和安培定律。

?静电场无源区域 稳恒电流场电流密度矢量J在无源区域

?????E?ds??0J?ds?0???S?S

???????E?d??0?J?d??0???L?L

和在各自区域中满足同样的数学规律。在相同边界条件下,具有相同的解析解。因此,我们可以用稳恒电流场来模拟静电场。

6.模拟满足的三个条件

模拟方法的使用有一定的条件和范围,不能随意推广,否则将会得到荒谬的结论。用稳恒电流场模拟静电场的条件可以归纳为下列三点:

(1)稳恒电流场中的电极形状应与被模拟的静电场中的带电体几何形状相同;

(2)稳恒电流场中的导电介质是不良导体且电导率分布均匀,并满足

(3)模拟所用电极系统与模拟电极系统的边界条件相同。

四.演示实验,讲解实验步骤:

1. 把仪器连接成电流场回路和测量回路,在有机玻璃平台上铺上描绘用坐标纸,并用夹子夹稳。

2. 激光探针放在电极上,调节“电压调节”电位器,使YJ―MJ―III模拟静电场描绘仪输出电压为10V。

3. 用激光探针在电极间探出电位相同的点且描下它们在电极坐标系的位置,分别绘出1V、3V、5V、7V的等位线。

4. 根据等位线和电力线互相垂直的关系画出各组电极的电场线。

5.得出结论。

强调实验注意事项:

(1) 同一条等势线上的点分布要均匀,

(2)等势线的疏密要表示出场强的大小

五.模拟的静电场图:

六.结论:

七.指导学生做实验

在此期间注意观察学生做实验并及时纠正学生错误的或不当的实验操作,运用启发式引导学生解决实验所遇到的疑问。

八.实验结果检查

作出来的等势线是不是一组同心圆?等势线分布的疏密情况怎么样?

九.作业:

1. 本次实验报告

2. 预习下次实验

十.课后总结与分析

学生对模拟法的物理思想和适用条件理解不深。

静电场描绘实验报告

实验报告

描绘近义词

大学化学实验报告

有机化学实验报告

初中化学实验报告

实验报告总结

示波器实验报告

基尔霍夫定律实验报告

心理学实验报告

《静电场的描绘实验报告(精选3篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档