以下是小编为大家整理的《自行车里的数学》优秀教学设计,本文共14篇,欢迎阅读与收藏。

篇1:自行车里的数学教学设计
综合应用自行车里的数学是在第三单元比例之后安排的。旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历提出问题分析问题建立数学模型求解解释与应用的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
自行车里的数学主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车能变化出多少种速度。
一、研究普通自行车的速度与内在结构的关系
这一部分由以下4个环节组成。
1.提出问题。教材通过呈现学生的熟悉两种不同型号自行车的图片,直接提问蹬一圈,能走多远,引出学生对自行车里的数学问题的研究。
2.分析问题。教材分两步呈现。首先,呈现了学生探讨如何解决问题的场面,提出了两种方案。一,通过直接测量来解决问题,但误差较大。二,通过车轮的周长乘上后齿轮转的圈数来计算蹬一圈车子走的距离。接下来,呈现了学生探讨如何解决第二个方案中的关键问题前齿轮转一圈,后齿轮转几圈的过程。学生想到如果只凭观察是数不清的,要通过更精确的方法找出答案。学生根据链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿,判断出:前齿轮转的圈数前齿轮的齿数=后齿轮转的圈数后齿轮的齿数,解决了这个关键问题,从而理清了解决问题的思路。
3.建立数学模型、收集数据并求解。首先,学生根据分析问题得到解题思路,建立数学模型:蹬一圈自行车走的距离=车轮的周长(前齿轮的齿数∶后齿轮的齿数)。接下来,学生分组收集所需要的数据,再代入数学模型,求出答案。
4.汇报交流。各小组展示并解释各自的研究过程和结果,再对各组的结果进行比较。
二、研究变速自行车能变化出多少种速度
在学生研究清楚了普通自行车行驶速度与其内部结构的关系之后,进一步让学生探讨变速自行车中的`数学问题──可以组合出多少种速度。教材先介绍了一种变速自行车的主要结构:有2个前齿轮,6个后齿轮。接着提出问题能变化出多少种速度,再呈现学生收集数据建立数学模型代入数据、求解解决问题的过程。最后通过一个问题蹬同样的圈数,哪种组合使自行车走的最远,引导学生对各种速度的产生进行深入的解释。教学建议
1.这个活动可用1课时进行。
2.正式活动前,教师应充分准备课上需要用到的数据和图片。如,不同品牌、不同型号的普通自行车和变速自行车的车轮直径、前、后齿轮的个数及齿数;普通自行车和变速自行车链条、前齿轮和后齿轮三者组合关系的图片。教师也可以要求学生做一些准备。如,请学生观察自行车,了解自行车的结构和行进的基本道理;收集一些自行车的相关数据等等。
3.正式教学时,应注意以下几点。
(1)在研究两个问题之前,教师可以先让学生说一说自己了解到的关于这两种自行车的知识,再提出问题。这样可以帮助学生更好地理解和分析所要解决的问题。如果学生理解有困难,尤其是变速自行车的变速原理,教师可借助课前准备好的图片进行说明。
(2)可以让学生以小组为单位,讨论、研究解决问题的方案,使学生充分经历分析问题建立数学模型求解的解决问题的基本过程。教材上呈现了学生在解决问题过程中可能出现的方案,教学时教师要注意本班同学的不同思路,并适当加以引导,帮助学生建立相应的数学模型。
(3)如果学生课前没有收集到解决问题所需要的数据,教师应及时为学生提供。
(4)在各小组成功地解决了每一个问题之后,教师应请每一个小组解释、说明本组研究的思路和结果。并组织全班同学对各组的研究方法和结果进行比较,以使学生获得运用数学解决实际问题的思考方法。
(5)除了教材上提出的这两个问题以外,教师还可以提出一些其他问题,引发学生的深入思考。如,让学生按由远到近(蹬同样的圈数,使车走的距离)的顺序,将各种组合排序;如何使这辆变速自行车能变化出12种不同的速度等等。教师也可以让学生自己提出一些自行车里的数学问题并解决它。这样不仅可以使学生了解数学与生活的广泛联系,还可以培养学生从不同的角度发现实际问题中所包含的数学信息的能力。
篇2:《自行车里的数学》教学设计
教学内容:
人教版教材六年级下册第67页及相关内容。
教学目标:
1.综合知识解决生活中常见的有关自行车里的数学问题。
2.经历“提出问题——分析问题——建立数学模型——求解——解释与运用”的问题解决的基本过程。
3.感受数学知识与日常生活的密切联系,体会学数学、用数学的乐趣,激发学习知识的热情。
教学重点:通过实践活动,研究普通自行车的速度与其内在结构的关系,研究变速自行车能变化出多少种速度的组合数
教学难点:研究普通自行车的前、后齿轮数与它们的转数的关系。
教学准备:多媒体课件
教学过程:
一、揭示课题
今天我们来探究自行车里的数学。
二、研究普通自行车的速度与内在结构的关系
提出问题
自行车蹬一圈,走多远?
分析问题
方法一:直接测量(误差大)
方法二:计算法
解决问题
自行车行进原理
探究车轮转动的圈数与什么有关?
探究前齿轮转一圈,后齿轮转几圈
合作探究
前齿轮转动一个齿,后齿轮转动几个齿?前齿轮走过2个齿呢?5个齿呢?
你发现了什么规律?
汇报交流
前后齿轮转动的什么数是相等的?
结论:前齿轮齿数×前齿轮转数=后齿轮齿数×后齿轮转数
后齿轮转数=前齿轮齿数/后齿轮齿数
建立数学模型
自行车蹬一圈走的距离=前齿轮齿数/后齿轮齿数×车轮周长
运用知识
自行车车轮直径是0.8米,前轮是48个齿,后轮是16个齿,蹬一圈自行车跑多少米?(
三、研究变速自行车能变出多少种速度
观察变速自行车
变速自行车一般有多个前齿轮多个后齿轮,例如这款变速自行车有2个前齿轮,6个后齿轮。
合作探究
出示书上表格,小组合作交流,并完成表格填写
思考:蹬同样的圈数,前、后齿数比是( )的组合使自行车走得最远,为
什么?
汇报交流
自行车蹬一圈走的距离= 齿数比 ×车轮的周长,当车轮周长一定时,前齿轮数齿数:后齿轮数齿数的比值最大时,自行车走的最远。
四、课堂小结师:同学们,通过今天的实践活动,你又有哪些新的收获呢?
篇3:《自行车里的数学》教学设计
教材分析:
综合应用《自行车里的数学》是小学数学六年级下下册中在第三单元“比例”之后安排的。旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
《自行车里的数学》主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
教学理念:
数学是对客观世界数量关系和空间关系的一种抽象。可以说生活中处处有数学。《数学课程标准》中指出:“数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设生动的数学情境……。” 在新一轮课程改革的实施过程中,“数学生活化”问题受到越来越多的教育工作者的关注和肯定。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学过程。”在生活中,数学无处不在,小到日常购物,大到航空航天工程等数据的处理。学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题的,必要的日常生活的工具。”引导学生把所学知识联系,运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力。
新课程标准数学教材突出了数学与实际生活的联系,许多教学内容都建立了形象的生活情境,以帮助学生更好地学习数学,应用数学。《自行车里的数学》就是让学生运用所学的圆、排列组合、比例等知识来解决生活中常见的有关自行车里的实际问题。在传授数学知识和训练数学能力的过程中,教师要自然而然地注入生活内容,引导学生学会运用所学知识为自己生活服务。这样的`设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密。让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。
教学目标:
1、让学生运用所学的圆、排列组合、比例等知识解决实际问题。
2、让让学生了解数学与生活的广泛联系,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
教学重难点:
1、普通自行车的速度与其内在结构关系的数学模型;
2、变速自行车的能变化出多少种速度。
教学过程
一、新课导入:
师:同学们,我们学数学用数学,生活中处处有数学,你看我们这自行车里就有许多数学知识。今天我们就一起研究自行车里的数学
二、新课教学:
1、了解自行车的结构和行进原野
(课前在讲台上摆放3辆自行车,一辆普通自行车,一辆变速自行车,一辆儿童自行车。)
师:同学们,谁知道自行车是怎么行进的?(教师边说边推动一辆自行车,请学生仔细观察、讨论、回答。)
生:靠车把推动的。
生:靠车轮流动的。
生:靠脚踏推动齿轮转动,齿轮带动车轮前进的。
师:齿轮是怎样带动车轮的?请同学们仔细观察。(教师转动脚踏,让学生仔细观察。)
通过学生观察回答,教师总结提出结论:
①脚趾蹬一圈,前齿轮转一圈,
②链条跟着前齿轮转动,后齿轮跟着链条转动,后轮跟着后齿轮转动。链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿。前齿轮转多少齿,后齿轮也转多少齿。
③后齿轮转一圈,车轮转一圈。
[教学时,密切联系学生的生活实际,从学生的生活经验和已有知识出发,引导学生开展观察、操作、推理等活动,获得基本的数学知识和技能。]
2、研究普通自行车的速度与内在结构的关系
①提出问题
师:我们刚才了解了自行车行进的原理,哪么谁知道脚踏噔一圈,自行车能走多远呢?
②分析问题
让学生以小组为单位,讨论研究解决问题的立案。
篇4:自行车里的数学 教案教学设计(人教新课标六年级下册)
教学内容:
人教版义务教育课程标准试验教科书第66至67页“自行车里的数学”
三维目标:
1.知识与技能: 理解并掌握自行车“蹬一圈走多远”的计算方法,探索变速自行车的速度与其内在结构的关系。
2.过程与方法:引领学生经历“提出问题--分析问题--建立数学模型--解释并应用”基本过程,获得应用数学解决实际问题的思考方法。
3.情感态度与价值观:在自主探究、合作交流的学习过程中获得良好的情感体验,增强学生学好数学、用好数学的意识。
设计理念:学习知识应是一种主动构建的过程,本节课拟通过解决生活中常见的与自行车有关的问题,使学生进一步了解数学与生活的广泛联系。经历“提出问题--分析问题--建立数学模型--求解--解释与应用”的解决问题的基本过程,使学生获得解决实际问题的思想方法,加深对所学知识的理解。
教学准备:自行车实物、指定部分学生实践测量蹬一圈行的路程
教学过程:
一.情景导入
师:咱们班的同学有多少人会骑自行车啊?(大部分学生举手)
师:你们知道自行车里也含有数学问题吗?老师准备了一俩自行车,谁能从中找出我们学过的知识?(三角形的知识、圆的知识等)
师:其实自行车里还蕴含着更为丰富的数学知识,今天我们就一起探究自行车里的数学。
板书课题 “自行车里的数学”
二.研究普通自行车的速度与内在结构的关系
师:大家知道自己的自行车蹬一圈能走多远吗?怎样解决这个问题呢?
【兴趣是最好的老师。开篇设疑,以疑激趣,学生学习欲望高涨,注意力高度集中。】
生:可以直接测量。
师:课前我请几位同学对同一辆自行车蹬一圈所行的路程进行了独立测量,请他们来汇报一下测量结果。
生甲:我蹬一圈行了6.5米。
生乙:我行了5.7米。
生丙:我行了8.8米。
生丁:我只行了5.4米。
生:
【指定部分学生课前测量,既能促使学生课前预习,又能节约课堂时间,提高课堂效率。】
师:这些同学的测量结果差距很大,说明测量这种方法不太准确,误差很大。有没有准确一些的方法呢?
生:计算。
师:怎么算?
生:看看蹬一圈,车轮转几圈,再用车轮转的圈数乘车轮的周长。
师:蹬一圈是谁转动了一圈?车轮转动的圈数实际是谁的圈数?
生分组操作,师注意引导,讨论交流后汇报。
(1)蹬一圈是指脚踏处的齿轮转一圈
(2)车轮转动的圈数实际是后齿轮转动的圈数
师:照这样分析,解决问题的关键是什么?
生:前齿轮转一圈,后齿轮转几圈.
【引导学生透过表面现象发现其作为数学问题的本质,进而展开有效的探究。】
师:怎样才能知道前齿轮转一圈时后齿轮转的圈数呢?
生:数一数。
师:我们就来数一数。
通过实践,学生发现数的圈数也不准确。
师:有没有更准确的方法呢?大家注意观察,这两个齿轮通过链条连接在一起。前齿轮转动一个齿,链条怎么动?后齿轮怎么动?
师慢慢转动前齿轮,生观察、讨论。
生:前齿轮转动一个齿,链条移动一小节,带动后齿轮转动一个齿。
师:同学们观察得很仔细。如果前齿轮转动2个齿,后齿轮怎么动?如果前齿轮转动5个齿呢?10个齿呢?同学们有没有发现什么规律?
生1:前后齿轮转动的齿数始终一样。
生2:我知道两个互相咬合的齿轮,它们的齿数和转的圈数成反比例关系。自行车的前后齿轮通过链条连接在一起,也相当于两个咬合的齿轮。所以,前齿轮的齿数乘圈数等于后齿轮的齿数乘圈数。
师:这位同学说的很好。根据“前齿轮的齿数×它的圈数=后齿轮的齿数×圈数”,前齿轮转一圈时,后齿轮转的圈数怎样用算式表示?
生说师板书:前齿轮的齿数∶后齿轮的齿数
归纳解题思路:自行车蹬一圈走的距离=前齿轮的齿数∶后齿轮的齿数×车轮的周长
【通过此轮探究活动,学生的观察能力、逻辑思维能力、归纳概括和语言表达能力都有所提高。】
分组搜集数据,代入数学模型,求出答案。
汇报交流。
三.巩固练习
1.蹬一圈能走多远
前齿轮齿数:26
后齿轮齿数:16
车轮直径:66厘米
2.小英家离学校680米,她骑车上学大约要蹬多少圈?
【练习设计有层次,在巩固基础知识时适度提高,满足绝大多数学生的学习需要。】
四.研究变速自行车的问题
1.出示变速自行车的主要结构图:有2个前齿轮,6个后齿轮。
分组探究(1)能变化出多少种速度?
(2)蹬同样的圈数,哪种组合使自行车走得最远?
师巡视并指导有困难的小组
2.汇报第一个问题:12种方案。
3.汇报第二个问题:当“前齿轮的齿数∶后齿轮的齿数”比值最大时,走得最远。
五.思维拓展
一位自行车运动员在比赛时要经过各种路段,你觉得上坡时应怎样搭配前后齿轮?
篇5:《自行车里的数学》教学反思
自行车里的数学是六年级下册安排的一节综合实践活动课。本节课的教学目标是通过活动,探索自行车里蕴含的数学问题,体会数学在生活中的运用。
这节课主要研究解决两个问题:普通自行车蹬一圈,能走多远和变速自行车能变出多少种速度。这两个问题,前一个是后一个学习的基础。于是,我把教学的重点放在研究解决前一个问题。我首先提出探究问题“研究自行车是如何前行的,齿轮的运转过程中有个什么规律呢?”、“自行车是不是脚蹬一圈车轮转一圈?”、“如何知道车轮转的圈数?”、“能不能计算出蹬一圈车轮走多远?”,让学生在教师的引导下,对课前收集的有关自行车前后齿轮的数据进行仔细的观察、分析、计算,得出结果。从而建立数学模型,这样既拓展了学生思维,同时达到提高学生能力的目的。
课后,让学生到停车棚观察变速自行车,利用班级学生骑来的变速自行车实际操作,进一步理解前后齿轮的关系。同时也间接地了解自行车的省力与速度的关系。把操作、探究和问题的解决有机地结合起来,把学生放在了主动的地位。
教学中发现,对自行车比较熟悉的学生,其中小部分同学虽然数学基础较差,但学习起来有充足的自信,非常积极地参与到讨论中来,理解问题比较容易,学习效果非常好。如在回答“要想蹬一圈就使自行车走得最远,骑车的人相对比较费力呢,还是比较轻松?”这个与变速自行车相关的题目的时候,他们很容易就想到“比较费力”这个答案,问及原因,他们说:“平时我们在骑变速自行车的时候常常变速,试试各种组合,通过这个我知道在上坡的时候要选择前齿轮最小,后齿轮最大才最省力。”我顺势引导学生进行讨论,最后一起得到“上坡时为了省力应选择前后齿轮齿数的比值小的齿轮组合,而顺风路段不需费力,只考虑蹬一圈,自行车走的路程越远越好,因此选择前后齿轮齿数的比值大的齿轮组合”这一个知识重点,并及时抓住这一个闪光点,充分肯定他们善于利用生活经验来解决问题的能力,从而逐步增强他们学好数学、会用数学的信心。
篇6:《自行车里的数学》教学反思
文昌市昌洒镇东群小学 周世友
今天,我进行六年级第十二册综合实践活动“自行车里的数学”这一教学内容的教学。上完这节课,我心中的那块石头终于掉下来了,心里感到很安慰。
“自行车里的数学”旨在让学生运用所学的圆、比例等知识解决实际问题。“自行车里的数学”主要研究解决两个问题:普通自行车蹬一圈,能走多远和变速自行车能变出多少种速度。这两个问题,前一个是后一个学习的基础。于是,我把教学的重点放在研究解决前一个问题。由于,学生对普通自行车比较熟悉,研究起来比较方便,但是要真正解决这个问题,难度还是挺大的。于是,在课前,我把学生分成4个小组,提出实践活动的任务:
任务一:普通自行车前齿轮和后齿轮各有多少个齿?
任务二:普通自行车前齿轮转一圈,后齿轮会转几圈? 任务三:实地测量蹬一圈,自行车能走多远?
任务四:测量出后车轮的直径是多少?
学生接到任务后,兴致勃勃地找来自行车,又是测量又是数又是记,忙得不亦乐乎。最后各小组出色完成了任务。
课堂上,我按“质疑——分析问题——建模——求解——应用”的思路进行教学。同学们的学习兴趣高昂,加上有了一定的感性经验,学习自然流畅多了,收到了良好
的学习效果。
总的来说,这节难上的综合实践课,能够上得得心应手,主要有以下几点:一是教师提出的课前准备活动任务具体且可操作;二是学生积极主动参与到实践活动中;三是老师的精心准备与认真设计教学思路。
篇7:《自行车里的数学》教学反思
《自行车里的数学》教学反思这是一节很新颖的课,在这节课的教学中,我以学生课前调查为铺垫,以学生的动手操作为主线、辅以学生自主学习、小组交流,让学生主动参与到经历提出问题---实验---寻找解决方案-----再次提出问题---实验-----建立数学模型---利用模型解决问题的全过程,从而感受数学知识的应用价值。
1、感知观察。得出结论。
首先从计算大小齿轮转动的圈数为切入点,从学生已有的反比例知识知识储备出发,为学习自行车里的数学,作好铺垫。然后再通过质疑引入例题教学,让学生在说一说、试一试的活动中分两个层次及由浅及深地全程参与到要是蹬一圈,能走多远?前齿轮转一圈,后齿轮转几圈的问题讨论全过程。让学生在教师的引导下,对课前收集的有关自行车前后齿轮的数据进行仔细的观察、分析、计算,得出结果。从而建立数学模型,这样既拓展了学生思维,同时达到提高学生能力的目的。
2、动手操作,培养能力。
课堂中我比较重视学生的实际操作,从复习引入开始就让学生通过看一看、数一数等数学活动充分激活知识储备。在教学中教师把变速自行车带到课堂中来,让学生实际操作自行车,进一步理解前后齿轮的关系。同时也间接地了解自行车的省力与速度的关系。把操作、探究和问题的解决有机地结合起来,把学生放在了主动的地位。
篇8:《自行车里的数学》教学反思
邹 霞
教材分析:
综合应用《自行车里的数学》是小学数学六年级下下册中在第三单元“比例”之后安排的。旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
《自行车里的数学》主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
教学理念:
数学是对客观世界数量关系和空间关系的一种抽象。可以说生活中处处有数学。《数学课程标准》中指出:“数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设生动的数学情境??。” 在新一轮课程改革的实施过程中,“数学生活化”问题受到越来越多的教育工作者的关注和肯定。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学过程。”在生活中,数学无处不在,小到日常购物,大到航空航天工程等数据的处理。学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题的,必要的日常生活的工具。”引导学生把所学知识联系,运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力。
新课程标准数学教材突出了数学与实际生活的联系,许多教学内容都建立了形象的生活情境,以帮助学生更好地学习数学,应用数学。《自行车里的数学》就是让学生运用所学的圆、排列组合、比例等知识来解决生活中常见的有关自行车里的实际问题。在传授数学知识和训练数学能力的过程中,教师要自然而然地注入生活内容,引导学生学会运用所学知识为自己生活服务。这样的设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密。让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。
教学目标:
1、让学生运用所学的圆、排列组合、比例等知识解决实际问题。
2、让让学生了解数学与生活的广泛联系,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
教学重难点:
1、普通自行车的速度与其内在结构关系的数学模型;
2、变速自行车的能变化出多少种速度。
教学过程
一、新课导入:
师:同学们,我们学数学用数学,生活中处处有数学,你看我们这自行车里就有许多数学知识。今天我们就一起研究自行车里的数学
二、新课教学:
1、了解自行车的结构和行进原野
(课前在讲台上摆放3辆自行车,一辆普通自行车,一辆变速自行车,一辆儿童自行车。) 师:同学们,谁知道自行车是怎么行进的?(教师边说边推动一辆自行车,请学生仔细观察、讨论、回答。)
生:靠车把推动的。
生:靠车轮流动的。
生:靠脚踏推动齿轮转动,齿轮带动车轮前进的。
师:齿轮是怎样带动车轮的?请同学们仔细观察。(教师转动脚踏,让学生仔细观察。) 通过学生观察回答,教师总结提出结论:
①脚趾蹬一圈,前齿轮转一圈,
②链条跟着前齿轮转动,后齿轮跟着链条转动,后轮跟着后齿轮转动。链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿。前齿轮转多少齿,后齿轮也转多少齿。
③后齿轮转一圈,车轮转一圈。
[教学时,密切联系学生的生活实际,从学生的生活经验和已有知识出发,引导学生开展观察、操作、推理等活动,获得基本的数学知识和技能。]
2、研究普通自行车的速度与内在结构的关系
①提出问题
师:我们刚才了解了自行车行进的原理,哪么谁知道脚踏噔一圈,自行车能走多远呢? ②分析问题
让学生以小组为单位,讨论研究解决问题的立案。
方案1:蹬一圈,量一下就知道了。
[通过直接测量来解决问题,但误差较大]
方案2:通过车轮的周长乘上后齿轮转的圈数来计算蹬一圈自行车走的距离。
师:怎样知道前齿轮转一圈,后齿轮转多少圈呢?怎么办?(学生再观察、讨论) ③建立数学模型
蹬一圈自行车走的距离=车轮的周长×(前齿轮的齿数∶后齿轮的齿数)
例题1、求解:
⑴如果前齿轮齿数为48,后齿轮齿数为19,车轮直径为71cm,哪么蹬一圈能走多少米? ⑵如果前齿轮齿数为26,后齿轮齿数为16,车轮直径为66cm,哪么蹬一圈能走多少米? ④汇报交流
师:蹬同样的圈数,哪辆自行车走的最远?对比⑴⑵你发现了什么规律?
总结:蹬一圈自行车走的距离与车轮直径、前、后齿轮的比值有关。
[这个问题让学生以小组为单位,讨论、研究解决问题的方案,使学生充分经历“分析问题—建立数学模型—求解”的解决问题的基本过程。教师在注意班上同学的不同思路,通过适当的引导,帮助学生建立相应的数学模型。而在数学教学中,引导学生积极思考,主动与同伴合作,积极与他人交流,也可提高学生运用数学知识解决实际问题的信心。]
3、研究变速自行车能变化出多少种速度。
师:通过我们刚才的观察、研究,我们了解了自行车蹬一圈所走的路程等于自行车车轮的周长×(前齿轮的齿数∶后齿轮的齿数)。车轮·大小不变时,前后齿轮的齿数的比值越大,蹬一圈自行车走距离就越远,速度也就越快。而为适应各种需要,人们还发明了变速自行车。
师:老师这辆变速自行车,有2个前齿轮和6个后齿轮,它能变化出多少种速度呢? 学生讨论交流,完成书本第65面的表格,并回报情况。
师:蹬同样的圈数,哪种组合使自行车走的最远?
结论:蹬同样的圈数,前后齿轮的齿数的比值越大,自行车走的最远。
[这是生活中常见问题,通过解决这类问题,可培养学生综合运用所学知识,解决实际问题的能力。在教学过程中,教师充分利用学生身边的生活现象引入数学知训,会使学生对数学有一种亲近感,感到数学与生活同在,并不神秘。而且,也会激起学生探求新知的强烈愿望。]
4、知识拓展:
让学生自己提出一些自行车里的数学问题并解决它。如,让学生按由远到近(蹬同样的圈数,使车走距离)的顺序,将各种组合排序;如何使这辆变速自行车能变化出12种不同的速度等等。
[这样不仅可以使学生了解数学与生活的广泛联系,还可以培养学生从不同的角度发现实际问题中所包含的数学信息的能力。]
三、归纳总结:
通过今天的学习,我们发现了自行车里运用到我们学过的哪些数学知识?(圆的周长、排列组合、比例等)你明白了什么道理?
[使学生初步认识数学与人类生活的密切联系及对人类历史发展的作用,是人们生活、劳动和学习不可缺少的工具,从而增进对数学的理解和学好数学的信心,达到用数学知识服务于生活的目的。]
教学反思
数学源于生活,寓于生活,用于生活。在小学数学教学中,根据小学生的认知特点,将数学知识与学生的生活实际紧密结合,那么,在他们的眼里,数学将是一门看得见、摸得着、用得上的学科,不再是枯燥乏味的数字游戏。这样,学生学起来自然感到亲切、真实,这也有利于培养学生用数学眼光来观察周围事物的兴趣、态度和意识。对于学生更好地认识数学,学好数学,培养能力,发展智力,促进综合素质的发展,具有重要的.意义。
数学是一门抽象性很强的学科,而小学生的思维是以形象性为主,因此为了使他们能比较轻松的掌握数学规律,在课堂教学中,我力求创设与教学内容有关的生活情景。把学生引入生活实际中来,让他们在实际操作中,通过观察和实践来理解数学概念,掌握数学方法,逐步培养学生抽象、概括、比较、分析和综合的能力。
篇9:《自行车里的数学》教学反思
《自行车里的数学》教学反思在本节课的设计中,我重视学生已有的生活经验,以学生的动手操作为主线,辅以学生自主探究、小组合作学习,让学生主动参与到“提出问题——实验——寻找解决方案——再次提出问题——实验——建立数学模型——利用模型解决问题”的过程中,从而感受数学知识的实用价值。具体体现在:
1.知识容量大,教学过程清晰。先以回忆与自行车有关的知识为切入点,从学生已有的知识储备和生活经验出发,为学习自行车里的数学做好铺垫。然后通过质疑引入例题组织教学,让学生在说一说、试一试的活动中分两个层次由浅及深地全程参与到“蹬一圈能走多远”、“前齿轮转一圈后齿轮转几圈”的问题讨论过程中。让学生在教师的引导下,通过仔细的观察、动手操作、讨论交流、归纳总结,建立数学模型并收集数据计算出结果。最后通过一组同步练习巩固新知,通过一组开放题的练习拓展学生思维,进一步提高学生能力。
2.给学生充分的时间动手操作探究。在教学中重视学生的实际操作,从复习引入开始就让学生通过看一看、数一数等数学活动充分激活知识储备。在例题学习中让学生自行车,吧操作、探究和解决问题有机的结合起来,把学生放在了主体地位。
3.教学设计梯度明显,将知识点分为两个层次组织教学,指导学生由基础开始探究,理顺了探究知识的方法,遵循了由浅入深、扶放结合的原则。
4.教学时,密切联系学生的生活实际,从学生的生活经验和已有知识出发,引导学生开展观察、操作、推理等活动,获得基本的数学知识和技能。
5.时间充分。课堂中我比较重视与生活实际结合,从复习引入开始就让学生通过看一看、数一数等数学活动充分激活知识储备。在例题学习中让学生观察简易的自行车模型课件的演示,把探究和问题的解决有机地结合起来,把学生放在了主动的地位。
篇10:《自行车里的数学》教学反思
在本节课的教学中,我重视学生已有的生活经验,以学生的动手操作为主线,辅以学生自主探究、小组合作学习,让学生主动参与到“提出问题——实验——寻找解决方案——再次提出问题——实验——建立数学模型——利用模型解决问题”的过程中,从而感受数学知识的实用价值。学生在学习中积极主动,充分发挥合作学习的优势,互相补充完善知识,学习效果较好。具体体现在:
1.虽然知识容量大,但教学过程清晰,重难点突出。先以回忆与自行车有关的知识为切入点,从学生已有的知识储备和生活经验出发,为学习自行车里的数学做好铺垫。然后通过质疑引入例题组织教学,让学生在说一说、试一试的活动中分两个层次由浅及深地全程参与到“蹬一圈能走多远”、“前齿轮转一圈后齿轮转几圈”的问题讨论过程中。让学生在教师的引导下,通过仔细的观察、动手操作、讨论交流、归纳总结,建立数学模型并收集数据计算出结果。最后通过一组同步练习巩固新知,通过一组开放题的练习拓展学生思维,进一步提高学生能力。
2.给学生充分的时间动手操作探究。在教学中重视学生的实际操作,从复习引入开始就让学生通过看一看、数一数等数学活动充分激活知识储备。在例题学习中让学生自行探究,把操作、探究和解决问题有机的结合起来,充分尊重学生的主体地位。
3.教学设计梯度明显,将知识点分为两个层次组织教学,指导学生由基础开始探究,理顺了探究知识的方法,遵循了由浅入深、扶放结合的原则,符合小学生的认知规律。
不足:受时间限制,变速自行车的知识探究没有充分展开,有些学生似懂非懂,没有真正理解。
篇11:小学自行车里的数学教学反思
小学自行车里的数学教学反思
这是一节很新颖的课,在这节课的教学中,我以学生课前调查为铺垫,以学生的动手操作为主线、辅以学生自主学习、小组交流,让学生主动参与到经历“提出问题---实验---寻找解决方案-----再次提出问题---实验-----建立数学模型---利用模型解决问题”的'全过程,从而感受数学知识的应用价值。
1、感知观察。得出结论。
首先从计算大小齿轮转动的圈数为切入点,从学生已有的反比例知识知识储备出发,为学习自行车里的数学,作好铺垫。然后再通过质疑引入例题教学,让学生在说一说、试一试的活动中分两个层次及由浅及深地全程参与到“要是蹬一圈,能走多远?”“前齿轮转一圈,后齿轮转几圈”的问题讨论全过程。让学生在教师的引导下,对课前收集的有关自行车前后齿轮的数据进行仔细的观察、分析、计算,得出结果。从而建立数学模型,这样既拓展了学生思维,同时达到提高学生能力的目的。
2、动手操作,培养能力。
课堂中我比较重视学生的实际操作,从复习引入开始就让学生通过看一看、数一数等数学活动充分激活知识储备。在教学中教师把变速自行车带到课堂中来,让学生实际操作自行车,进一步理解前后齿轮的关系。同时也间接地了解自行车的省力与速度的关系。把操作、探究和问题的解决有机地结合起来,把学生放在了主动的地位。
篇12:自行车里的数学教学反思 田爱萍
自行车里的数学是六年级下册安排的`一节综合实践活动课。本节课的教学目标是通过活动,探索自行车里蕴含的数学问题,体会数学在生活中的运用。
教学中发现,对自行车比较熟悉的学生,其中小部分同学虽然数学基础较差,但学习起来有充足的自信,非常积极地参与到讨论中来,理解问题比较容易,学习效果非常好。如在回答“要想蹬一圈就使自行车走得最远,骑车的人相对比较费力呢,还是比较轻松?”这个与变速自行车相关的题目的时候,他们很容易就想到“比较费力”这个答案,问及原因,他们说:“平时我们在骑变速自行车的时候常常变速,试试各种组合,通过这个我知道在上坡的时候要选择前齿轮最小,后齿轮最大才最省力。”我顺势引导学生进行讨论,最后一起得到“上坡时为了省力应选择前后齿轮齿数的比值小的齿轮组合,而顺风路段不需费力,只考虑蹬一圈,自行车走的路程越远越好,因此选择前后齿轮齿数的比值大的齿轮组合”这一个知识重点,并及时抓住这一个闪光点,充分肯定他们善于利用生活经验来解决问题的能力,从而逐步增强他们学好数学、会用数学的信心。
篇13:初一数学优秀教学设计
教材分析:
1、本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的`定理为今后有关几何问题的解决提供了有力的工具。
4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
学情分析:
1、授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
教学目标:
知识目标:等腰三角形的相关概念,两个定理的理解及应用。
技能目标:理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。
情感目标:体会数学的对称美,体验团队精神,培养合作精神。
教学中的重点、难点:
重点:
1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点:1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:
教学手段:
1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作:
1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
篇14:小学数学优秀教学设计
教学目标:
1.借助解决问题的过程让学生明白“在同级的混合运算中,应从左往右依次计算”的道理。
2.在经历探索和交流的过程中,理解并掌握同级运算的运算顺序,能正确运用运算顺序进行计算,并能正确进行脱式计算的书写。
3.培养学生养成先看运算顺序,再进行计算的良好习惯,同时提高学生的计算能力。
目标解析:
通过复习旧知,唤起学生已有的知识基础。让学生经历将实际问题抽象为数学问题的过程,在交流、计算中明白“在同级的混合运算中,应从左往右依次计算”的道理,同时掌握脱式计算的书写格式。
教学重点:理解并掌握同级运算的运算顺序,并能正确地进行脱式计算。
教学难点:能正确进行脱式计算,掌握脱式计算的书写格式。
教学准备:课件、直尺等。
教学过程:
一 、复习旧知,做好铺垫
课件出示下面题目:
16+9+8= 32-10-6= 25+20-10= 48-8+17=
先指定学生说说每道题应先算什么,再算什么,最后让学生动手计算。
【设计意图:设计这样的练习,主要是突出新旧知识间的联系,激活学生已有的知识经验,为下一环节学习同级的混合运算奠定基础。】
二、创设情境,探究新知
(一)情境中获取信息
1.课件出示第47页例1。
图书阅览室里上午有53人,中午走了24人,下午又来了38人,阅览室里下午有多少人?
2.从图中你获得了哪些和读书有关的信息?
3.要求“阅览室里下午有多少人”该怎样列算式?
4.学生独立列式并进行计算。
(二)交流中探究新知
1.反馈解法,初步感知
(1)可能会出现以下几种情况:
方法一:分步算式 方法二:综合算式
53-24=29(人) 53-24+38=67(人)
29+38=67(人)
(2)汇报交流:每种方法每步分别求的是什么?
2.明确概念,揭示课题
(1)什么样的算式是综合算式?它是按怎样的运算顺序进行计算的呢?
(2)给出规定:在没有括号的算式里,只有加法、减法运算时,要按从左往右的顺序计算。
(3)揭示课题。
3.运用规定,脱式计算
(1)课件出示:53-24+38,
(2)讲解脱式计算的书写格式,示范板书:
教师边讲解边说明:先在“53-24”的下面画上横线,为了清楚地看出运算的顺序,可以脱式进行计算,呈现出运算的顺序和每次计算的结果。在算式的下面写出第一步计算的结果(29),还没有参加计算的数照抄下来(+38),在算式的下面再写出第二步计算的结果(=67)。注意:等号上下要对齐。
(3)梳理提问:在书写时,我们应该注意什么?谁能完整地说说这道题是怎么算的啊?
4.体会同级运算的运算顺序
(1)课件出示:48-8+17,15÷3×5,指定学生说说每道综合算式的运算顺序。
(2)教师指出:加与减、乘与除分别是同一级运算。
(3)学生尝试计算,同时指定学生板演,教师巡视指导。
(4)归纳小结:在没有括号的算式里,只有加、减法或只有乘、除法,都要从左往右按顺序计算。
(三)反思中加深理解
1.比一比:今天的计算方法和以前的计算方法有什么不同之处?
2.练一练: 图书阅览室里上午有53人,中午走了24人,下午又来了38人。
(1)课件出示例1的条件,同时提出问题:这天阅览室共来了多少人?
(2)尝试练习后全班交流,重点使学生明确:“中午走了24人”是多余的条件。
3.探究例1的另一种解法。
(1)现在我们知道“这天阅览室共来了91人”和“中午走了24人”,还可以怎样求“阅览室里下午有多少人?”列综合算式:53+38-24。
(2)学生独立计算。
(3)体会加减法混合运算,交换运算顺序的合理性。
【设计意图:结合解决问题的情境,唤起学生对已有的加减混合运算的回忆,体会规定运算顺序的合理性、必要性,理解并掌握同级运算的运算顺序。注重脱式计算的书写格式的规范,为以后学习不同类型的脱式计算打下基础。同时通过自主探究、合作交流、比较练习等方式提高学生思维能力和计算能力。】
三、巩固练习、深化新知
(一)计算(教材第47页“做一做”)
23+6-11 2×8÷4 72÷8÷3
= □○□ = □○□ = □○□
= □ = □ = □
1.指定学生说一说每道综合算式的运算顺序。
2.学生计算每道算式,教师巡视,巡视时关注学生书写的规范性。
3.全班交流,强调脱式计算的书写格式。
(二)改错(教材第50页第3题)
34-17+3 3×8÷4 18÷3×3
=34-20 =24÷4 =18÷9
=14 =6 =2
1.先让学生独立完成,然后指定学生说明错误的理由。
2.口答:这些综合算式按什么顺序进行计算?
【设计意图:通过计算、改错的练习,让学生进一步巩固同级运算的运算顺序和脱式计算的书写格式,同时培养学生的计算能力、分析判断能力。】
四、课堂小结、畅谈收获
今天这节课你学会了什么?你有什么收获?
五、课堂作业
教材第50页的第1、2题。
文档为doc格式