以下是小编整理了正数与负数教案,本文共16篇,希望你喜欢,也可以帮助到您,欢迎分享!

篇1:正数与负数教案
人教版正数与负数教案
一、教学目标
知识与技能:使学生了解正数与负数是从实际需要中产生的;
过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力
二、教学重点和难点
负数的引入和意义
三、教学过程
创设情景,生活实例引入,观察猜想,合作探究
(一)、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、,我们用到整数1,2,
为了表示半小时、四元八角七分、,我们需用到分数1/2和小数4.87、
为了表示没有人、没有羊、我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.
(二)、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.
它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,高于和低于其意义是相反的.
又如,某仓库昨天运进货物 吨,今天运出货物 吨,运进和运出,其意义是相反的`.
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量筒明地表示出来了.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进纲物 吨,记作+ ;运出货物 吨,记作- .
教师讲解:什么叫做正数?什么叫做负数.
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示基准的数,零不是表示没有,它表示一个实际存在的数量.并指出,正数,负数的+-的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号
(三)、运用举例 变式练习
例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7, , ,-8,12, - ;
正数集合 负数集合
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合
课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ },
负数集合:{ }
四、课堂小结
由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上-号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃
五、作业布置
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度
2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?哪些是负数?
-16,0,004,+ ,- , ,25,8,-3,6,-4,9651,-0,1.
4.如果-50元表示支出50元,那么+200元表示什么?
5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位温0.1米记作什?
6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?
7.一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)记作8米表明什么?
篇2:数学教案-正数与负数
一、素质教育目标
(一)知识教学点
1.了解:正数与负数是实际需要的.
2.掌握:会判断一个数是正数还是负数.
3.应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量.
(二)能力训练点
通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.
(三)德育渗透点
1.从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.
2.通过正负数的学习,渗透对立、统一的辩证思想.
(四)美育渗透点
通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受.
二、学法引导
1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.
2.学生学法:研究实际问题→认识负数→负数在实际中的应用
三、重点、难点、疑点及解决办法
1.重点:会判断正数、负数,运用正负数表示具有相反意义的量.
2.难点:负数的引入.
3.疑点:负数概念的建立.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、自制活动胶片、中国地图.
六、师生互动活动设计
教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.
七、教学步骤
(一)创设情境,复习导入
师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?
学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……
师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.
【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.
提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?
学生活动:学生们思考,头脑中产生疑问.
【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求.
(二)探索新知,讲授新课
师:为了研究这个问题,我们看两个实例
(出示投影1)用复合胶片翻四次
在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)
学生活动:看图回答10℃,5℃,零下5℃,零下10℃.
[板书]
10 5 -5 -10
师:再看一个例子,中国地形图上,可以看到我国有一座世界最高峰―珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?
(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).
学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米.
【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位.
教师针对学生回答的情况给与指正.
师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、℃记作+5、+10、+1.6、+,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数.
师随着叙述给出板书
[板书]
正数:大于0的数
负数:正数前面加“-”号(小于0的数)
0:既不是正数也不是负数.
【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是正数与负数,还清楚地知识,正数与负数是相对的.
(三)尝试反馈,巩固练习
1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数?
2.出示1(投影显示)
例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“
-11,4.8,+7.3,0,-2.7,-,,,-8.12,
3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里.
正数集合 负数集合
4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________.
(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?
学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回答.
【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础.
师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?
学生活动:分组讨论,互相补充,两个学生回答.
教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:
(出示投影升)
1.填空
(1)-50表示支出50元,那么+100元表示_____________.
(2)正常水位为0 ,水位高于正常水位0.2 记作______________,低于正常水位0.3记作______________.
(3)乒乓球比标准重量重0.039记作_____________;比标准重量轻0.019记作_____________;标准重量记作______________.
2.一个学生演示,教师提出要求规定向前走为正.
(1)向前走2步记作_________________.
(2)向后走5步记作_________________.
(3)“记作6步”他应怎么走?“记作-4步”呢?
(4)原地不动记作_________________.
(出示投影5)
3.例题
一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动.
(1)如果向东运动4 记作4 ,向西运动5记作_______________.
(2)如果-7 表示物体向西运动7 ,那么6表明物体怎样运动?
学生活动:l题学生审题后回答.2题学生演示,其他学生观察举手回答.3题回答.
【教法说明】用正数、负数表示相反意义的量是本节的重点.首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地回答出来,这时学生有一种非常轻松的感觉,噢!原来正数、负数是用来表示这样的量的.紧接着,让一个学生向前后任意走,规定向前为正,让其他学生观察,第一次他向哪个方向走了?走了几步?记作什么?第二次呢?第三次呢?这时学生积极观察举手回答,然后让一个学生提出类似要求“记作+5应怎样走?”,这样在活跃、欢快的气氛中加深了对正数负数的理解.最后利用例2作为巩固练习就非常容易了,这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求.
师:通过今天这节课的学习,你能回答老师开始时提出的问题吗?―有没有比零小的数?(有,是负数)
1.正数和负数表示的是一对相反意义的量.
2.零既不是正数也不是负数.
八、随堂练习
1.判断题
(l)0是自然数,也是偶数( )
(2)0可以看成是正数,也可以看成是负数( )
(3)海拔-155米表示比海平面低155米( )
(4)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元( )
(5)如果向南走记为正,那么-10米表示向北走-10米( )
(6)温度0℃就是没有温度( )
2.将下列各数填入相应的.大括号里
-9, ,0, ,,+61, ,-10.8
正数集合
负数集合
3.用正数和负数表示下列各量
(1)零上24摄氏度表示为___________,零下3.5摄氏度表示为______________。
(2)足球比赛,赢2球可记作_________球,输一球应记作____________球.
九、布置作业
(一)必做题
1.下列各数中哪些是正数?哪些是负数?
-16,0.04,+ , , ,0,25.8,-3.6,-4,9651,-0.1
2.一物体可左右移动,设向右为正,
(1)向左移动12 应记作什么?
(2)“记作8 ”表明什么?
(二)选做题
1.一潜水艇所在高度为-50 ,一条鲨鱼在艇上方10 处,鲨鱼所在的高度是多少?
2.甲地海拔高度是30 ,乙地海拔高度是20 ,丙地海拔高度是-10 ,哪个地方最高,哪个地方最低?最高的地方比最低的地方高多少?
十、板书设计
随堂练习答案
1.√ × √ √ × ×
2.正数集合 负数集合
3.(1)+24℃,-3.5℃;(2)+2,-1
作业答案
(一)必作题
1.0.04, , ,25.8,9651是正数;
-16, ,-3.6,-4,-0.1是负数;
2.(1)向左移动12 记作 ;
(2)记作 表明物体向右移动 .
(二)选作题
1. .
2.甲地最高,丙地最低,最高的地方比最低的地方高 .
篇3:2.1正数与负数 课时2教案
2.1正数与负数 课时2教案
2.1正数与负数 课时2教案 教学目标 知识与能力: 理解有理数的意义. 能把给出的有理数按要求分类. 了解数0在有理数分类中的作用了 过程与方法: 培养学生树立对数分类讨论的观点和能正确地进行分类的能力. 情感态度与价值观: 通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育. 教学重点、难点 ? 重点:有理数包括哪些数. 难点:有理数的分类. 课堂导入 复习导入 1.把下列各数填入相应的大括号内: +6, ,3.8,0,-4,-6.2, ,-3.8, 正数集合 负数集合 2.填空: (1)若下降5 记作-5 ,那么上升8 记作__________________,不升不降记作_____________________. (2)如果规定+20表示收入20元,那么-10元表示______________. (3)如果由北向南走3千米用3千米表示,那么-5千米表示____________________ 在原地不动记作__________________. 师:在小学大家学过1,2,3,4……这是什么数呢? 生:自然数. 师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢? 生:负数. 师:具体叫什么负数呢? 师:今天我们要把大家学过的数分类命名,然后给一个统一的名称. 教学过程 一、探索新知,讲授新课 1.分类数的名称 1,2,3,4……叫做正整数; -1,-2,-3,-4……叫做负整数. 0叫做零. , , (即)……叫做正分数; , , (即)……叫做负分数; 正整数、负整数和零统称为整数,正分数和负分数统称为分数,整数和分数统称有理数。 二、提出问题:巩固概念 (1)0是整数吗?是正数吗?是有理数吗? (2)-5是整数吗?是负数吗?是有理数吗? (3)自然数是整数吗?是正数吗?是有理数吗? 注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数. 2.有理数的分类 为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种: (1)先把有理数按整和分来分类,再把每类按正与负来分类,,有理数分成整数,分数; 整数又分成正整数,负整数和0; 分数分成正分数和负分数。即: (2)先把有理数按正和负来分类,再把每类按整和分来分类,有理数分成正数,0,负数. 正数又分成正整数和正分数, 负数分成负整数和负分数。即: 尝试反馈,巩固练习下列有理数中:-7,10.1, ,89,0,-0.67,哪些是整数?哪些是分数?哪些是正数?哪些是负数? 学生思考,然后找同学逐一回答.其他同学准备补充或纠正. 3.数的集合 我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合.同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合. 例题:把下列各数填入相应集合的大括号内: -18, ,3.1416,0,,- ,-0.142857,95% 正数集合 { …} 负数集合 { …} 整数集合 { …} 有理数集合{ …} 三、变式训练,培养能力 (1)把有理数6.4,-9, ,+10, ,-0.021,-1, ,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合. 正整数集合{ …} 负整数集合{ …} 正分数集合{ …} 负分数集合{ …} (2)把下列有理数:-3,+8, ,+0.1,0, ,-10,5,-0.7填入相应的`集合: 整数集合{ …} 分数集合{ …} 正数集合{ …} 负数集合{ …} 四、归纳小结 师:今天我们一起学习了哪些内容? 由学生自己小结,然后教师再总结: 今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意0不是正数,但是整数. 课堂作业 (1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________. (2)把下列各数填入相应集合的持号内: -3,4,-0.5,0,8.6,-7 整数集合 { …} 分数集合 { …} 正有理数集合{ …} 负分数集合{ …} (3)选择题: -100不是( ) A. 有理数; B.自然数; C.整数; D.负有理数. 答案: 1、有理数 正整数 负整数 正分数 负分数 2、-3,4, 0,-7 ;-0.5 8.6 ; 4,8.6 ;-0.5 3、B 教学反思 本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分;经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,发展学生的能力,促进学生的发展,使每个学生在数学上都能得到不同的发展.篇4:正数与负数
一、素质教育目标
(一)知识教学点
1.了解:正数与负数是实际需要的.
2.掌握:会判断一个数是正数还是负数.
3.应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量.
(二)能力训练点
通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.
(三)德育渗透点
1.从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.
2.通过正负数的学习,渗透对立、统一的辩证思想.
(四)美育渗透点
通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受.
二、学法引导
1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.
2.学生学法:研究实际问题→认识负数→负数在实际中的应用
三、重点、难点、疑点及解决办法
1.重点:会判断正数、负数,运用正负数表示具有相反意义的量.
2.难点:负数的引入.
3.疑点:负数概念的建立.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、自制活动胶片、中国地图.
六、师生互动活动设计
教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.
七、教学步骤
(一)创设情境,复习导入
师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?
学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……
师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.
【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.
提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?
学生活动:学生们思考,头脑中产生疑问.
【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求.
(二)探索新知,讲授新课
师:为了研究这个问题,我们看两个实例
(出示投影1)用复合胶片翻四次
在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)
学生活动:看图回答10℃,5℃,零下5℃,零下10℃.
[板书]
10 5 -5 -10
师:再看一个例子,中国地形图上,可以看到我国有一座世界最高峰―珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?
(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).
学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米.
【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位.
教师针对学生回答的情况给与指正.
师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、℃记作+5、+10、+1.6、+,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数.
师随着叙述给出板书
[板书]
篇5:正数与负数
负数:正数前面加“-”号(小于0的数)
0:既不是正数也不是负数.
【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是正数与负数,还清楚地知识,正数与负数是相对的.
(三)尝试反馈,巩固练习
1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数?
2.出示1(投影显示)
例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“
-11,4.8,+7.3,0,-2.7,-,,,-8.12,
3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里.
正数集合 负数集合
4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________.
(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?
学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回答.
【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础.
师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?
学生活动:分组讨论,互相补充,两个学生回答.
教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:
(出示投影升)
1.填空
(1)-50表示支出50元,那么+100元表示_____________.
(2)正常水位为0 ,水位高于正常水位0.2 记作______________,低于正常水位0.3记作______________.
(3)乒乓球比标准重量重0.039记作_____________;比标准重量轻0.019记作_____________;标准重量记作______________.
2.一个学生演示,教师提出要求规定向前走为正.
(1)向前走2步记作_________________.
(2)向后走5步记作_________________.
(3)“记作6步”他应怎么走?“记作-4步”呢?
(4)原地不动记作_________________.
(出示投影5)
3.例题
一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动.
(1)如果向东运动4 记作4 ,向西运动5记作_______________.
(2)如果-7 表示物体向西运动7 ,那么6表明物体怎样运动?
学生活动:l题学生审题后回答.2题学生演示,其他学生观察举手回答.3题回答.
【教法说明】用正数、负数表示相反意义的量是本节的重点.首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地回答出来,这时学生有一种非常轻松的感觉,噢!原来正数、负数是用来表示这样的量的.紧接着,让一个学生向前后任意走,规定向前为正,让其他学生观察,第一次他向哪个方向走了?走了几步?记作什么?第二次呢?第三次呢?这时学生积极观察举手回答,然后让一个学生提出类似要求“记作+5应怎样走?”,这样在活跃、欢快的气氛中加深了对正数负数的理解.最后利用例2作为巩固练习就非常容易了,这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求.
师:通过今天这节课的学习,你能回答老师开始时提出的问题吗?―有没有比零小的数?(有,是负数)
1.正数和负数表示的是一对相反意义的量.
2.零既不是正数也不是负数.
八、随堂练习
1.判断题
(l)0是自然数,也是偶数( )
(2)0可以看成是正数,也可以看成是负数( )
(3)海拔-155米表示比海平面低155米( )
(4)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元( )
(5)如果向南走记为正,那么-10米表示向北走-10米( )
(6)温度0℃就是没有温度( )
2.将下列各数填入相应的大括号里
-9, ,0, ,,+61, ,-10.8
正数集合
负数集合
3.用正数和负数表示下列各量
(1)零上24摄氏度表示为___________,零下3.5摄氏度表示为______________。
(2)足球比赛,赢2球可记作_________球,输一球应记作____________球.
九、布置作业
(一)必做题
1.下列各数中哪些是正数?哪些是负数?
-16,0.04,+ , , ,0,25.8,-3.6,-4,9651,-0.1
2.一物体可左右移动,设向右为正,
(1)向左移动12 应记作什么?
(2)“记作8 ”表明什么?
(二)选做题
1.一潜水艇所在高度为-50 ,一条鲨鱼在艇上方10 处,鲨鱼所在的高度是多少?
2.甲地海拔高度是30 ,乙地海拔高度是20 ,丙地海拔高度是-10 ,哪个地方最高,哪个地方最低?最高的.地方比最低的地方高多少?
十、板书设计
随堂练习答案
1.√ × √ √ × ×
2.正数集合 负数集合
3.(1)+24℃,-3.5℃;(2)+2,-1
作业 答案
(一)必作题
1.0.04, , ,25.8,9651是正数;
-16, ,-3.6,-4,-0.1是负数;
2.(1)向左移动12 记作 ;
(2)记作 表明物体向右移动 .
(二)选作题
1. .
2.甲地最高,丙地最低,最高的地方比最低的地方高 .
篇6:正数与负数
负分数
自然数
2
-3.14
0
3.把下列各数分别填在相应的大括号里
1.8,-42,+0.01, ,0,-3.1415926, ,1
整数集合
分数集合
正数集合
负数集合
自然数集合
非负数集合
八、布置作业
(一)必做题:课本第50页3、4.
(二)思考题:把下列各数填在相应的集合中
3.14,-5,0, ,89,-2.67, , ,+1001
有理数集合
非负有理数集合
负有理数集合
九、板书设计
随堂练习答案
1.× × √ × ×
2.略
3.整数集体 ;分数集合 ;正数集合 ;负数集合 ;自然数集合 ;非负数集合 .
作业 答案
(一)必做题:课本第50页
篇7:正数和负数教案
一、教学目标
1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2、能区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
二、教学重点、难点
1、正确区分两种不同意义的量。
2、两种相反意义的量
三、教学过程
先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
材料:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是xxx,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%?
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?(学生活动:思考,交流。)
总结:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?
(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流,从而引入了负数:一种前面带有“-”的新数。问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?(这阶段主要是让学生学会正数和负数的表示.)
让学生带着这些问题看书自学,然后师生交流.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含
两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数
量,而且是同类的量.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?
请举例说明.
四、课堂练习:教科书第5页练习
五、课堂小结:
围绕下面两点,以师生共同交流的方式进行:
1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范
围就扩大了;
2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以
前学过的0以外的数前面加“-”。
六、作业
教科书第7页习题1.1第1,2,4,5(第3题作为下节课的思考题。)
篇8:正数和负数教案
正数与负数
【教学目标】
了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。
【内容简析】
本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节的`重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。能正确识别负数、用正负数表示具有相反意义的量是本节的难点。教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。教学中应多结合实例加深对负数的认识。
【流程设计】
一、情景创设
1.引导学生回忆小学学过的数,并回答小学学过的最小的数是谁?是否存在比零小的数?在小学遇到0-2、3-5这类题会算吗?
2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°c,10°c,零下10°c,零下30°c。
为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据8848.13,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢?
二、新知探索
1.教师由以上实例归纳出正数与负数的描述性概念。
像25,10,8848,大于0的数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。
给出板书:
正数——大于0的数
负数——正数前面加“-”号的数(小于0的数)
0——既不是正数,也不是负数
说明:①负数前面的“-”号的读法,“-5”应读作“负5”;
②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;
③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。
小资料:世界各国对负数的认识和接受也有一个过程。如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x= -2,他认为这个结果是荒唐的,他不懂得x= -2正是说明两年前父亲的岁数将是儿子的两倍。
三、范例共做
例1:所有正数组成正数集合,所有负数组成负数集合。把下列各数中的正数和负数分别填在表示正数与负数集合的圈里:
-11,4.8,+7.3,0,-2.7,-8.12
正数集合负数集合
例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:
正数集合{ }
负数集合{ }
注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。
例3:规定向前走为正,两个学生一组做游戏,如
甲:向前走2步乙:2
甲:向后走3步乙:-3
甲:-4乙:向后走4步
甲:0乙:原地不动
注:通过设计类似的游戏活动使学生加深对负数的认识。
四、巩固练习
1.-10表示支出10元,那么+50表示
如果零上5度记作5°c,那么零下2度记作
如果上升10m记作10m,那么-3m表示;
太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。
比海平面高50m的地方,它的高度记作海拨;
比海平面低30m的地方,它的高度记作海拨;
2.下面说法正确的是
a.正数都带有“+”号
b.不带“+”号的数都是负数
c.小学数学中学过的数都可以看作是正数
d.0既不是正数也不是负数
3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。
4.某物体向右运动为正,那么-2m表示,0表示。
5.一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。
五、小结提高
1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;
2.正数是比零大的数,正数前面加“-”号的数叫负数。所有负数小于零,零既不是正数也不是负数。
六、课后思考
1.-a一定是负数吗?
2.在月球表面,“白天”的温度可达127°c,太阳落下后的“月夜”气温竟下降到-183°c,请问在月球上温差是多少度?
篇9:正数和负数教案讲课稿
正数和负数教案讲课稿
教学目标
1、通过对零的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量;
2、进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;
3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的.兴趣。
重点深化对正负数概念的理解。
难点正确理解和表示指定方向变化的量,表示相反意义的量。
教学过程
一、创设情景
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分 别表示它们。
温度计上的-2,0,3分别表示是么意义?
二、自主探究
(1)、一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
(2)、下列国家的商品进出口总额比上一年的变化情况是: 美国减少6.4%,德国增长1.3%, 法国减少2.4%,英国减少3.5%, 意大利增长0.2%,中国增长7.5%.写出这些国家20商品进出口总额的增长率。
篇10:七年级正数和负数教案
教学目标
1.使学生理解的概念,并会判断一个给定的数是正数还是负数;
2. 会初步应用正负数表示具有相反意义的量;
3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4.培养学生逐步树立分类讨论的思想;
5. 通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、知识结构
1.正数、负数和零的概念
2.有理数的分类
三、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
四、概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:一定是负数吗?答案是不一定。因为字母 可以表示任意的数,若 表示正数时, 是负数;当 表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当表示负数时, 就不是负数了,它是一个正数,这些下节将进一步研究。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
五、有理数的分类
整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。
5)到目前为止,所学过的数(除外)都是有理数。
教学设计示例
(一)
一、素质教育目标
(一)知识教学点
1.了解:是实际需要的.
2.掌握:会判断一个数是正数还是负数.
3.应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量.
(二)能力训练点
通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.
(三)德育渗透点
1.从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.
2.通过正负数的学习,渗透对立、统一的辩证思想.
(四)美育渗透点
通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受.
二、学法引导
1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.
2.学生学法:研究实际问题→认识负数→负数在实际中的应用
三、重点、难点、疑点及解决办法
1.重点:会判断正数、负数,运用正负数表示具有相反意义的量.
2.难点:负数的引入.
3.疑点:负数概念的建立.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、自制活动胶片、中国地图.
六、师生互动活动设计
教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.
七、教学步骤
(一)创设情境,复习导入
师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?
学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……
师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.
【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.
提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?
学生活动:学生们思考,头脑中产生疑问.
【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求.
(二)探索新知,讲授新课
师:为了研究这个问题,我们看两个实例
(出示投影1)用复合胶片翻四次
在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)
学生活动:看图回答10℃,5℃,零下5℃,零下10℃.
[板书]
10 5 -5 -10
师:再看一个例子,中国地形图上,可以看到我国有一座世界峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?
(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).
学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米.
【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位.
教师针对学生回答的情况给与指正.
师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、℃记作+5、+10、+1.6、+,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数.
师随着叙述给出板书
[板书]
正数:大于0的数
负数:正数前面加“-”号(小于0的数)
0:既不是正数也不是负数.
【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是,还清楚地知识,是相对的.
(三)尝试反馈,巩固练习
1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数?
2.出示1(投影显示)
例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“
-11,4.8,+7.3,0,-2.7,-,,,-8.12,
3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里.
正数集合 负数集合
4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________.
(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?
学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回答.
【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础.
师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?
学生活动:分组讨论,互相补充,两个学生回答.
教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:
(出示投影升)
1.填空
(1)-50表示支出50元,那么+100元表示_____________.
(2)正常水位为0 ,水位高于正常水位0.2 记作______________,低于正常水位0.3记作______________.
(3)乒乓球比标准重量重0.039记作_____________;比标准重量轻0.019记作_____________;标准重量记作______________.
2.一个学生演示,教师提出要求规定向前走为正.
(1)向前走2步记作_________________.
(2)向后走5步记作_________________.
(3)“记作6步”他应怎么走?“记作-4步”呢?
(4)原地不动记作_________________.
(出示投影5)
3.例题
一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动.
(1)如果向东运动4 记作4 ,向西运动5记作_______________.
(2)如果-7 表示物体向西运动7 ,那么6表明物体怎样运动?
学生活动:l题学生审题后回答.2题学生演示,其他学生观察举手回答.3题回答.
【教法说明】用正数、负数表示相反意义的量是本节的重点.首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地回答出来,这时学生有一种非常轻松的感觉,噢!原来正数、负数是用来表示这样的量的.紧接着,让一个学生向前后任意走,规定向前为正,让其他学生观察,第一次他向哪个方向走了?走了几步?记作什么?第二次呢?第三次呢?这时学生积极观察举手回答,然后让一个学生提出类似要求“记作+5应怎样走?”,这样在活跃、欢快的气氛中加深了对正数负数的理解.最后利用例2作为巩固练习就非常容易了,这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求.
师:通过今天这节课的学习,你能回答老师开始时提出的问题吗?—有没有比零小的数?(有,是负数)
1.正数和负数表示的是一对相反意义的量.
2.零既不是正数也不是负数.
八、随堂练习
1.判断题
(l)0是自然数,也是偶数( )
(2)0可以看成是正数,也可以看成是负数( )
(3)海拔-155米表示比海平面低155米( )
(4)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元( )
(5)如果向南走记为正,那么-10米表示向北走-10米( )
(6)温度0℃就是没有温度( )
2.将下列各数填入相应的大括号里
-9,,0, ,,+61,,-10.8
篇11:正数和负数2教案
正数和负数(2)教案
教学目标 1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念; 2、利用正负数正确表示相反意义的量(规定了指定方向变化的量) 3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。 教学难点 深化对正负数概念的理解 知识重点 正确理解和表示向指定方向变化的量 教学过程(师生活动) 设计理念 知识回顾与 深化 回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢? 问题1:有没有一种既不是正数又不是负数的数呢? 学生思考并讨论. (数0既不是正数又不是负数,是正数和负数的分 界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考) 例如:在温度的表示中,零上温度和零下温度是两种不同意义的`量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是 零上7℃,最低温度是零下5℃时,就应该表示为+7℃ 和-5℃,这里+7℃和-5℃就分别称为正数和负数. 那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数・ 问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0既不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理数概念的建立都有帮助。 所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的量这个角度来说明。这个问题只要初步认识即可,不必深究。 分析问题 解决问题 问题3:教科书第6页例题 说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。 归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页). 类似的例子很多,如: 水位上升-3m,实际表示什么意思呢? 收人增加-10%,实际表示什么意思呢? 等等。 可视教学中的实际情况进行补充. 这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出。 巩固练习 教科书第6页练习 阅读思考 教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流 小结与作业 课堂小结 以问题的形式,要求学生思考交流: 1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化? 2、怎样用正负数表示具有相反意义的量? (用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.) 本课作业 1、必做题:教科书第7页习题1.1第3,6,7,8题 2、选做题:教师自行安排 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1、本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指 定方向变化的量。 2、“数0既不是正数,也不是负数,”(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。 3、教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。 4、本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣。篇12:正数与负数教学反思
(一)
《正数和负数》这一模块的主要知识点是认识下数和负数,知道在什么情况下用正数和负数来表示。
在对引入新知识时,介绍我国新疆的旅游胜地吐鲁番,让学生对我国的地理知识有所了解,增强孩子们的爱国主义情感。通过对吐鲁番的昼夜温差的介绍,引入对正负数的理解,学生学习起来会感到很轻松。
另外,通过对我国的南北地区的温差的了解,交流有关温度的知识,知道0度的含义以及零上和零下温度的区别,并掌握用正数和负数来表示零上和零下温度。再了解水的三气的变化使学生能更容易理解正数和负数的意义。
最后,让学生研究生活中经常用到的温度计,亲身体会正数和负数的意义。进而引申到生活中的其它方面,如:上、下车的人数;收入与支出的关系;向北向南的关系等。进一步认识正数与负数的意义。
篇13:正数与负数教学课件
正数与负数教学课件
教材简析:
《正数和负数》是北师大版数学教科书六年级上册第74、75页的内容,这一课时的教学内容是在四年级初步认识正、负数的基础上,进一步体会正数与负数表示的是具有相反意义的量,正负可以互相抵消,计算简单的正负数相隔部分,探索一些解决问题的策略。
设计思想:本课时“正数和负数”的认识是介于四年级教材中的初步认识和七年级教材中的系统认识之间,因此,教师一定要把握好“度”,充分调动学生积极性,激发学生的学习动机,及时捕捉学生的想法,有针对性地进行指导,在师生双方互动作用的历程中引导学生建构数学知识。
教学目标:
1、在熟悉的生活情境中,进一步体会正负数的意义。
2、会用负数表示一些日常生活中的问题,知道正、负可以互相抵消。
3、训练学生的语言表达能力,指导学生掌握一些解决问题的'策略。
教学重点:在具体情境中体会正、负数的含义,知道正负可以互相抵消。
教学难点:
1、理解负数的意义,知道正负可以互相抵消。
2、计算简单的正、负数相隔部分,探索一些解决问题的策略。
教具准备:课件
课前准备:收集生活中能说明正、负数具有相反意义关系的事例。
教学过程:
一、情境导入
1、课件显示气温计,找到0℃
师述:0℃是水形态的分界线。在0℃时,水是冰水混合物。0℃以上水是液态,0℃以下水是固态,也就是我们说的冰。那么,0℃以上的温度应该怎样读?0℃以下的温度应该怎样读?
(1)学生齐谈
(2)师问:零上的温度和零下的温度表示的是具有什么意义关系的量?生回答。
(3)师问:我们把零上的温度归为什么数?零下的温度归为什么数?
生回答,师板书
2、课件显示一组数据
-2 4 -7.08 +23 - 0 +1.5
(1)读出上面的数据
(2)分类:
A:4 、+23、+1.5(正数)
B:0
C:-2、-7.08、- (负数)
(3)强调:正号可以省略,但负号必须写上。
3、导入课题。
师:今天我们继续认识正、负数
二、探究新知
1、举例说明正数和负数的相反意义
(1)师示范:妈妈今天收到200元,记作+200元,她今天支出200元,又该怎么记作呢?(-200元)
(2)学生举例说明正、负数的相反意义。最后由记分规则引入教材。
2、正、负可以互相抵消。
A、课件显示例题1
(1)明确记分规则
(2)指导学生观察成绩表,解决问题
问题一:三局比赛后六(1)班的得分是多少?你是怎样知道的?六(2)班呢,你是怎样知道的?
问题二:如课六 (1)班要赢六(2)班,至少还需胜多少局?说明理由。
(3)尝试应用
教材第74页 “试一试”第(1)题
(1)导入
(2)理解表中数据的意义
(3)解决问题,并说明理由
问题一:先由学生独立思考,再交流,最后小结:正、负可以互相抵消。
问题二:先由学生说明自己的解题策略,方法可多样。
3、计算简单的正负数相隔部分。
(1)观察太空游戏时间表
提问:在这个数轴时间表上O点是什么时刻?
-3表示什么意思?太空人什么时候穿上太空衣?什么时候修正航线?什么时候做太空实验?
(2)说一说太空人的活动安排(同桌交流)
(3)太空人两餐之间相隔多长时间?
指名回答,交流解题策略。
(4)计算小明、小华相距多少米?
西 小华 小明 东
(单位:米)
-200 -100 0 +100 +200
相距?米
(5)讨论:在一些情况下,正、负可以互相抵消,但求小明、小华相距多少米,能抵消吗?为什么?
(6)结论:在表示数量的多少,正、负可以互相抵消,但求正、负数相隔的部分却不能抵消。
三、检测大过关
1、放映课件
(1)观察图片,思考问题。
(2)填空
A、湖底( )于水平面120m,说明湖有( )米深
B、山峰( )于水平面1600m,说明山有( )米高。
C、湖底与山顶相距( )米。
2、完成“练——练”第1题
(1)理解题意,说明自己解决问题的策略。
(2)小结:正、负可以互相抵消。
3、完成练一练第2题
(1)理解题意,师提问:怎样求温差?
(2)求北京的温差是多少?
讨论:用题目中介绍的方法你会算吗?我们该怎么算呢?
交流:北京的最高气温与最低气温相差的部分在气温计上分了几部分?这两部分啥在一起,就是北京的温度?
四、课堂总结
1、今天我们进一步认识了什么?体会到了什么?
2、你有什么收获?
教学反思:
灵动的心只有在自由的思维空间中才能诞生,教师在教学过程中必须着力营造一个无拘无束的思维空间,巧妙地引导学生,与学生一起分享着探索与应用的快乐,因此,我以认读气温计的温度为切入点,激活学生已有的知识,让全体学生轻松、愉悦地参与到课堂中来。教师有目标,有层次地创设一些有价值的数学问题,循序渐进地让每位学生有自由发现,自由发挥的空间,使数学课堂变得生机勃勃,充满智慧,不断演译精彩。
篇14:初中正数与负数说课稿
初中正数与负数说课稿
一、教材分析
1.教学目标、重点、难点.
教学目标:
(1)通过实例,感受引入负数的必要性.
(2)了解正数、负数的概念.
(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.
重点:理解相反意义的量,理解负数的意义.
难点:正确区分两种相反意义的量,并会用正负数表示.
2.例、习题的意图
通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.
例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数.
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解“相反意义”与“数量”的含义.进而利用课本P5“观察”让学生认识正、负数表示实际生活中的数量的意义和必要性.
补充例3是例2的延续,在不明确哪一种意义的量用正数表示的情况下,让学生表示相反意义的量.通过例3的学习,训练学生发现生活中的具有相反意义的数量,理解、体会正、负意义的相对性,并恰当的用正、负数表示.培养学生的发散思维.
补充例4则是对例3正、负数表示相反意义的量的加强,通过训练,让学生说出正、负数所表示的实际意义,进一步培养学生正、负数的应用能力,逐步提升正、负数相对性和相反性的理解.
习题的设置是针对例题掌握情况的检查.教科书p5练习(2)、(3)、(4)是针对例2而设置的.补充练习1检查学生对“相反意义”与“数量”的理解.补充练习2是对例3的掌握情况的检查.
3.认知难点与突破方法:
对于“相反意义”及“数量”含义的理解,以及区分两种不同意义的量是本课的难点.在教学中注意思维的层次,首先要让学生明确数量指的`是具体事物的多少.再分析是否是同一类事物,在是同类事物的基础上确定是否是相反关系.强化学生分析的层次性.在操作上,通过大量实际生活材料的分析和例2的学习让学生对“相反意义”及“数量”含义建立一定的感性认识,教师及时的给予适当的归纳,让学生建立初步的理性认识,最后通过练习1的判断对错进一步强化巩固对概念的理解.
用正、负数表示具有相反意义的过程中体现的正与负的相对性是另一个难点,通过例3的教学,鼓励学生发散思维,多角度认识具有相反意义的量,进而让学生认识正、负的相对性,通过例4的教学强化进一步强化对正、负的相对性的理解.
二、新课引入
通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数.强调数学的严密性.
教师举例:今天我们已经是七年级的学生了,我是你们的数学老师,下面我自我介绍一下,我的名字是***,身高1.71米,体重75.5千克,今年32岁,我们班有50名学生,其中男生23人,占全班总人数的46%,女生26人占总人数的53%.
问题1:老师在刚才的介绍中出现了几个数?分别是什么?试将这些数按以前学过的分类方法分类.学生思考、交流后教师总结:整数和分数两类.
问题2:生活中,仅有整数和分数就够用了吗?
引例:学生观察前面的几幅画中用到了什么数,让学生感受引入负数的必要性.讨论这些带有符号的数在实际中表示什么意义?
在学生交流的基础上教师归纳总结:以前学的数已经不够用了,在实际生活中我们需要引进一些新的数,只有这样才能更好的表示生活实际中数量关系.
三、例题讲解
教师引导学生通过观察上例中出现的这些数与以前学过的数的区别,进而归纳出正负数的概念.
补充例1:(1)下各数哪些是正数,哪些是负数.
-1,2.5,0,-3.14,,120,-1.732,.
正数前面的“+”号通常省略.了解正负数形式上的区别(符号不同),形成中的联系(在以前学习的非0整数和分数前加上符号)
问题3:在整数前加上“-”号后这个数还是整数吗?在分数前加上“-”号后这个数还是分数吗?使学生对正整数、正分数、负整数、负分数有初步的了解.
(2)指出(1)中的分数、整数.(为有理数的学习做铺垫)
问题4:为什么要引出负数?通常在日常生活中我们用正数和负数分别表示怎样的量?学生回答问题.(用正负数表示相反意义的数量)
补充例2:用正、负数表式下列各量.
(1)若把上升5m记作+5m,那么下降5m记作.
(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈表示为.
(3)向南走5000米记作-5000米,那么向北走8000米记作.
学会用正、负数表示具有相反意义的量,相反意义的量包含两个要素:一是意义相反.如向东的反向是向西,上升与下降,收入与支出.二是他们都是数量.
练习思考.书P5观察,在此基础上让学生指出生活中具有相反意义的例子.(检查学生对“相反意义的数量”的理解程度.
补充例3:.用适当的数值表示下列实际问题的数量.
(1)某地白天的温度是30℃,午夜的温度是零下10℃.
(2)某出租车在东西走向的大街上向东行驶3km,又向西行驶了5km.
(3)一商店在一小时内收入200元,又支出150元.
(4)甲公司本月的销售额增长13%,乙公司本月的销售额下降了2.9%
本例题是一发散性问题,没有规定哪种意义的量用正数表示,所以先要指明哪种意义的量用正数表示,其相反意义的量用负数表示.在解题中鼓励学生的不同思维.比如:若收入200元,记作:-200元,则支出150元记作+150元.反之,若收入200元,记作:+200元,则支出150元记作-150元.进一步加深对正、负数相反性及相对性的理解.同时要明确,通常情况下,零上、增长、收入用正数表示,零下、减少、支出用负数表示.
补充例4:解释下列各语句中表示各数量的数值的实际意义.
(1)七月份的物价比六月份增长了25%,八月份比七月份增长了-2.3%.
(2)经过绿化,我国沙漠化土地每年增长-4.5%.
(3)某仓库上午入库货物-3500t.
(4)缆车上升了-78米.
(5)小红这次考试分数比上次增加了+2分.
(6)盈利-300元.
分析:强调负数表示的是与其具有相反关系的量.(1)降低2.3%,(2)降低4.5%,(3)出库3500t,(4)下降78米,(5)增加了2分,(6)亏损300元.
四、课堂练习:
1.P5练习(2)、(3)、(4)
补充练习2:判断下列说法对错:
A.向南走-60米表示向西走60米.
B.节约50元与浪费-30元是互为相反意义的量()
C.“快”与“慢”表示具有相反意义的量.()
D.+15米就是表示向东走15米.()
E.黑色与白色表示具有相反意义的量.()
F.向北4.5米和向南8米是具有相反意义的量.()
补充练习3:用正负数表示下列具有相反意义的量.
(1)温度上升3℃和下降5℃.(2)盈利5万元和亏损8千元.
(3)运进50箱与运出100箱.(4)向东10米与向西6米.
五、课后练习
1.课本P7第1、2、3.
补充练习:
2.下面各数哪些是正数?哪些是负数?
–5,+1,0.07,-1.414,1.98%,0,-20%,-1000,11/9,0.001
3.如果一个物体沿东西方向运动,若规定向西为负,向东为正,
(1)向东运动5米和向西运动10米各怎样表示?
(2)-30米和50米各表示什么?(3)物体原地不动怎样表示?
4.说出下列每句话的意义.
(1)小明在围棋比赛中输了-5盘.(2)今晚的气温升高了-3℃.
(3)电梯下降了-4层.(4)李华体重增加了-2公斤
篇15:《正数与负数》教学反思
负数是小学生学习的又一种新的数。在教学时我从学生已有的生活经验着手,通过熟悉的生活情境让学生了解负数在生活中的应用,从而了解认识负数的必要性。
关注学生已有认知和已有生活经验,课前我布置学生自行去了解和收集有关温度和认识温度计,上课时,出示情境中三个城市的温度时,学生已会认读。有的.学生还能介绍温度计中华氏温度和摄氏温度的使用情况,在交流读数时互相补充,怎样正确快速读数等。通过这样教学,我觉得学生变得主动起来,我也真正尝到一个组织者的乐在其中的甜头。
练习设计联系学生生活。生活中关于正负数的例子很多,开课前举出的例子,这时候就被学生拿来用正负数表示,除此以外还有比如电梯的楼层、老师改卷的分数、球场的得分失分等等,看着学生们兴趣盎然,我布置了一项课外作业,找出生活中有关相反事物的数据,并用正数负数表示。
认识负数,让学生理解负数的意义时,我特别注重让学生在直观形象中理解认识。但是,负数在数学中的应用研究不够充分。
篇16:《正数与负数》教学反思
世界是由许多相互矛盾的事物组成的。要想认识这个世界,改造这个世界,就要从这些矛盾的事物入手。数学研究亦是如此。奇与偶,正与负,左与右,一与众,直与曲,动与静等,是一组组对立概念,其中蕴含了对立统一、联系发展这些最朴素的哲学思想,如何通过我们的数学课堂向学生渗透这些思想呢?
开始时,引出对立的一组矛盾,用一个数无法表达两种相反意义的量,怎么办?学生利用已有的生活经验解决矛盾,在数前用不同符号表达两种相反意义的量,使这对矛盾在符号化的思想下得到统一,让学生感受到符号的作用。
数学活动需要通过学生的操作实验、思考讨论、合作交流等一定的形式来完成,恰当的活动形式有利于数学活动的开展,有利于学生感悟数学思想与方法。但是,数学活动不是教学形式的“花样翻新”,更不 是“作秀”。课堂让学生通过对话、倾听、欣赏、互动和共享,实现了数学活动的有效性。
数学教学是数学活动的教学。数学活动必须关注全体学生,充分调动他们主动参与数学活动的积极性,使他们真切地体验、感悟和理解数学,引发数学思考,有效地建构数学知识。这样的活动才是数学课堂所需要的有效活动,才能全面地实现数学教学的目标。
实践让我深深体会到:教学的真境界应是“朴实无华、真实有效”的。它是真实、真效、真智慧的生动过程,是师生智慧共生的乐园!
文档为doc格式