欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

数学教案-一次方程组的应用

时间:2025-10-28 07:43:28 其他范文 收藏本文 下载本文

以下是小编为大家准备的数学教案-一次方程组的应用,本文共14篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

篇1:数学教案-一次方程组的应用 第三课时第三课时

数学教案-一次方程组的应用 第三课时(第三课时)

(第三课时)

一、素质教育目标

(一)知识教学点

1.会列出三元一次方程组解简单的应用题.

2.会用待定系数法解题.

(二)能力训练点

培养学生分析问题、解决问题的能力.

(三)德育渗透点

1.使学生进一步了解代数方法的优越性、实用性.

2.渗透特定系数法这一重要的思想方法.

3.了解我国古数学的光辉成就.

(四)美育渗透点

学习列三元一次方程组及用待定系数法解题,渗透解题的简捷性与奇异的数学美.

二、学法引导

1.教学方法:讲解法、谈话法、师生共同分析、发现问题.

2.学生学法:列三元一次方程组解应用题的关键在于迅速寻找出三个相等关系,故尖增强分析问题的能力.

三、重点·难点·疑点及解决办法

(一)重点

1.根据简单应用题的题意列出三元一次方程组.

2.用待定系数法解题的方法.

(二)难点

正确找出表示应用题全部含义的三个相等关系,并把它们表示成三个方程.

(三)疑点

如何正确地寻找相等关系.

(四)解决办法

反复读题、审题,用简洁的语言概括出相等关系.

四、课时安排

一课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.通过提问,复习列二元一次方程组解应用题的步骤.

2.通过例6的审题,让学生分析出如何求三种球的相等关系.教师规范板书过程以便学生的模仿.

3.通过反馈练习,强化对列三元一次方程组解应用题的训练,以便能掌握相关的一些变式训练.

七、教学步骤

(一)明确目标

本节课主要学习列三元一次方程组解应用题.

(二)整体感知

列三元一次方程组解应用题的关键在于寻找出正确的相等关系,因而应仔细审题,合理分析,以达迅速求解的目的.

(三)教学过程()

1.开门见山,导入新课

前面,我们学习了列二元一次方程组解应用题,哪位同学能简单说一下列二元一次方程组解应用题的步骤?

(设、找、列、解、答)

实际上,有的应用题中未知数的个数不只两个,这节课,我们来学习三元一次方程组的应用.

2.探索新知,讲授新课

例6  学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,求三种球各有多少?

题中有几个未知数?要找到几个相等关系?用简洁的语言概括相等关系.

学生活动:分析、思考、回答老师的问题;有三个未知数、三个相等关系.

相等关系:(1)篮球数=2×排球数-3

(2)足球数:排球数=2:3即:2×排球数=3×足球数

(3)三种球数的`和=总球数

学生活动:根据刚才的分析解答例1,一个学生板演.

解:设篮球有 个,排球有 个,足球有 个,根据题意

①代入③,得 ④

由④,得⑤

把⑤代入②,得

把 分别代入①、⑤,得

答:篮球有21个,排球有12个,足球有8个.

强调:(1)解方程组的过程可以写在练习本上.

(2)得到结果检验是否正确、合理.

【教法说明】例6采用与二元一次方程组类似的方法进行分析,学生接受不会感到困难.通过比较,可使学生进一步了解代数方法的优越性.

尝试反馈:P38 1、2.两个学生板演.

3.变式训练,培养能力

P41  17.在公式 中,当 时, ;当 时, ,求当 时, 的值.

【教法说明】教师首先介绍这个公式的实际意义,再启发学生根据已知条件先求待定系数 、,然后把 代入,求 .

(四)总结、扩展

列三元一次方程组解应用题的步骤、关键是什么?

八、布置作业

(一)必做题:P40~P41 14,16.

(二)选做题:P41 B组1,4.

(三)思考题:课本第42页“想一想”

(四)复习本章内容

参考答案

略.

九、板书设计

5.5  一次方程组的应用(三)

例5

变式

练习

十、背景知识与课外阅读

一个水池装有甲、乙进水管和丙出水管,若打开甲管4小时,乙管2小时和丙管2小时,则水池中余水5吨;若打开甲管2小时,乙管3小时,丙管1小时,则池中余水1吨,求打开甲管22小时,乙管5小时,丙管11小时,池中余水多少吨?

分析和解:设甲、乙、丙三管每小时的流水量分别为 吨,依题意得

通过观察分析方程组的特有形式,可用独特的整体相乘,整体相减法求解

①×7-②×3得

篇2:二元一次方程组的数学教案

二元一次方程组的数学教案

教学目标:

1. 认识二元一次方程和二元一次方程组.

2. 了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.

教学重点:

理解二元一次方程组的解的意义.

教学难点:

求二元一次方程的正整数解.

教学过程:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

思考:

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分.

这两个条件可以用方程

x+y=22

2x+y=40

表示.

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

把两个方程合在一起,写成

x+y=22

2x+y=40

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.

探究:

满足方程①,且符合问题的实际意义的'x、y的值有哪些?把它们填入表中.

x

y

上表中哪对x、y的值还满足方程②

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.

例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,试求a、b的取值范围.

(2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,试求a的值.

例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值

例3 已知下列三对值:

x=-6 x=10 x=10

y=-9 y=-6 y=-1

(1) 哪几对数值使方程 x-y=6的左、右两边的值相等?

(2) 哪几对数值是方程组 的解?

例4 求二元一次方程3x+2y=19的正整数解.

课堂练习:

教科书第102页练习

习题8.1 1、2题

作业:

教科书第102页3、4、5题

篇3:一次方程组的应用4

一次方程组的应用(4)

 教  师王命勇学  科数学年  段初一年  课  题一次方程组的应用(4)时  间  年  月  日    教学目标使学生会掌握待定系数法,并能运用解题  教学重点待定系数法  教学难点解方程组  教学步骤(体现教学内容、教学问题设计、时间安排、板书设计、作业布置和预习等)教学方法教学手段学法指导  一、复习1、什么是方程?2、什么是方程的解?二、新课学习(一)启发指导1、y=ax2+bx+c是不是方程,如是,它是怎样的方程?什么是未知数?什么是系数?2、对于这个方程,如果当x=-1时,y=3,它是什么意思?3、对于系数a、b、c能不能求出,若能求出要几个条件?(二)学生思考、讨论(三)小结、归纳学生的意见1、可以明确y=ax2+bx+c是一个二元二次方程,未知数是x、y;系数是a、b、c;2、当x=-1,y=3时,也就是x=-1y=3要满足这个等式(方程)即:  3=a-b+c3、从2式可以看出此时的系数a、b、c都是未知即2式是一个三元一次方程,我们可知三个未知数,需要一个三元一次方程组才可解出,即还需两组x与y的值;   教  学  步  骤教学方法教学手段4、现在再加上两条件:x=2,y=3;x=5,y=60,同学们思考下,现在能否求出a、b、c,如能怎么求?现在我们来看一下完整的解题过程在以往的作业中,我们做的都是解方程,即先给出一已知的方程(当然此时的'系数是已知的)去求未知数的值,而这道题目,却是相反过来,给出一方程系数是未知的,而是给出x、y的值,要我们通过方程的解(结果)来求系数,这种方法,我们称之为待定系数法,它在数学上是一个很重要也是很常用的一种解题方法,而且在今后大家在理、化的学习上也是很常用的。练习:P36   2小结:本节课我们学习了待定系数法,它的特征是对于一个方程,它的系数是未知的是待求的,而它的解却是已知的,此时,只要把已知的一组(个)值代回原等式,即可。作业:P39  17、18、19 教 学 随 笔  

篇4:应用二元一次方程组练习题

应用二元一次方程组练习题

1.以下方程中,是二元一次方程的是

A.8x-y=yB.xy=3

C.3x+2yD.y=3

(1)66x+17y=39672

5x+y=1200答案:x=48y=47

1.贰元与伍元纸币共25张,共80元,那么贰元与伍元各________张.

2.在代数式ax+by中,当x=5,y=2时,它的.值是7;当x=8,y=5时,它的值是4,则a=_______,b=_________.应用二元一次方程组—鸡兔同笼

1.已知甲数的60%加乙数的80%等于这两个数和的72%,若设甲数为x,乙数为y,则下列各方程中符合题意的是().

A.60%x+80%y=x+72%yB.60%x+80%y=60%x+y

C.60%x+80%y=72%(x+y)D.60%x+80%y=x+y

篇5:一次方程组的应用4

教  师王命勇学  科数学年  段初一年  课  题一次方程组的应用(4)时  间  年  月  日    教学目标 使学生会掌握待定系数法,并能运用解题  教学重点待定系数法  教学难点 解方程组  教学步骤 (体现教学内容、教学问题设计、时间安排、板书设计 、作业 布置和预习等)教学方法教学手段学法指导  一、复习1、什么是方程?2、什么是方程的解?二、新课学习(一)启发指导1、y=ax2+bx+c是不是方程,如是,它是怎样的方程?什么是未知数?什么是系数?2、对于这个方程,如果当x=-1时,y=3,它是什么意思?3、对于系数a、b、c能不能求出,若能求出要几个条件?(二)学生思考、讨论(三)小结、归纳学生的意见1、可以明确y=ax2+bx+c是一个二元二次方程,未知数是x、y;系数是a、b、c;2、当x=-1,y=3时,也就是x=-1y=3要满足这个等式(方程)即:  3=a-b+c3、从2式可以看出此时的系数a、b、c都是未知即2式是一个三元一次方程,我们可知三个未知数,需要一个三元一次方程组才可解出,即还需两组x与y的值;   教  学  步  骤教学方法教学手段4、现在再加上两条件:x=2,y=3;x=5,y=60,同学们思考下,现在能否求出a、b、c,如能怎么求?现在我们来看一下完整的解题过程在以往的作业 中,我们做的都是解方程,即先给出一已知的方程(当然此时的系数是已知的)去求未知数的值,而这道题目,却是相反过来,给出一方程系数是未知的',而是给出x、y的值,要我们通过方程的解(结果)来求系数,这种方法,我们称之为待定系数法,它在数学上是一个很重要也是很常用的一种解题方法,而且在今后大家在理、化的学习上也是很常用的。练习:P36   2小结:本节课我们学习了待定系数法,它的特征是对于一个方程,它的系数是未知的是待求的,而它的解却是已知的,此时,只要把已知的一组(个)值代回原等式,即可。作业 :P39  17、18、19 教 学 随 笔

篇6:二元一次方程组及应用的说课稿

一、说教学设计的理念

1、树立“以人为本,人人都学有价值的数学,不同的人在数学上得到不同的发展”的理念。

2、通过动手实验、合作交流培养学生自主探索,寻找结论的学习意识。

3、通过本节课教学,加强对学生思维方法的训练,增强小组合作意识

二、说教学内容的重组加工

1、学生分析

认知起点,学生已初步掌握了本章知识,他们已经能比较熟练得求出二元一次方程组的解,知道用二元一次方程组表示等量关系。七年级学生活泼好动,乐于展示、表现自我,求知欲较强,他们的逻辑思维以开始处于优势地位,

2、教材分析

本章知识是在学习了一元一次方程即应用后的又一种重要的用来表示数量关系的数学模型,用它解决某些实际问题比用一元一次方程更简捷,但在解法上他们又存在着相互转化的关系,在这节的教学中不仅要让学生充分认识到消元这种思想方法的重要性,更重要的是让他们进一步体会知识的形成过程,提高他们能准确选择模型解决问题的能力。

3、教学重点、难点分析

难点:已知一组解,如何构造二元一次方程组使解相同

重点:解二元一次方程组

4、教学目标

(1)知识与技能:

进一步体会列二元一次方程组解决实际问题的优越性,熟练用消元法解二元一次方程组

(2)过程与方法:

通过自主探索过程,培养对数学的感情,培养分析问题能力及从实际问题中抽象出数学模型的能力,学会与人合作,交流自己的方法意见。向终身学习型人才发展。

(3)情感与态度:

引导学生探索发现,培养学生主动探索,乐于合作交流的品质和素养,让学生先猜测再动手实践加以验证,懂得实践是检验真理的唯一标准的道理。鼓励学生有自己独特见解,培养学生的创新品质。

5、教学方法分析

本节课采用“探究、讨论、发现”的方法。因为它符合本节课教学内容的特点,从学生年龄来说讨论法虽然更适合于高年级的学生,但这是一节复习课,我认为复习应该是知识的整合和提高的过程,因此也可以。

三、说教学过程及反思

我的教学过程可分为三个环节一、探索只用二元一次方程也能解决实际问题,但答案不唯一。二、探索要使一的问题答案是唯一的,那么在刚才的基础上应该再添加一个,关于这两个未知数的关系的条件,然后才能列出二元一次方程组解出唯一答案。这个环节是难点。这样设计的目的是通过过程探索加深学生对二元一次方程组的解的理解,即它是两个方程的公共解,同时与列一元一次方程形成对比,即需要两个条件才能得出唯一答案。再者通过对一个问题实施两种列法,一种解法,也体现了二元与一元之间的.转化思想。第三个过程是解方程组训练消元法的应用。目的让学生进一步熟炼消元这种数学方法,同时使知识形成一个完整的体系。

我对自己的设计思路比较满意,因为我一直以为学数学就是领悟数学思想方法,训练思维,提高推理分析的能力。在平时的教学中我一直比较注重发散思维的训练,和逆向思维的训练,注重引导学生从多个角度两个方向分析问题。引导学生在课堂活动中感悟知识的生成、发展与变化过程。

我的课领导们已经听了过程就不再赘述。下面我按照教学环节把我这节课分析一下;

一采用刘三姐对歌引入,切近生活,激发兴趣,引起学生注意。提出问题后,学生受定向思维影响,认为答案是唯一的,这种情况下我用提问的方式激发学生思考,如我问一个男孩的困惑在那里,然后给与合理提示,使他们继续讨论得出答案。缺点:备学生不充分,以致引题较难,脱离育才学生实际,今后应注意开讲很重要但要注意所选问题的难易程度。

二突破难点仍然采用讨论法,期间部分学生思维受阻,我请一名同学解释了他的解题过程,又加以适当引导和鼓励,使讨论达到高潮。优点是能鼓励学生用实验的办法寻求解题思路,引导他们通过对比的方法发现二元一次方程组和一元一次方程之间的联系,在考虑到时间不够用的情况下,仍然坚持让学生继续展开讨论,上黑板展示自己的劳动成果,并且我认为,通过这节课的训练这些孩子肯定会喜欢上讨论交流这种形式的,通过这节课教学使他们已经完成了一个从羞于讨论到开始讨论的过程。我在巡视的过程中发现了这种微妙的变化我很高兴。缺点是:引导方向不够明确,浪费了学生的时间。

数学是一门精确的学问,不允许教师含糊其辞,不允许让学生猜你要表达什么意思,如:我在第一个问题解决了以后,问孩子们:你们能不能添上一个条件使分法是唯一的呢/实际上这个问法对这些孩子来说还是跳跃性太大,致使他们再次陷入迷惘,我想如果我这样处理是不是更好一些:老师在黑板上把同学们刚才回答的几组解列出来,然后让他们观察每一组解之间的关系,再添条件构造方程。给我的教训是向学生提问不是一件轻而易举的事情,要问得新奇,问得有趣,问得巧妙,问得具有启发性,问得难而有度,问得高而可攀,就非得是前做好充分准备,精心构思不可。学生的时间是宝贵的,因此我要学会提出一个真正称得上是问题的问题。今后备课我应该认真考虑到各个环节,做好各种准备工作。

三解方程组 因为时间不够用处理非常仓促我原本的意图是想通过对比让他们体会代入消元源自于实际问题。因为这章知识点是解在前用在后

而我复习的时候把它倒过来也是这个原因。我组织他们讨论解方程组时经常出现的哪些错误,这样能使学生在轻松的过程里接受这些错误从进而改正他们。另外这节课还存在两个问题:小组活动单一化小组,活动结束后应该让他们充分展示自己的劳动成果,增加成就感。小组合作意识不强列,回答问题不积极,原因之一是他们的表达能力根本跟不上,我在巡视时有许多孩子跟我说老师我不知道该怎么说。所以我认为这种自主探究,合作交流的教学形式应该继续搞下去,孩子的表达能力继续锻炼。

大家都知道凯慕柏莉奥立佛近日当选为—年美国年度教师这在美国是一项殊高的荣誉。他曾经说:“好老师不必是那些上出成功课或教出得分最高班的老师。好老师是那些有能力去反思一堂课理解什么是对了什么是错了寻找策略让下次更好的教师。

以上是我对我的授课过程的分析,有不当之处恳请各位领导批评指正。

篇7:一次方程组的应用 第三课时

一次方程组的应用 第三课时

(第三课时)

一、素质教育目标

(一)知识教学点

1.会列出三元一次方程组解简单的应用题.

2.会用待定系数法解题.

(二)能力训练点

培养学生分析问题、解决问题的能力.

(三)德育渗透点

1.使学生进一步了解代数方法的优越性、实用性.

2.渗透特定系数法这一重要的思想方法.

3.了解我国古数学的光辉成就.

(四)美育渗透点

学习列三元一次方程组及用待定系数法解题,渗透解题的简捷性与奇异的数学美.

二、学法引导

1.教学方法:讲解法、谈话法、师生共同分析、发现问题.

2.学生学法:列三元一次方程组解应用题的关键在于迅速寻找出三个相等关系,故尖增强分析问题的能力.

三、重点・难点・疑点及解决办法

(一)重点

1.根据简单应用题的题意列出三元一次方程组.

2.用待定系数法解题的方法.

(二)难点

正确找出表示应用题全部含义的三个相等关系,并把它们表示成三个方程.

(三)疑点

如何正确地寻找相等关系.

(四)解决办法

反复读题、审题,用简洁的语言概括出相等关系.

四、课时安排

一课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.通过提问,复习列二元一次方程组解应用题的步骤.

2.通过例6的审题,让学生分析出如何求三种球的相等关系.教师规范板书过程以便学生的模仿.

3.通过反馈练习,强化对列三元一次方程组解应用题的训练,以便能掌握相关的一些变式训练.

七、教学步骤

(一)明确目标

本节课主要学习列三元一次方程组解应用题.

(二)整体感知

列三元一次方程组解应用题的关键在于寻找出正确的相等关系,因而应仔细审题,合理分析,以达迅速求解的目的.

(三)教学过程

1.开门见山,导入新课

前面,我们学习了列二元一次方程组解应用题,哪位同学能简单说一下列二元一次方程组解应用题的步骤?

(设、找、列、解、答)

实际上,有的应用题中未知数的个数不只两个,这节课,我们来学习三元一次方程组的应用.

2.探索新知,讲授新课

例6  学校的篮球数比排球数的2倍少3个,足球数与排球数的'比是2:3,三种球共41个,求三种球各有多少?

题中有几个未知数?要找到几个相等关系?用简洁的语言概括相等关系.

学生活动:分析、思考、回答老师的问题;有三个未知数、三个相等关系.

相等关系:(1)篮球数=2×排球数-3

(2)足球数:排球数=2:3即:2×排球数=3×足球数

(3)三种球数的和=总球数

学生活动:根据刚才的分析解答例1,一个学生板演.

解:设篮球有 个,排球有 个,足球有 个,根据题意

①代入③,得 ④

由④,得⑤

把⑤代入②,得

把 分别代入①、⑤,得

答:篮球有21个,排球有12个,足球有8个.

强调:(1)解方程组的过程可以写在练习本上.

(2)得到结果检验是否正确、合理.

【教法说明】例6采用与二元一次方程组类似的方法进行分析,学生接受不会感到困难.通过比较,可使学生进一步了解代数方法的优越性.

尝试反馈:P38 1、2.两个学生板演.

3.变式训练,培养能力

P41  17.在公式 中,当 时, ;当 时, ,求当 时, 的值.

【教法说明】教师首先介绍这个公式的实际意义,再启发学生根据已知条件先求待定系数 、,然后把 代入,求 .

(四)总结、扩展

列三元一次方程组解应用题的步骤、关键是什么?

八、布置作业

(一)必做题:P40~P41 14,16.

(二)选做题:P41 B组1,4.

(三)思考题:课本第42页“想一想”

(四)复习本章内容

参考答案

略.

九、板书设计

5.5  一次方程组的应用(三)

例5

变式

练习

十、背景知识与课外阅读

一个水池装有甲、乙进水管和丙出水管,若打开甲管4小时,乙管2小时和丙管2小时,则水池中余水5吨;若打开甲管2小时,乙管3小时,丙管1小时,则池中余水1吨,求打开甲管22小时,乙管5小时,丙管11小时,池中余水多少吨?

分析和解:设甲、乙、丙三管每小时的流水量分别为 吨,依题意得

通过观察分析方程组的特有形式,可用独特的整体相乘,整体相减法求解

①×7-②×3得

篇8:二元一次方程组及其应用教学总结

在2月21日的xx区教学常规互检协调会上,作为课改核心校的我们,向其他兄弟学校的教务主任和分管教学的副校长提出:教学开放周举行校际间同课异构的设想,这一个设想得到了大家的一致赞同,并在xx中学的课堂开放周中开始实行,在这次活动中,我校两个xx市校际组成员安排到xx中学进行授课,我是其中之一。

在接到这个任务时,我就先向xx中学的同课异构教师——xx老师了解他们的教学进度及学生的学习情况,得知该校学生的整体数学基础比较低。针对这一种情况,我采取导学案的形式来进行总复习,围绕着二元一次方程组解法及其应用展开,首先,我通过二元一次方程、二元一次方程组、方程组的解、二元一次方程组的解题方法的类型、解应用题的步骤等概念入手,帮助学生回顾旧知识。然后,通过两道二元一次方程组的解法让学生进行练习,再来,利用方程组的同解原理,了解二元一次方程组解的意义,最后,我引出XX年中考的那道数学应用题,让学生及时与中考题目进行对接,提高学生的实际解题能力。

在上完课之后,我与xx中学的数学教研组一起进行教研交流,首先,xx中学的同行们非常赞同我的教学设计及教学思路,觉得这样的教学设计学生很容易掌握,思路很清晰。但是,在帮助学生回顾旧知识的时间花得太多,导致后面的综合题没办法展开,应该淡化概念的'教学,强调学生的实际应用能力,同时,也应该通过二元一次方程组的一题多解的形式让学生选择方程组两种解法来比较出方法的优劣,提高学生对于“代入消元法”和“加减消元法”的选择依据。

听了xx中学同行们的建议之后,我也自己反思了一下,觉得现在作为初三年的总复习,应该重视的是学生的理解能力和综合应用能力的提升,而不是纠结于概念的记忆,作为概念的东西只要让学生了解就可以了,重点应放在应用题的分析以及对于二元一次方程组与一次函数之间的关系上,提高学生的综合水平和应用能力。

篇9:数学教案-三元一次方程组的解法举例

教学建议

一、重点、难点分析

本节教学的重点是掌握三元一次方程组的解法,教学难点 是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.

1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.

2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.

3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.

4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.

5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.

二、知识结构

三、教法建议

1. 解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.

2. 消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.

在例2中,如果先确定消去 ,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去 .这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.

教学设计示例

一、素质教育目标

(一)知识教学点

1.知道什么是三元一次方程.

2.会解某个方程只有两元的简单的三元一次方程组.

3.掌握解三元一次方程组过程中化三元为二元或一元的思路.

(二)能力训练点

1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.

2.培养学生的计算能力、训练解题技巧.

(三)德育渗透点

渗透“消元”的思想,设法把未知数转化为已知.

(四)美育渗透点

通过本节课的学习,渗透方程恒等变形的数学美,以及方程组解的奇异美.

二、学法引导

1.教学方法:观察法、讨论法、练习法.

2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.

三、重点・难点・疑点及解决办法

(一)重点

使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.

(二)难点

针对方程组的特点,选择最好的解法.

(三)疑点

如何进行消元.

(四)解决办法

加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.

四、课时安排

一课时.

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

1.教师先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.

2.教师由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元,教师讲解、小结.

3.由学生尝试,解决例题.

4.学生练习,教师小结、讲评.

七、教学步骤

(一)明确目标

本节课将学习如何求三元一次方程组的解.

(二)整体感知

通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.

(三)教学过程

1.复习导入  、探索新知

(1)解二元一次方程组的基本方法有哪几种?(2)解二元一次方程组的基本思想是什么?

甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.

题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?

学生活动:回答问题、设未知数、列方程.

这个问题必须三个条件都满足,因此,我们把三个方程合在一起,写成下面的形式:

这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.

怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?

学生活动:思考、讨论后说出消元方案.

教师对学生的回答给予肯定或否定,纠正后说出消元方案:依照代入法,由较简单的方程②,可得 ④,进一步将④分别代入①和③中,就可消去 ,得到只含 、的二元一次方程组.

解:由②,得 ④

把④代入①,得 ⑤

把④代入③,得 ⑥

⑤与⑥组成方程组

解这个方程组得

把 代入④,得

注意:a.得二元一次方程组后,解二元一次方程的过程在练习本上完成.

b.得 , 后,求 ,要代入前面最简单的方程④.

c.检验.

这道题也可以用加减法解,②中不含 ,那么可以考虑将①与③结合消去,与②组成二元一次方程组.

学生活动:在练习本上用加减法解方程组.

【教法说明】通过一题多解,不仅能开阔学生的思维,培养学生的兴趣,而且,可以巩固解方程组时通过“消元”把未知转化为已知的基本思想.

2.学生尝试解决例题

例1  解方程组

学生活动:独立分析、思考,尝试解题,有的学生可能用代入法解,有的`学生可能用加减法解,选一个用加减法解的学生板演,然后,让用代入法的学生比较哪种方法简单.

解:②×3+③,得  ④

①与④组成方程组

解这个方程组,得

把 , 代入②,得

归纳:这个方程组的特点是方程①不含 ,而②、③中 的系数绝对值成整数倍关系,显然用加减法从②、③中消去 后,再与①组成只含 、的二元一次方程组的解法最为合理.而用代入法由①得到的式子含有分母,代入②、③较繁.

【教法说明】有了前例的基础,让学生独立尝试解题,可以培养他们分析问题、解决问题的能力;在解题后归纳题目的特点为,点明消元方法和消元对象,更有助于学生探索方法、掌握技巧.

3.尝试反馈,巩固知识

练习:P30 (1).

学生活动:独立完成练习后,同桌、前后桌之间按不同解法的同学交换,看哪种方法最简单.

4.变式训练要,培养能力

补例:解方程组

学生活动:独立完成.

【教法说明】此方程组中方程①、③中 、的系数完全相同,用③-①可直接得到 ,再把 代入②可求 ,代入①可求 .这道题直接化三元为一元,能使学生体会到解法技巧的重要性,觉得数学问题真是奥妙无穷!

(四)总结、扩展

1.解三元一次方程组的基本思想是什么?方法有哪些?

2.解题前要认真观察各方程的系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.

3.注意检验.

【教法说明】这样总结,既突出了本课重点,又突出了本节内容中例题、习题的特点―某个方程只含两元,使学生在以后解题时有很强的针对性.

八、布置作业

(一)必做题:P31 A组1.

(二)选做题:解方程组

(三)思考题:课本第32页“想一想”.

【教法说明】作业 (一)是为了巩固本节所学知识;作业 (二)有很强的技巧性,可培养学生兴趣;作业 (三)培养学生分析问题、解决问题的能力.

篇10:数学教案-用代入法解二元一次方程组

教学建议

一、重点、难点分析

本节的教学重点是使学生学会用代入法.教学难点 在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

二、知识结构

三、教法建议

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

一、素质教育目标

(一)知识教学点

1.掌握用代入法解二元一次方程组的步骤.

2.熟练运用代入法解简单的二元一次方程组.

(二)能力训练点

1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

2.训练学生的运算技巧,养成检验的习惯.

(三)德育渗透点

消元,化未知为已知的数学思想.

(四)美育渗透点

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

二、学法引导

1.教学方法:引导发现法、练习法,尝试指导法.

2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法.

三、重点、难点、疑点及解决办法

(-)重点

使学生会用代入法解二元一次方程组.

(二)难点

灵活运用代入法的技巧.

(三)疑点

如何“消元”,把“二元”转化为“一元”.

(四)解决办法

一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

七、教学步骤

(-)明确目标

本节课我们将学习用代入法求二元一次方程组的解.

(二)整体感知

从复习用一个未知量表达另一个未知量的方法,从而导入  运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

(三)教学步骤

1.创设情境,复习导入

(1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

(2)选择题:

二元一次方程组 的解是

A. B. C. D.

【教法说明】 第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入  新课的材料.

通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

这样导入  ,可以激发学生的求知欲.

2.探索新知,讲授新课

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

设买了香蕉 千克,那么苹果买了 千克,根据题意,得

设买了香蕉 千克,买了苹果 千克,得

上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到    ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

解:由①得:      ③

把③代入②,得:

把 代入③,得:

【教法说明】解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

例1  解方程组

(1)观察上面的方程组,应该如何消元?(把①代入②)

(2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

(3)求出 后代入哪个方程中求 比较简单?(①)

学生活动:依次回答问题后,教师板书

解:把①代入②,得

把 代入①,得

如何检验得到的结果是否正确?

学生活动:口答检验.

教师:要把所得结果分别代入原方程组的每一个方程中.

【教法说明】给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

例2  解方程组

要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

学生活动:尝试完成例2.

教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

解:由②,得     ③

把③代入①,得

把 代入③,得

检验后,师生共同讨论:

(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

(2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

教师板书:

(1)变形( )

(2)代入消元( )

(3)解一元一次方程得( )

(4)把 代入 求解

练习:P13  1.(1)(2);P14  2.(1)(2).

3.变式训练,培养能力

①由 可以得到用 表示 .

②在 中,当 时, ;当 时, ,则 ; .

③选择:若 是方程组 的解,则( )

A. B. C. D.

(四)总结、扩展

1.解二元一次方程组的思想:

2.用代入法解二元一次方程组的步骤.

3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.

通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.

八、布置作业

(一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

(二)选做题:P15 B组1.

参考答案

(一)1.(2) (4)

2.(1) (2) (3) (4)

(二) ,

篇11:课改二元一次方程组及其应用教学工作总结

本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。

本节课的教学重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。教学难点是在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题。教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的'学习习惯,在解决这些实际问题当中,我充分体现了以学生发展为本,让学生积极参与并且有效参与的新课程理念,在这样的理念指导下,我充分让时间留给学生,让讲台留给学生,让发现留给学生,注重学生情感价值观的培养,发扬教学民主,发挥了学生的主动意识,因此在学生解决某校环保小组成员收集废电池问题当中,学生能想出列方程组的方法,这是我意想不到的收获,这是我实施新课程理念中的最大成功,学生能用多种方法解题,扩展了学生的思维,让学生体验解题时有方法,方法多,方法好。从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人。

教学中,我还通过创设情境,使教学内容更加生活化,采用引发指导、多样评价、鼓励肯定等多种教学方法,增强学生的学习兴趣,让学生体验成功,从而培养学生分析问题、解决问题的能力。同时,我能改变传统教学的方法,跳出文本,活用教材。如:在探究1使学生明确把实际问题转化为数学问题,也就是用二元一次方程组解决,从而让学生体验方程组的实用性。同时,在这一过程中,让学生对估算与精确计算进行比较,从而明确估算有时会有误差,要想得到正确数据,需要通过用数学知识精算,让学生体会数学的应用价值,从而鼓励学生更好地学好数学。

总之,从整节课来看,学生的情绪比较饱满,思维比较活跃。我能较好地完成了教学目标,但还有一些有待探索与需要改进的地方,如:时间把握得不够好,使得“感悟与反思”这一教学环节没有得以实施。如果我能在前面几个教学环节抓住时间,让学生在后几环节充分展现自我,我想这样更有利于学生的个性发展。再有,教学中,没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥,今后,我在这方面要多加努力。

媒体辅助手段丰富学生的学习资料,生动活泼地展示所学内容,强调学生的动脑思考和主动参与,通过集体讨论、小组活动,以合作学习促进学生的自主探究。

教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师的指导下主动地、富有个性地学习,用自己的大脑去亲自探索,用自己的心灵亲自去体验、去感悟。

篇12:《二元一次方程组及其应用复习》公开课教学设计

《二元一次方程组及其应用专题复习》公开课教学设计

一、教材的地位和作用:

本节课是在复习一元一次方程及其应用的基础上,对二元一次方程组及其应用的复习,进一步体会消元的数学思想,以及化“未知”为“已知”,化复杂问题为简单问题的化归思想,体会二元一次方程组与现实生活之间的联系的一般的圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用.同时,圆周角性质也是说明线段相等,角相等的重要依据之一。

二、学情分析:

九年级下学期的学生有一定的知识结构体系和解决问题的能力。所以在教学中除了让学生灵活应用“代入法”和“消元法”解二元一次方程组之外,还应建立数学与生活的联系,引导学生用数学的眼光思考问题、解决问题。

三、教学目标:

1、知识与技能:会用代入消元法和加减消元法解简单的二元一次方程组,并能根据方程组的特点,灵活选用适当的解法。

2、过程与方法:探求二元一次方程组的解法,体会消元的数学思想。

3、情感、态度、价值观:渗透转化的辩证观点,培养学生利用数学知识解决实际生活问题的实践能力。

四、教学重点与难点:

1、重点:掌握消元思想,熟练地解二元一次方程组.会用二元一次方程组解决一些简单的实际问题。

2、难点:是图象法解二元一次方程组,数形结合思想.

五、教学过程:

(一)知识回顾:

1.含有2个未知数,并且所含未知数的项的'次数都是1的方程叫做二元一次方程。

2.由两个或两个以上的二元一次方程所组成的方程组叫做二元一次方程组。

3.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

4.二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

5.解二元一次方程组的基本思想是消元法,即把“二元”变成“一元”,方法有代入消元法和加减消元法。

6.列二元一次方程组解应用题的一般步骤为:一审,二找等量关系,三设未知数,四列二元一次方程组,五解,六答。

(二)重点展现:

例1:解下例方程组:

(1)解:由①得,=1-③……将其中一个未知数用另外一个未知数表示;

将③代入②得,3+2(1-)=5……将变形后的方程代入另一个方程;

解得,=3…………解一元一次方程求出其中一个未知数的值;

把=3代入方程③得,=1-3=-2……把求出的未知数的值代入变形后的方程,求出另一个未知数的值

∴原方程组的解为

(2)解:由①×2得,4+6=16③……变形方程,使得某个未知数的系数相等或互为相反数;

由②-③得,11=22……消掉其中的一个未知数,得到一元一次方程;

解得,=2……解一元一次方程求出其中一个未知数的值;

把=2代入方程①得,=1……把求出的未知数的值代入变形后的方程,求出另一个未知数的值

∴原方程组的解为x

(三)巩固应用:

例1、已知以、为未知数的方程组的方程组与的解相同,试求、的值。

解:解方程组,得

把代入方程组,得,

解得

例2(xxxx年xx中考题)、某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:

请根据上面的信息.试计算两种笔记本各买了多少本?

解:设购买单价为5元的笔记本本,单价为8元的笔记本本,依题意,得:

解得:

经检验,符合题意。

∴购买单价为5元的笔记本25本,单价为8元的笔记本15本。

(四)能力提升:

例1、已知一次函数=+1与另一个一次函数=相交于点A,试求出点A的坐标。

解:依题意,得

解得:,

∴点A的坐标为(3,-2).

例2.(20xx年xx中考模拟题)某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。

(1)求A、B两种纪念品的进价分别为多少?

(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?

解:(1)设A种纪念品的进价为元,B种纪念品的进价为元,依题意,得:

解得:x,

答:A、B两种纪念品的进价分别为20元、30元

(2)设商店准备购进A种纪念品a件,则购进B种纪念品(40-a)件,依题意,得

解得:

∵总获利是a的一次函数,且w随a的增大而减小

∴当a=30时,w最大,最大值w=-2×30+280=220.

∴40-a=10

∴应进A种纪念品30件,B种纪念品10件,才能使获得利润最大,最大值是220元.

(五)课堂练习:

1、解下例方程组:

2、若方程组的解为,试求、的值。

(六)家庭作业:

1、必做题:指南第25页A组2(2)、(3),4

2、选做题:指南第26页B组2,3

篇13:七年级数学《二元一次方程组的应用》教学反思

1、发现的问题:学生在接触新的知识时老是和以前的知识联系起来,这样很好,但很多时候是乱戴帽子,包新的法则当成旧的知识,闹出了不少的笑话。

2、解决问题的过程:数学源于现实,寓于现实,又用于现实。二元一次方程组的应用教学反思5篇。我们在数学生活化的学习过程中,教师要注重引导学生领悟数学“源于生活,又用于生活”的道理,有些数学知识完全可以让学生在实践活动中感知,让他们学会通过实践活动解决数学问题。

3、教学反思:在每堂课都设置小组交流这一环节,交流的内容有对新知识的探究、对问题的理解、计算方法及体会、学生相互纠错等(避免满堂交流,没有目的的交流,教师要给予必要的引导,让学生在有价值有目标的交流,关注每个学生的'参与情况,并给以指导)。通过学生学习小组交流,增强了每个学生的参与意识,同时通过解释、推断和对自己思想进行口头和书面的表达加深对概念和原理的理解,学生之见的合作交流,不仅是使学生获取必要的学科知识,对于提高每个学生的口头表达能力及数学语言的规范及交际能力、合作意识的培养起到了很大的作用。

篇14:二元一次方程组的应用老师教学的课后反思

关于二元一次方程组的应用老师教学的课后反思

二元一次方程组的应用课后反思

第一步:出示自学要求。

上课一开始,点明主题:今天我们类比一元一次方程来学习二元一次方程组在实践中的作用。利用投影仪出示如下的自学要求:① 自学课本例题,不懂的问题可以告诉老师或划下来。② 能看懂例题,并能说出例题解答中每个方程的实际意义。③ 找出题目中的等量关系有几个?是什么?④ 试用一元一次方程解答本题,对比前后两种方法,你有何感受?带着明确的学习目标开始自学,在自学时间内,要始终展示自学要求,教师巡回指导。对于学生提出的简单问题,可用简洁语言和学生说几句”悄悄话”,对于较复杂的或具有共性的问题,记下来,做为下一步研究的重点内容。这一阶段以学生独立思考为主,采用的是“全班个人独立学习”的方式。

第二步:检查自学效果。

学生活动:在检查之前,先“成对”交流1-2分钟,再全班交流。虽然已经分层,学生的学习还是有一定的差距,所以提问时先由中等生或较差生回答,(目的:1.检查理解程度;2.锻炼其语言表达能力;3、增强能学能会的信心。)优生补充,为提问的操作要求。教师指导:要注意凡是学生讲清楚的问题,教师绝不重复,教师只做有效的点拨,把学生的思维活动引向深处。这一阶段采用的是“成对和全班共同交流”的学习方式。

第三步:合作与探究。

这一阶段的任务是在理解例题的基础上,加深对知识的理解,对例题进行变化、扩展,经过生生、师生的交流及自我思维的碰撞,使学习更具有挑战性,更有意义。例如:上面提到的例题6的学习,学生自学完毕之后,提出若其他条件不变,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能进行细加工,剩余部分在市场直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成。如果每吨蔬菜直接销售利润为200元,若你是公司经理你将选择哪一种方案?1.由于改进精加工技术,每天精加工蔬菜8吨,其他的.条件不变,你还选择这一方案吗?试一试!2.若更新机器设备,精加工和粗加工可以同时进行,你有没有更好的方案?若有,请提供出来。尝试中发现学生非常欢迎这样现实的、有意义的、探索型的题目。这一时段经常是课堂上最出彩的时候,学生的积极性高,解决问题的愿望强,与同学和老师的交流往往是最迫切的,而且是自发的。

此时老师的主导作用就显得尤为重要,特别是在集体交流时,指导学生对自己的思路作出评价,探讨成功和失败的教训,探索一般的规律和问题的内外联系等等。若没有有效的指导和点拨,学生的学习会有一种一盘散沙的感觉。需要说明一点的是,本人在教学中要求学生把思考过程讲出来,充分暴露思维过程,是一种能及时反馈、把握学生思维状态的好办法,效果非常好。

这种“教师指导,学生自主探究、与人交流合作”的学习方式,能大大提高了课堂效率,挖掘学生的潜力。

二元一次方程组教案设计

二元一次方程组练习题

应用二元一次方程组——里程碑上的数导学案

《二元一次方程组及其应用专题复习》公开课教学设计

二元一次方程组练习题及答案

鸡兔同笼教学反思 二元一次方程组鸡兔同笼教学反思

二元一次方程组的解法教学反思

七年级下《二元一次方程组》的教案设计

六年级数学教案《比的应用》

中小学数学二元一次方程组解法同步测试题

《数学教案-一次方程组的应用(精选14篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档