下面小编为大家带来沪教版三年级数学上册《数学广场?D分段》的说课稿,本文共15篇,希望能帮助大家!
篇1:沪教版三年级数学上册《数学广场D分段》的说课稿
沪教版三年级数学上册《数学广场D分段》的说课稿
《分段》这节课的内容,主要依据小学生学习的心理特征,以现实生活中一些常见的实际问题为学习载体,使学生在有趣的自主活动中发现一些规律,并用发现的规律来解决生活中一些简单的实际问题。使学生感受数学与日常生活的密切联系,体验学习数学的价值。
一、说教材
这节课的内容主要通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。让学生初步掌握分析的方法,能够综合应用所学知识解决现实生活中简单实际问题,逐步增强应用数学的意识和独立思考的习惯。
二、说学情
本节课有关分段的知识,学生是第一次接触,虽然在生活中略有感知,但没有作过系统地思考与分析。因此,在教学时,主要借用生活中的实例,让学生通过自主探究,归纳整理,感知分段的一般规律,为以后教学植树与喜迎新年的内容做准备。
三、说方法
我设计这节课主要采用了以下三个方法
(一)加强动手操作 促进思维发展
我设计本节课的重点就是通过动手操作,让每一个学生都在愉快的气氛中积极动脑,思维得到发,主要起到三个作用
1、通过动手操作,激发学生的学习情感
小学生注意力集中的时间短,如果让学生从教师的语言――黑板――教师的动作中去接受知识,模仿思维,时间稍长,他们便因单调感到乏味。因此,让学生通过动手操作,一方面可使学生手、口、脑、眼、耳多种感官并用,扩大信息源,创设良好的思维情境;另一方面也满足了小学生好动、好奇的特性。基于上述几个原因考虑,我在课开始部分就从学生感兴趣的事物剪绳子出发,为他们提供人人参与的机会,让他们通过与同伴合作剪彩绳,使他们对数学产生浓厚的兴趣和亲近感。接着又让学生通过动手画线段图等一系列自主活动,由浅入深,充分利用动手操作的直观具体性集中学生的注意力,营造出一个符合儿童认知规律的思维氛围,有利于学生思维主动性与创造性的发挥。
2、通过动手操作,培养学生思维的层次性与逻辑性
分段这个抽象的数学问题,学生是第一次接触,虽然在生活中略有感知,但没有作过系统地思考与分析。而且,我班的.实际情况是大部分学生的思维能力较弱,因此,在教学时,如何发挥学生的主动性就显得尤为重要,课中我让学生通过剪一剪(一根彩绳剪四次,五次、六次、分别剪成几段呢?)和画一画(假如剪7次,可以剪成几段呢?)把抽象的内容形象化,在此基础上引导学生总结出段数与剪的次数之间的关系,又通过分析,比较、归纳等数学思想方法分层揭示分段的规律,让学生参与了规律形成的思维全过程,学生概括起来言之有物,思路清晰,逻辑性强。
3、通过动手操作,提高学生思维品质和效率
我认为培养学生思维的品质和效率,是发展思维能力的突破点,是提高教学质量的重要途径。如在探索段数与剪的次数之间的关系时,让学生通过想办法用线段图来表示“假如剪7次,可以剪成几段呢?假如剪7段,要剪几次?”时开拓思路,有利于培养思维的灵活性与创造性,提高思维效率。
(二)让学生学会用线段图来分析解决数学问题
我认为画线段图是解答应用题的最好拐杖,因此,在教学中我重视“教会学生画简图,”让学生会用画线段图来描述情节,分析题意,归纳结论,运用结论,解决问题。这在“思维过渡”中很好地起到“船”和“桥”的作用。
(三)提供小组学习的机会,培养学生合作探究的意识
我想,生生互动最好的方法是小组学习。我把全班学生根据各种差异分成若干个小组,随时组织学生进行小组学习,让学生感受到集体力量大,同学之间要相互合作,让合作成功的小朋友来交流他们的做法,从而让学生体验到自己的学习中非常需要合作;因此课上我安排了多次的合作学习,让学生在集体中获得成功,体会合作学习的好处,从而愿意合作。同时也能让学生与同伴的合作交往中增进情感,增强竞争意识。
篇2:沪教版数学《数学广场——分段》教学设计
沪教版数学《数学广场——分段》教学设计
【教学目标】
1.从对实际问题的具体操作和观察中,探索并体会段数和剪的次数、段数和树的棵数的关系,并能以此分析和解决实际问题。
2.经历观察、比较、概括、归纳等数学活动,获得段数和点数的`关系,并能以此分析和解决实际问题。
3.培养学生观察能力、推理能力、探究能力。
4.培养学生合作意识,体验成功合作的快乐,激发学习兴趣。
【教学重点】从对实际问题的具体操作和观察中,探索并体会段数和剪的次数、段数和树的棵数的关系,并能以此分析和解决实际问题。
【教学难点】:经历观察、比较、概括、归纳等数学活动,获得段数和点数的关系,并能以此分析和解决实际问题。
【教学过程】
一.师生合作:探索段数和剪的次数的关系
1.圣诞节快到了,小亚为小朋友准备了一些礼物,要剪绳子来包装礼物,在剪绳子的时候,她发现了一些有趣的问题,我们一起来看看好吗?
2.师:小亚动手来剪,你来把剪的结果填入这张表格里。
合作剪纸条活动,并将操作的结果填入表格。
剪的次数123
绳子的段数
剪1次,分成了几段?把它记录下来。剪2次、剪3次呢?
下面小亚不剪了,请你仔细观察你记录的数据,想一想接下去该怎么填?(把表格填完整)。
学生交流
3.在学生交流的基础上,发现规律。
师:你们真棒!你们发现段数与次数之间有什么关系?(板书:段数、次数)
这个关系我们可以用一个等式表示,发现了:段数=次数+1。(板书)
4.运用新知解决实际问题。
师:有了这个小秘密,像这样,剪48次,一根绳子会分成几段?要是剪100次呢?那么把一根绳子剪成100段,需要剪几次?
5.小结学习方法。
师:看来,有了这个小秘密,解决这类问题就方便多了。出示课题:分段(板书)
二.小组合作:探索间隔数和树的棵数的关系
1.像这种关于段数与次数的数学问题,在我们日常生活中还有很多。
老师举例,出示媒体。(汉堡、五指)(伸出五指比画一下)
你能举例说说吗?(可在教室里找一找)
师:接下来,我们就用这种方法帮助我们解决关于种树的分段问题。
2.小胖家的旁边有一条马路,在这条马路的一边种5棵树,你想怎样种?
把直线当作马路(出示在黑板上),一位小朋友在马路一边种树,其他小朋友把种的结果记录下来,你们能设计出几种不同的种树方案,然后仔细观察,想一想有没有什么新的发现?
(小组合作完成)
小组合作完成表格。(有学具)
两端都种只种一端两端都不种
树的棵树555
间隔数456
3.小组学生边上黑板演示边交流。(先让学生贴,再交流)
(1)两端都不种,间隔数比种的棵树多1。(板书:间隔数=棵数+1)
(2)两端都种,间隔数比种的棵树少1。(板书:间隔数=棵数-1)
(3)一端种,一端不种,间隔数等于种的棵树。(板书:间隔数=棵数)
小结:完成表格。
三.分层练习:内化知识
1.下面每一题相当于植树问题中的哪一种情况?请你选择编号写在后面。
①两端都种②只种一端③两端都不种
(1)衣服上钉的纽扣( )
(2)电影院椅子扶手( )
(3)生活中的木梯( )
2.判断:
(1)如果要把一根纸带剪20段,需要剪21次。
(2)一根木头锯了11次,一共锯了11段。()
(3)体育课上10个男生排成一排,他们之间有9个间隔。()
3.选择:
(1)小亚家住在三楼,每上一层楼要走16级台阶,那么她从一楼走到三楼要走( )级台阶。
①16级②32级③48级
如果要走48级台阶,小亚要从一楼走到几楼?
(2)小胖在一根绳上挂气球,绳子的两端都不挂,一共挂了9个气球,把这根绳子分成了( )段。
①8段②9段③10段
4.解决问题:
(1)在居民小区的路上装路灯,从起点到终点都要装上灯,装8盏路灯有几个间隔?
(2)如果在一条路上插彩旗,从起点开始插,终点不插,共插了11面彩旗,这一条路分成了几段?
5.动脑筋:
小胖和4个小伙伴围成一个圈做游戏,他们之间一共有( )个间隔。
四.自我小结:归纳方法
你今天学得开心吗?说说你开心的地方。
【板书设计】
分段
两端都不种:间隔数=棵数+1
两端都种:间隔数=棵数-1
只种一端:间隔数=棵数
篇3:沪教版数学三年级上册知识点
沪教版数学三年级上册知识点
分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
分子表示:其中的几份
分母表示:平均分成几份
2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
4,比较大小的方法:
①当分子相同时,分母越小分数越大,分母越大分数越小。
②当分母相同时,分子大的分数就大,分子小的分数就小。
5、分数加减法:
①相同分母的分数加、减法的计算方法:分母不变,分子相加、减。
②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。(1可以看作所有分子分母相同的分数)
6,求一个数是另一个数的几分之几是多少的计算方法:
例:把12个圆的3/4有个圆;
分析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3个;最后找分子3,表示其中的3份,所以:3×3=9;所以把12个圆的3/4有9个圆。
时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。(时针最短,秒针最长)
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分1分=60秒60分=1时60秒=1分半时=30分30分=半时
9、常用的时间单位:时、分、秒、年、月、日、世纪等。(1世纪=1,1年=12个月......)
棱柱的分类
1、棱柱的底面可以是三角形,四边形,五边形,我们把这样的棱柱叫分别叫做三棱柱、四棱柱、五棱柱。
2、斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。
3、直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。
4、正棱柱:底面是正多边形的直棱柱叫做正棱柱。
5、平行六面体:底面是平行四边形的棱柱。
6、直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。
7、长方体:底面是矩形的直棱柱叫做长方体。
分式的运算
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”。
篇4:沪教版三年级上册数学知识点
分数的初步认识
1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、比较大小的方法:
①分子相同,分母小的分数反而大,分母大的分数反而小。②分母相同,分子大的分数就大,分子小的分数就小。
4、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。
5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)
测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
6、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克
多项式定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
篇5:沪教版三年级数学上册面积试题
沪教版三年级数学上册面积试题
1、一个平行四边形,沿它的一条高剪开,通过平移拼成长方形。这个长方形的长与原来平行四边形的( )相等;原平行四边形的高与长方形的( )相等。
2、两个完全一样的三角形可以拼成一个( ),一个三角形的面积是这个( )形的( ),所以三角形的面积=( ),字母表示( )。
3、一个平行四边形的面积是20平方米,高是4米,它的'底是( ),与它等底等高的三角形面积是( )平方米。
4、一块梯形麦田上底36米,下底54米,高30米,这块麦田的面积是( )平方米。
5、一个三角形和一个平行四边形面积相等,高也相等,则三角形的底是平行四边形底的( )。一个三角形的面积是30平方厘米,底是6厘米,高是( )厘米。
6、计算下面各图的面积。(单位:cm)
_____________________________________
7、一个平行四边形的停车场,底是63米,高是25米,平均每辆车占地15平方米,这个停车场可停车多少辆?
_____________________________________
8、一个平行四边表的停车场,底是63米,高是25米,共停车105辆,平均每辆汽车占地多少平方米?
_____________________________________
9、一块三角形的土地,底是400米,高是100米,共种花草48000棵,平均每公顷种多少棵?
_____________________________________
10、一块梯形的菜地,上底是13米,下底是15米,高8米,平均每平方米收大白菜15千克,这块地一共可以收大白菜多少千克?
_____________________________________
11、下图是一个饲养场的平面图,一面靠墙,三面用铁丝围起来。已知铁丝的长度是450米。求为个包头场上面积。
_____________________________________
12、有一堆水泥侧面形如梯形,最上面放16包,最下层放34包,共有19层,(相邻每层相差1包),这堆水泥共多少包?
_____________________________________
13、在下面格子图中,分别画一个平行四边形、一个三角形和一个梯形,使它们的面积都与图中长方形的面积相等。
篇6:沪教版数学三年级上册长度单位教案
沪教版数学三年级上册长度单位教案
教学目标:
1、学生初步经历长度单位形成的过程,体会统一长度单位的必要性,知道长度单位的作用。
2、让学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的必要性。
重点难点:
学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的必要性。
教学准备:
圆形、正方形、三角形、曲别针、铅笔、橡皮等。
教学过程:
一、情景导入,激发兴趣
谈话:老师想要知道这本数学书的宽是多少,你们能帮助老师想想可以用什么办法?(学生发挥想象,各抒己见。)
二、组织活动,体验数学
(一)组织学生用不同的物品作标准量同一长度。
1、教师先明确活动的方法。
(1)作为标准的物品要一个接一个地摆放,要放平摆直。
(2)学生以四人小组为单位,每人从四件物品中(圆形、正方形、曲别针、三角形)选取一件不同的物品去量。
(3)量好后四人小组交流汇报自己量的结果,并思考:为什么都是量数学书的宽,而量出的结果却不一样呢?
2、学生活动,教师巡视指导。
3、全班交流汇报。
得出:因为选用的'是不同的物品作为标准测量,所以量的结果不同。
4、让学生选用同一物品进行测量的学生展示他们测量的结果。
由此得出:要想得到相同的结果,应选用同样的物品作标准进行测量。
(二)组织学生用不同的物品作标准量不同的长度。
1、让学生选用不同的物品(如橡皮、铅笔、曲别针或用手等)去量桌子、铅笔盒等物体的长度。
2、交流展示学生测量的结果,启发学生提出问题。
如:为什么数学书的宽是5个曲别针的长,铅笔盒是5块橡皮的长,但它们并不一样长?
为什么桌子比铅笔盒长,但桌子才4根铅笔长而铅笔盒却有5块橡皮长呢?
引导小学生体会到:因为选用不同的标准去量,它们的长度不同,所以测量的结果可能会与事实不符。
3、让学生用同一物品(正方形)作计量单位去量不同长度的物品看结果如何,体会统一长度单位的必要性。
三、练习巩固,实践应用
1、做一做第1题,学生看图直观地判断每种蔬菜大约有几个方格那么长。学生先独立完成,再交流。
如果学生看不清最上面的几种蔬菜的右端对准哪个方格,可以用尺子对准方格的竖线比一比。
2、做一做第2题,让学生用铅笔去量桌子的长、高,量凳子的高。
明确量的方法与前面有所不同,不再把作标准的物品,一个接一个地摆放来量,而是让学生用一个物品,一次接一次地进行测量,看所来年感长度有几个这样的物品长。
3、做一做第3题,学生直观看图,先估计所测物品大约有几个立方体长,再用上一题的方法在脑子里测量。
如果学生看图测量有困难,也可以让学生用立方体实物进行测量。用实物测量时都要提醒学生注意量的方法:实物的左端应与所量物体的左端对齐,这样量出的结果才比较准确。
四、课堂总结
今天,大家亲自测量了很多物体的长度,在测量过程中,你们学会了什么?
板书设计:
统一长度单位
1、用不同的物品作标准量同一长度。
2、用不同的物品作标准量不同的长度。
3、用同一物品(正方形)作计量单位去量不同长度的物品。
总结:在测量物体长度时,必须要用统一的标准去测量。在测量时,应注意将实物与所量十五物体左端对齐,测量的结果才准确。
篇7:沪教版小学三年级上册数学减法塔教案
1、2。 教学目标:
1、引导学生学会分析统计表,并从表中的数据发现数学问题。
2、采用合作学习的方式,掌握三位数减三位数连续退位减法。 教学重点: 掌握连续退位减法的计算方法,培养学生认真书写、计算的良好学习习惯。 教学难点: 理解连续退位减法的算理。 教学过程:
一、创设情境,激趣导入
师:前面我们学习了三位数加三位数的加法,大家学得非常认真,掌握的很好。今天,老师又带来了一个新的问题,你们想不想帮助老师解决?
二、探究体验,经历过程
1、教学例1。
师:下面是国产电视动画片的生产情况统计表,说一说你从中知道了什么。(出示第41页统计表)
生1:我知道了从这几年中,国产电视动画片的数量逐渐增加,的数量最多。
生2:在这红国产动画片的数量20最少。
生3:在这几年的国产优秀动画片中,20的数量最多。 …… 师:获取这么多有价值的信息,你能解决年比多生产多少部动画片的问题吗?自己试一试。
学生尝试独立解答问题,教师巡视了解情况。 师:把你的解答方法跟大家说一说吧!
生:从表格中可以知道2011年生产了435部动画片,20生产了322部动画片,多生产的数量就是435-322。 师:你是怎样计算的?
生:我是用竖式计算的。列竖式的时候,要相同数位对齐,从个位减起。就是这样:
4 3 5 - 3 2 2 1 1 3 给予解答正确的学生以表扬和鼓励,允许算法多样化。
2、教学例2。
师:你能试着自己算一算比2011年少生产多少部动画片吗? 学生尝试独立解答,教师巡视了解情况,指导个别学习有困难的学生。 组织学生交流汇报解答的情况,重点说清个位上的计算情况:个位上不够减从十位退1,这样就是15减6,结果个位上的得数是9;同时十位上的3还剩2,2减8不够减,继续从前一位(百位)退1再减,这样就是12减8,结果十位上的得数是4;同时百位上的4还剩3。竖式如下:
.. 4 3 5
更多免费资源下载绿色圃中- 8 6 3 4 9 师:结合以上计算,在小组内讨论;计算万以内的减法要注意什么? 学生进行小组内讨论,教师巡视了解情况。
汇报小结:相同数位要对齐;从个位减起;哪一位上的数不够减,要从前一位退1……
三、巩固练习
1.第41页“做一做”。
学生独立练习,看谁计算最细心,算得又快又准确。做完后小组内交流检查,同时指名板演,然后集体订正。 2.“练习九”第1题。
小组内先说一说十位、百位各怎样减,再独立计算。指名板演,集体订正。
四、课堂小结
师:这节课我们学习的内容是什么?你掌握了哪些方法?你还有什么收获? 学生自主交流
篇8:沪教版小学三年级上册数学减法塔教案
1.结合具体情境初步理解减法的含义,认识减号能正确读写减法算式,进一步渗透符号化的数学思想。
2.能用不同的方法正确计算5以内数的减法,能用减法解决简单的实际问题。
【重点难点】
重点:会用多种方法计算5以内数的减法 难点:理解减法的含义。 【教学准备】
4面小红旗,圆片,电脑课件。 【教学过程】 一.情境导入
师:同学们看老师手里拿的是什么?(4面小红旗)今天老师要把其中的1面小红旗奖给昨天写作业最认真的小红同学。
请小红上台领取小红旗。
师:根据刚才的情境,同学们能提个数学问题吗? 引导学生提出:老师手上还剩几面小红旗? 二.探究新知 1.减法的认识。
老师课件演示“4个气球飞走1个”的过程,引导学生观察并提出问题:你先看到了什么?又看到了什么?谁能完整地说一说这两句?
生答:老师手上原来有4个气球,飞走了1个。 问:“飞走”还可以怎样说? 生:“飞走”还可以说“去掉”。
1 一年级汇报课
教学设计
问:你们知道还剩多少个气球吗?怎么知道的? 全班汇报交流。
生:从4个气球里去掉1个,还剩3个。
师:从4个气球里去掉1个,求还剩多少个也就是从4里面去掉1。当从一个数里去掉一部分,求还剩多少的时候,(教师用手势配合“去掉”)就可以用一种新的方法“减法”计算,板书:减法。
减法也有它的运算符号(教师介绍减号),那么这道算式怎样写呢?请学生试着说一说。结合学生的算式教师边板书边说明:一共有4个气球,“4”写在减号的前面,去掉1个,“1”写在减号的后面,还剩3个,3写在等号的后面;即4-1=3。
问:这个算式怎么读?谁能试一试? 读作:4减1等于3。
问:根据之前的演示说一说算式中的
4、
1、3分别表示什么意思?生活中还有哪些事情能用4-1=3表示呢?
2.探究减法的计算方法。
课件显示:有5只小松鼠在一块儿玩耍,后来跑了3只。老师引导:你能根据课件显示的过程提出一个数学问题吗?同桌互相说说,再组织全班交流。
问:要求还有几只?用什么计算?为什么?怎么列式? 生说师板书:5-3 想一想:5减3等于几呢?你是怎么算的?
先以小组为单位进行交流,老师参与小组活动,倾听学生不同算法。然后集体交流,说说各自不同的想法。
三.巩固应用】
1.教材第26页“做一做”。
练习时,可以先让学生摆学具,并让学生看着算式,边摆边说过程。 2.教材第27页“做一做”。
第1题:看图计算题。练习时,先让学生说说图意,并提出问题,再算出得数。
2 一年级汇报课
教学设计
第2题:是借助操作进行计算的题目。练习时,先让学生照着例子独立完成,再说说是怎样画线的。
第3题:先让学生弄清题意,然后独立完成,再进行交流、订正。 四.课堂小结
说一说,这节课大家有哪些收获?
篇9:沪教版数学三年级知识点
一、年月日:
一三五七八十腊(12月),
三十一天永不差;
四六九冬(11月)三十日;
平年二月二十八,
闰年二月把一加。
二、100以内的质数口诀:
2、3、5、7和11,
13后面是17,
19、23、29,(十九、二三、二十九)
31、37、41,(三一、三七、四十一)
43、47、53,(四三、四七、五十三)
59、61、67,(五九、六一、六十七)
71、73、79,(七一、七三、七十九)
83、89、97。(八三、八.九、九十七)
三、多位数读法歌:
读数要从高位起,哪位是几就读几,
每级末尾若有零,不必读出记心里,
其他数位连续零,只读一个就可以,
万级末尾加读万,亿级末尾加读亿。
四、多位数写法歌:
写数要从高位起,哪位是几就写几,
哪一位上没单位,用0占位要牢记。
五、多位数大小比较歌:
位数不同比大小,位数多的大,位数少的小,
位数相同比大小,高位比起就知道。
数学学习方法技巧
追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
植树问题
【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】 线形植树 棵数=距离÷棵距+1
环形植树 棵数=距离÷棵距 方形植树 棵数=距离÷棵距-4
三角形植树 棵数=距离÷棵距-3 面积植树 棵数=面积÷(棵距×行距)
【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?
例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?
篇10:沪教版初一数学上册知识点
七年级数学知识点
变量之间的关系
一理论理解
1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.
2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间
二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).
注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.
九、估计(或者估算)对事物的估计(或者估算)有三种:
1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;
2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
3.利用关系式:首先求出关系式,然后直接代入求值即可.
初中一年级数学知识点总结
整式的乘法与因式分解
一、整式乘除法
单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.ac5?bc2=(a?b)?(c5?c2)=abc5+2=abc7注:运算顺序先乘方,后乘除,最后加减
单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照顺序,注意常数项、负号.本质是乘法分配律。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn
乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.(a+b)(a-b)=a2-b2
完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.(a±b)2=a2±2ab+b2
因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式.
因式分解方法:
1、提公因式法.关键:找出公因式
公因式三部分:①系数(数字)一各项系数公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法.①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的平方.
③x3-y3=(x-y)(x2+xy+y2)立方差公式
3、十字相乘(x+p)(x+q)=x2+(p+q)x+pq
因式分解三要素:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差
添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证
七年级数学复习知识点
数据的收集与整理
----------------5.1数据的收集
1、全面调查(普查):对全体对象进行的调查叫做全面调查
2、抽样调查:从被考察的全体对象中抽出一部分对象进行考察的调查方式
3、总体:所要考察对象的全体叫做总体
4、个体:其中的每一个考察对象叫做个体
5、样本:从总体中所抽取的一部分个体叫做总体的一个样本
6、样本容量:样本中个体的数目叫做样本容量
------------5.2数据的整理
1、常用的统计图:条形统计图、折线统计图、扇形统计图
2、扇形统计图:用圆和扇形来表示总体和部分的比例关系,即用圆(36
o)表示总体,用扇形表示构成总体的各个部分,通过扇形的大小来反
映各个部分占总体的百分率大小,像这样的统计图叫做扇形统计图
3、扇形的中心角计算公式:360°×该部分占总体的百分率
-------------5.3用统计图描述数据
(1)条形统计图能清楚表示出事物的绝对数量。
(2)折线统计图能清楚地反映事物的变化趋势。
(3)扇形统计图能清楚地表示各部分占总体的百分率。
--------------5.4从图表中的数据获取信息
图表带来有利于决策的各种信息的同时,使用不当的图表来表达数据,
会给人以误导。在从图表中获取信息时,要关注数据的来源、收集的
方法和描述的形式,以便获取更多合理的信息。
备注:①1+2+3+4+------+n=n×(n+1)/2②1+3+5+7+----+(2n-1)=n2
③2+4+6+8+-----+2n=n×(n+1)④1/2×3=1/2-1/3(1/3×4=1/3-1/4)
⑤22o13-22o12=22o12×(2-1)⑥98/99=1-1/99
⑦如果在直线a上有n个点(线段AB上有n个点可以构成(n+1)×(n+2)/2条线段),则共有2n条射线,n×(n-1)/2条线段;
⑧同一平面内有n条两两相交的直线,最少有一个交点,最多有n×(n-1)/2个交点;
⑨同一平面上共有n个点(n≥3),其中任意三个点都不在同一条直线上,那么连接任意两点,可画n×(n-1)/2条直线;
⑩平面上从点A发出n条射线,可以组成n×(n-1)/2个角;(角内发出n条射线,可以组成(n+1)×(n+2)/2个角
篇11:沪教版高二数学上册知识点
圆与圆的位置关系
1、利用平面直角坐标系解决直线与圆的位置关系;
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论.
篇12:沪教版一年级数学上册知识点
一年级数学知识点
方法一:
“做减想加”或“想加做减”因为8+7=15,所以15-8=7,15-7=8。
“做减想加”或“想加做减”这个计算方法看似简单,但要求学生思维力,首先要求学生要熟练掌握20以内的加法才能快速的应用“做减想加”或“想加做减”。
方法二:
“破十法”12-5=10-5+2=7
“破十法”这个计算方法如果让学生自己思考计算方法,它是一个不受欢迎的方法。这方法要在教师的指导下学习学生才能掌握,首先告诉学生3不够5减时先不减,要找十位借1变成一个10-5得数5再和剩下的2合在一起成了7。
方法三:
“平十法”14-5=14-4-1=9
“平十法”也叫“连续减法”它的特点就在于先把减数拆成补减数的个位和别一个数如:把5拆成4和1,再把14-3=10,最后把10-1=9,这方法的难点在于把减数拆成另外两个数,一定要拆对。
方法四:
“多减加补”13-9=13-10+1=4
“多减加补”这个方法的特点在于:把减数先凑成10,再用补减数减再加上和9凑成10的那个数1,如:9+1=10,再把13-10+1=4。
方法五:
“将被减数个位上补足成够减的数”13-5=15-5-2=8
“将被减数个位上补足成够减的数”这个方法是将被减数的个位补到能被减数减,再接着减去补上的数。如:13-5化成15-5-2=8这样学生就更容易掌握了。
一年级数学《认识人民币》知识点
1、人民币的单位有(元)、(角)、(分)。
2、人民币各单位之间的换算:
1元=10角;10角=1元;1角=10分;10分=1角;10角=100分;1元=100分。
3、主要题型:
填合适的单位。(注意和生活实际联系)
计算:元+元角+角满10角记得换成1元
元-元角-角“角”不够减向“元”借1元当10角再计算
4、解决问题:先画批,找准数据,再列式计算。
列式时用:“几元几角+几元几角”的形式来表示,不用小数形式列式。
5、换钱:1张10元可以换5张2元。
1张100元可以换5张20元。1张100元可以换2张50元。
1张50元可以换10张5元。
6、2.00元=2元;0.50元=5角;59.90元=59元9角;9.25元=9元2角5分
一年级数学轻松学习好方法
1、列条件
找出课本中的一道例题,将例题的已知条件和求解求证一一列出;
2、做题
把题目做出来;
3、检查
检查自己的答案是否有错误;
4、订正
根据题目的答案订正自己做的题目;
5、做对
把题目做对;
6、节奏
找出做题目的节奏感,分几大步?
7、小结
这个题目考什么?
8、改变
对知识点的条件或结论做出改变,重新出题;
9、解题
每做一种改变就是一个新的题目,解出来;
10、整理
整理出一个知识点的所有题目类型。
一个题目按照这十个步骤做下来,学习效果会明显改善。
篇13:沪教版五年级数学上册试题
一、填空。(19分)
1、5.25小时=( )小时( )分 6平方米50平方分米=( )平方米
2、0.42×1.8的积是( )位小数,精确到十分位约是( )。
3、1.4÷0.9的商用循环小数表示是,精确到千分位是( )。
4、在○里填上“>”、“<”或“=”
0.65÷0.78○0.65 0.8×1.3○1.3 1.46÷1.1○1.46×1.1 0.7×10○0.7÷0.1
5、测得一段钢丝长0.5米,重0.4千克,另有这样的钢丝100米,重( )千克。
6、把4.83、4.8、4. 、4. 、4.8 按从小到大的顺序排列:
( )﹤( )﹤( )﹤( )﹤( )
7、如果: a×b=0.24, 那么:3a×2b=( )。
8、小马虎计算一个数乘0.58时,错算成乘0.85,导致比正确结果多出了1.62,正确的结果应该是( )。
9、妈妈花a元买了5箱苹果,每箱苹果b千克,妈妈一共买了苹果( )千克。
10、从0.1、5.5、0.75、9.9、0.9中,选择合适的数填到括号里,使每题都能简便计算。
5.4×4.5+( )×5.4 2.5×1.9-2.5×( ) 7.5×9.9+( )
得 分 二、选择。(每题1分,共8分)
1、大于1.1而小于1.2的两位小数有( )个。
A、9 B、0 C、无数 D、99
2、20.13×20.14=( )
A、40541.28 B、405.4182 C、405.4128 D、40541.82
3、昙花的寿命约4小时,小麦开花的时间是昙花寿命的0.02倍,约( )左右。
A、0.8分钟 B、5分钟 C、0.08分钟 D、4分钟
4、a÷b=c……7,若a与b同时缩小10倍,则余数是( )。
A、70 B、7 C、0.7 D、0.07
5、下面算式中与36÷2.5结果相等的式子是( )。
A 、0.36÷0.25 B、3.6÷0.25 C 、3.6÷25 D、0.36÷0.25
6、甲数是a,比乙数的4倍少b,求乙数的式子是( )。
A、(a+b)÷4 B、(a-b)÷4 C、4a-b D、4a+b
7、小强今年a岁,爸爸比他大b岁,再过c年,小强( )岁。
A、a+b B、b+c C、a+c D、a+b+c
8、下列说法正确的话共有( )句。A、1 B、2 C、3 D、4
①一个数乘以小数,积小于这个数。 ②把被除数和除数都缩小5倍,商不变。
③无限小数一定比有限小数大。 ④在表示近似数的情况下,8.0比8更精确。
四、判断。(6分)
1、保留三位小数约是0.790。……………………………………( )
2、3.5×0.4÷3.5×0.4的结果是1。 …………………………………( )
3、循环小数一定是无限小数,无限小数不一定是循环小数。………( )
4、7.232323是一个循环小数,它的循环节是23。……………………( )
5、把被除数和除数同时扩大10倍,商就扩大100倍。………………( )
6、如果a÷b﹤1,那么a一定小于b。…………………………………( )
五、计算。(29分)
1、口算:(5分)
0.5×0.8= 3.5÷0.07= 2.4×0.1=0.9÷0.01=
0.24×5= 1.25×0.8= 0.25×(1.6×4)=
0.92-0.52= 9.9×9+9.9=1.2×0.4-0.4×1.1=
2、竖式计算,打“=”号的保留两位小数。(6分)
18.36÷4.5= =0.24×4.98≈ =5.68÷3.6 ≈
3、脱式计算,能简算的要简算(9分)
1.6+8.4×1.5÷0.18 6.9×5.4+6.9×5.6-6.9 2.5×32×1.25
4、解方程: (9分)
1.6ⅹ+4ⅹ=8.47(ⅹ-1.2)=2.11.2+1.8-0.5ⅹ=1.4
六、解决问题。(每题5分,共30分)
1、学校图书室新进480本科技书,比故事书的3倍少75册,图书室新进故事书多少本?
2、果园里桃树是李树的3倍多120棵,李树比桃树少300棵。果园果有桃树和李树各多
少棵?(用方程解答)
3、修一条公路,计划每天修1.6千米,25天修完,实际每天多修0.4千米,实际多少
天修完?
4、小明和小强各看一本相同的故事书。小强先看了3天,小明才开始看。小明每天看12
页,小强每天看8页,结果两人同时看完。这本故事书有多少页?
5、超市饮料柜台青岛啤酒每瓶3.6元,国庆促销开展“买三送一”的优惠活动,妈妈连买
加送共得到青岛啤酒24瓶。请你算一算,妈妈在这次优惠活动中节省了多少钱?
6、某城市自来水收费实行阶梯水价,收费标准如表所示:
月用水量 不超过12吨部分 超过12吨不超过18吨的部分 超过18吨的部分
收费标准(元/吨) 2.00 2.50 3.00
(1) 某户10月份的用水量为15吨,需要水费多少元?
(2) 某户5月份交水费45元,则所用水为多少吨?
七、规律探索:(共5分)
不计算,运用规律在横线上填上合适的数。
7×9=63 1÷7=0.142857142857……
77×9=693 2÷7=0.285714285714……
777×9=6993 3÷7=0.428571428571……
7777×9=69993 4÷7=0.57
…… 5÷7=0.7
777777777×9= 6÷7=
7÷7=
八、智慧屋:(共20分,要书写计算过程)
一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。这辆车以每小时36千米的速度行驶了一段时间以后,因排队加油用去了15分钟。为了能在原定的8小时内到达乙地,加油后每小时必须多行7.2千米。求加油站离乙地多少千米?
篇14:沪教版五年级数学上册试题
一、认真读题,谨慎填空。
(1-5题每空1分,6、7题每题3分,8题4分,共23分)
1、250×0.38=25×___ 5.374÷0.34=___÷34
2、在括号里填上“>”、“<”、“=”。
1.5×0.5( )1.5 1.5÷1( )1.5 1.5÷0.8( )1.5
3、( )时=15分 0.68吨=( )千克
4、5.982保留一位小数约是__;保留两位小数约是__;保留整数约是__
5、东方小学六年级有4个班,每班a人,五年级有b个班,每班45人。
4a+45b表示_____________________
a-45表示_______________________
4a÷45b表示______________________
6、仓库里有货物96吨,又运来12车,每车a吨,用式子表示现在仓库里货物是____吨;当a=5时,现在的货物是____吨。
7、一个三角形的面积是12平方厘米,它的底边是4厘米,这个三角形的这条底上的高是____厘米。
(2)量出相关数据(取整厘米)算出梯形面积是____平方厘米。
二、仔细推敲,认真辨析。(你认为对的打∨,错的打×。共5分)
1、3.25×0.46的意义是求3.25的百分之四十六是多少。( )
2、两个面积相等的三角形一定能拼成一个平行四边形。( )
3、m×7.5可以简写成m7.5。( )
4、在右边两条平行线间,三角形ABC、三角形DBC和三角形EBC面积相等。( )
5、小数除法的意义与整数除法的意义相同。( )
三、反复比较,慎重选择 (将正确答案的序号填在括号里,提示:个别不止一个答案。10分)
1、推导梯形面积的计算公式时,把两个完全一样的梯形转化成平行四边形,其方法是( )
A、旋转 B、平移 C、旋转和平移
2、空调机厂原计划20天生产760台空调机,实际平均每天生产的台数是原来的1.25倍,______?可以提出的问题是( )
A、这批空调一共有多少台? B、生产这批空调实际用了多少天?
C、实际每天生产多少台?
3、34.5除以5的商减去8与0.2的积,得多少?正确列式是( )
A、(34.5÷5-8)×0.2 B、34.5÷5-8×0.2 C、34.5÷(5-8×0.2)
4、下面各数中,有限小数是( ),无限小数是( )
A、0.3737 B、2.0525252…… C、0.618
5、下面各式中,是方程的是( )
A、5×3=15 B、x+5 C、3×2+x=22
四、注意审题,认真计算(共29分)
1、直接写出得数。(4分)
1.4-0.9= 3.7+6.4= 4.5÷0.9= 2.5×2×0.8=
9÷2= 0.8×60= 0÷3.7= 9.5÷(2.5×2)=
2、脱式计算,能简算的要简算。(16分)
(1)0.26×2.5+0.74×2.5+2.5 (2)18.09-7.5×(0.14+1.06)
(3)11×4.9-4.9 (4) 1.65×4.3+8.35×4.3
3、解方程。(先解答,再检验)(9分)
3×7+4x=25 0.26×(5-x)=0.91 17x-3x=8.4
五、活用知识,解决问题。(1-4题各题5分,5题7分,共27分)
1、一张发票被撕掉一角,你能算出每张桌子多少钱吗?
2、学们去植树,五年级植了84棵,比三年级植的2倍少16棵,三年级植了多少棵?(列方程解答)
3、中午,爸爸、妈妈和李明在一起用餐,用餐时有如下对话:
李明:妈妈今年有多少岁?妈妈:我今年的年龄是你今年年龄的4倍。
爸爸:你今年的年龄和你妈妈今年的年龄和是40岁。
请根据上面对话求出妈妈和李明今年的年龄?
4、甲、乙两辆汽车同时从相距225千米的两地相对开出,经过2.5小时相遇,甲车每小时行48千米,乙车每小时行多少千米?
5、某电子厂生活区原来住有员工400人,平均每天用水40吨。现在员工人数增加到480人,如果全体员工每人每天用量比原来节约0.02吨,维持原来的供水量,够不够?
篇15:沪教版五年级数学上册试题
第一部分 计算(44分)
一、直接写出得数(10分)
8.5-2.9= 0.5+5.55= 0.125×7×0.8= 3.6÷0.02=
3.9-0.9×4= 0.8÷0.5-0.8×0.5= 0.2×0.3×0.4=
1÷2.5×0.4= 8.6×0.9≈ (结果精确到个位) 2÷3= (商用循环小数表示)
二、解方程(打-的要检验)(10分)
① X÷1.2+3.6=6 ② 2.1(9.6-x)=8.4 ③ - 4x+13=9x
三、递等式计算(能巧算的要巧算)(18分)
① 15.68-8.25-(3.68+2.75) ② 6.4×5.6+64×0.44
③ 4.4×2.5×3 ④ 0.5÷[(10.75-4.5)×0.8]
⑤ 9.8÷12.5 ⑥ 89.1÷(0.1-0.1×0.1)
四、列式计算(6分)
① 0.9被2减去0.2的差除,所得的商再扩大5倍,结果是多少?
② 一个数的2.5倍比16少3.5,这个数是多少?
第二部分 概念(21分)
一、填空:(16分,每题2分)
① 3小时15分=( )小时 7.5m2=( )m2( )dm2
②在( )内填上“>”“<”或“=”。
73.8÷0.1( )73.8 ×10 8.7÷0.99( )8.7
③ 8.968968……是一个循环小数,用简便形式记作( ),四舍五入到十分位约是( )。
④把10升饮料装入容量为0.35升的罐子里,可以装满( )罐,还余下( )升。
⑤含有字母的式子:4b÷2+7b+1,可以化简为 ,当b=1.5时,
这个式子的值是 。
⑥小丁丁上午9时28分进入动物园,参观了1小时41分,他于当天上午( )时( )分离开动物园。
⑦一个等腰梯形的周长是40分米,高是5分米,一条腰长8分米,这个等腰梯形的面积是平方分米。
⑧梯形面积的计算公式是S=(a+b)h÷2,当a=b时,S=( ),
当b=0时,S=( )。
二、判断(2分)
① 小胖走3千米的山路,他上山的速度是2千米/时,下山的速度是3千米/时,那么他上、下山的平均速度是2.5千米/时。 ( )
②沿着平行四边形的一条对角线剪开,一定能得到两个完全相同的三角形 ( )
三、选择(3分)
①下列式子是方程的是( )。
A 5X+y B y>3 C a2=4 D 8+4=1
②面积和底都相等的一个三角形和一个平行四边形,如果三角形的高是8厘米,那么平行四边形的高是( )厘米。
A、8 B、4 C、16 D、20
③下面两个平行四边形完全相同,阴影部分的面积( )
A B
A A>B B A
第三部分 应用(25分)
① 一块平行四边形的菜地,底长12.5米,比高的2.5倍多2米,这块地的底是多少米?面积是多少平方米?
②“图书角”里有一些科普书和故事书,其中故事书有92本,如果拿出18本科普书,那么剩下的科普书比故事书少9本,“图书角”原来有多少本科普书?
③五(1)班庆祝元旦布置教室,张老师买了40个气球,付出50元,找回的钱正好买了4根单价为4.5元的彩带,每个气球多少钱?
④数学测验,小亚前三次的平均成绩是92分,加上第四次后平均分是93.5分,小亚第四次测验的成绩是多少?
⑤下表是小胖家12月份用电情况,请你算一下小胖家12月份的电费是多少元?
分段 用电量(千瓦时) 单价(元)
峰段 (早上六点到晚上十点) 250 0.61
谷段 (晚上十点到第二天早上六点) 125 0.30
第四部分 几何 (10分)
一.按要求画高:(4分)
画出AB边上的高。 过点A画出梯形的高。
二、图形计算:(6分)
① 计算图形中的未知量。(单位:㎝)
S=15.6cm2
② 已知平行四边形的面积是24平方厘米,梯形下底5厘米,根据图中的已知条件,求出阴影部分的三角形的面积。
沪教版五年级上册数学期末试题答案
第一部分 计算(44分)
一、直接写出得数(10分)
8.5-2.9= 5.6 0.5+5.55= 6.05 0.125×7×0.8= 0.7 3.6÷0.02=180
3.9-0.9×4= 0.3 0.8÷0.5-0.8×0.5=1.2 0.2×0.3×0.4=0.024
1÷2.5×0.4= 0.16 8.6×0.9≈8 2÷3=0.6
二、解方程(打-的要检验)(10分)
① X÷1.2+3.6=6 ② 2.1(9.6-x)=8.4 ③ - 4x+13=9x
X÷1.2=2.4 1分 9.6-x=4 1分 5 x=13 1分
X=2.88 2分 x=5.6 2分 x=2.6 2分
三、递等式计算(1、2、3、5巧算,没巧算计算正确得1分)
① 15.68-8.25-(3.68+2.75) ② 6.4×5.6+64×0.44
=15.68-8.25-3.68-2.75 1分 =6.4×(5.6+4.4) 1分
=15.68-3.68-(8.25+2.75) 1分 =6.4×10 1分
=1 1分 =64 1分
③ 4.4×2.5×3 ④ 0.5÷[(10.75-4.5)×0.8]
=(4×2.5)×(1.1×3) 1分 = 0.5÷[6.25×0.8] 1分
=10×3.3 1分 =0.5÷5 1分
=33 1分 =0.1 1分
⑤ 9.8÷12.5 ⑥ 89.1÷(0.1-0.1×0.1)
=(9.8×8)÷(12.5×8) 1分 =89.1÷(0.1-0.01) 1分
=78.4÷100 1分 =89.1÷0.09 1分
=0.784 1分 =990 1分
四、列式计算(列式2分,计算1分)
① 0.9÷(2-0.2)×5=2.5 ② 2.5X=16-3.5 X= 5
第二部分 概念(21分)
一、填空:(16分,每题2分)
① 3小时15分=(3.25 )小时 7.5m2=( 7 )m2( 50 )dm2
②73.8÷0.1( = )73.8 ×10 8.7÷0.99( >)8.7
③用简便形式记作(略 ),四舍五入到十分位约是( 9.0 )。
④可以装满( 28 )罐,还余下(0.2 )升。
⑤可以化简为 9b+1 ,当b=1.5时,这个式子的值是 14.5 。
⑥他于当天上午(11 )时( 09)分离开动物园。
⑦这个等腰梯形的面积是 60平方分米。
⑧当a=b时,S=( ah ),当b=0时,S=( ah÷2 )。
二、判断(2分)
① × ②√
三、选择(3分)
① C ② B ③ C
第三部分 (列式3分,计算2分)
① 底3分,其中列式2分,计算1分;面积2分,其中列式1分,计算1分
答案 4.2米 52.5平方米
②101本 ③ 0.8元 ④ 98分 ⑤190元
第四部分 几何 (10分)
一.按要求画高:
每题2分,其中 正确画高1分,垂直记号1分 (图略)
二、图形计算:(每题3分。)
① 3.9厘米 (列式2分,计算1分
② 2平方厘米(算出平行四边形底得1分)
文档为doc格式