欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

单调性与最大最小值的检测试题

时间:2022-06-02 01:57:20 其他范文 收藏本文 下载本文

下面是小编为大家推荐的单调性与最大最小值的检测试题,本文共10篇,欢迎阅读,希望大家能够喜欢。

单调性与最大最小值的检测试题

篇1:单调性与最大最小值检测试题

关于单调性与最大最小值检测试题

1.函数f(x)=x2在[0,1]上的最小值是( )

A.1 B.0

C.14 D.不存在

解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知,

f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.

2.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的最大值、最小值分别为( )

A.10,6 B.10,8

C.8,6 D.以上都不对

解析:选A.f(x)在x∈[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.

3.函数y=-x2+2x在[1,2]上的最大值为( )

A.1 B.2

C.-1 D.不存在

解析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=-1+2=1.

4.函数y=1x-1在[2,3]上的最小值为( )

A.2 B.12

C.13 D.-12

解析:选B.函数y=1x-1在[2,3]上为减函数,

∴ymin=13-1=12.

5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( )

A.90万元 B.60万元

C.120万元 D.120.25万元

解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L最大为120万元,故选C.

6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )

A.-1 B.0

C.1 D.2

解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.

∴函数f(x)图象的'对称轴为x=2,

∴f(x)在[0,1]上单调递增.

又∵f(x)min=-2,

∴f(0)=-2,即a=-2.

f(x)max=f(1)=-1+4-2=1.

7.函数y=2x2+2,x∈N*的最小值是________.

解析:∵x∈N*,∴x2≥1,

∴y=2x2+2≥4,

即y=2x2+2在x∈N*上的最小值为4,此时x=1.

答案:4

8.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.

解析:由题意知f(x)在[1,a]上是单调递减的,

又∵f(x)的单调减区间为(-∞,3],

∴1

答案:(1,3]

9.函数f(x)=xx+2在区间[2,4]上的最大值为________;最小值为________.

解析:∵f(x)=xx+2=x+2-2x+2=1-2x+2,

∴函数f(x)在[2,4]上是增函数,

∴f(x)min=f(2)=22+2=12,

f(x)max=f(4)=44+2=23.

答案:23 12

10.已知函数f(x)=x2 -12≤x≤11x 1<x≤2,

求f(x)的最大、最小值.

解:当-12≤x≤1时,由f(x)=x2,得f(x)最大值为f(1)=1,最小值为f(0)=0;

当1<x≤2时,由f(x)=1x,得f(2)≤f(x)<f(1),

即12≤f(x)<1.

综上f(x)max=1,f(x)min=0.

11.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.

(1)当每辆车的月租金为3600元时,能租出多少辆车?

(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?

解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600-300050=12.所以这时租出了88辆车.

(2)设每辆车的月租金为x元.则租赁公司的月收益为f(x)=(100-x-300050)(x-150)-x-300050×50,

整理得

f(x)=-x250+162x-21000=-150(x-4050)2+307050.

所以,当x=4050时,f(x)最大,最大值为f(4050)=307050.即当每辆车的月租金为4050元时,租赁公司的月收益最大.最大月收益为307050元.

12.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.

解:f(x)=(x-a)2-1-a2,对称轴为x=a.

①当a<0时,由图①可知,

f(x)min=f(0)=-1,

f(x)max=f(2)=3-4a.

②当0≤a<1时,由图②可知,

f(x)min=f(a)=-1-a2,

f(x)max=f(2)=3-4a.

③当1≤a≤2时,由图③可知,

f(x)min=f(a)=-1-a2,

f(x)max=f(0)=-1.

④当a>2时,由图④可知,

f(x)min=f(2)=3-4a,

f(x)max=f(0)=-1.

综上所述,当a<0时,f(x)min=-1,f(x)max=3-4a;

当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;

当1≤a≤2时,f(x)min=-1-a2,f(x)max=-1;

当a>2时,f(x)min=3-4a,f(x)max=-1.

篇2:单调性与最大最小值的检测试题

单调性与最大最小值的检测试题

1.函数f(x)=9-ax2(a>0)在[0,3]上的最大值为( )

A.9 B.9(1-a)

C.9-a D.9-a2

选A.

2.函数y=x+1-x-1的值域为( )

A.(-∞,2 ] B.(0,2 ]

C.[2,+∞) D.[0,+∞)

选B.

3.函数f(x)=x2-2ax+a+2在[0,a]上取得最大值3,最小值2,则实数a为( )

A.0或1 B.1

C.2 D.以上都不对

选B.

4.(高考山东卷)已知x,y∈R+,且满足x3+y4=1.则xy的最大值为________.

.

答案:3

1.函数f(x)=x2在[0,1]上的最小值是( )

A.1 B.0

C.14 D.不存在

选B.

2.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的最大值、最小值分别为( )

A.10,6 B.10,8

C.8,6 D.以上都不对

选A.

3.函数y=-x2+2x在[1,2]上的最大值为( )

A.1 B.2

C.-1 D.不存在

选A

4.函数y=1x-1在[2,3]上的最小值为( )

A.2 B.12

C.13 D.-12

选B.

5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( )

A.90万元 B.60万元

C.120万元 D.120.25万元

选C.

6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )

A.-1 B.0

C.1 D.2

选C.

7.函数y=2x2+2,x∈N*的`最小值是________.

答案:4

8.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.

答案:(1,3]

9.函数f(x)=xx+2在区间[2,4]上的最大值为________;最小值为________.

答案:23 12

10.已知函数f(x)=x2 -12≤x≤11x 1<x≤2,

求f(x)的最大、最小值.

解:当-12≤x≤1时,由f(x)=x2,得f(x)最大值为f(1)=1,最小值为f(0)=0;

当1<x≤2时,由f(x)=1x,得f(2)≤f(x)<f(1),

即12≤f(x)<1.

综上f(x)max=1,f(x)min=0.

11.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.

(1)当每辆车的月租金为3600元时,能租出多少辆车?

(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?

解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600-300050=12.所以这时租出了88辆车.

(2)设每辆车的月租金为x元.则租赁公司的月收益为f(x)=(100-x-300050)(x-150)-x-300050×50,

整理得

f(x)=-x250+162x-21000=-150(x-4050)2+307050.

所以,当x=4050时,f(x)最大,最大值为f(4050)=307050.即当每辆车的月租金为4050元时,租赁公司的月收益最大.最大月收益为307050元.

12.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.

解:f(x)=(x-a)2-1-a2,对称轴为x=a.

①当a<0时,由图①可知,

f(x)min=f(0)=-1,

f(x)max=f(2)=3-4a.

②当0≤a<1时,由图②可知,

f(x)min=f(a)=-1-a2,

f(x)max=f(2)=3-4a.

③当1≤a≤2时,由图③可知,

f(x)min=f(a)=-1-a2,

f(x)max=f(0)=-1.

④当a>2时,由图④可知,

f(x)min=f(2)=3-4a,

f(x)max=f(0)=-1.

综上所述,当a<0时,f(x)min=-1,f(x)max=3-4a;

当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;

当1≤a≤2时,f(x)min=-1-a2,f(x)max=-1;

当a>2时,f(x)min=3-4a,f(x)max=-1.

篇3:高一数学寒假作业最大最小值检测试题

函数f(x)=9-ax2(a>0)在[0,3]上的最大值为( )

A.9 B.9(1-a)

C.9-a D.9-a2

解析:选A.x∈[0,3]时f(x)为减函数,f(x)max=f(0)=9.

2.函数y=x+1-x-1的值域为( )

A.(-∞,2 ] B.(0,2 ]

C.[2,+∞) D.[0,+∞)

解析:选B.y=x+1-x-1,∴x+1≥0x-1≥0,

∴x≥1.

∵y=2x+1+x-1为[1,+∞)上的减函数,

∴f(x)max=f(1)=2且y>0.

3.函数f(x)=x2-2ax+a+2在[0,a]上取得最大值3,最小值2,则实数a为( )

A.0或1 B.1

C.2 D.以上都不对

解析:选B.因为函数f(x)=x2-2ax+a+2=(x-a)2-a2+a+2, 对称轴为x=a,开口方向向上,所以f(x)在[0,a]上单调递减,其最大值、最小值分别在两个端点处取得,即f(x)max=f(0)=a+2=3,

f(x)min=f(a)=-a2+a+2=2.故a=1.

4.(高考山东卷)已知x,y∈R+,且满足x3+y4=1.则xy的最大值为________.

解析:y4=1-x3,∴0<1-x3<1,0

而xy=x4(1-x3)=-43(x-32)2+3.

当x=32,y=2时,xy最大值为3.

答案:3

篇4:四年级的最大最小值类试题

四年级的最大最小值类试题精选

六位小朋友数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分。那么,按分数从高到低居第3位的同学至少得多少分?

分析:

按分数从高到低居第3位的同学至少得95分。

分析:

要使第三名的得分少,则第二名的'得分要尽可能高。题目说到:“他们的成绩是互不相同的整数”,所以第二名得分最高为98分,当居第三、四、五名的分数越接近,居第三名的分数就越少。

解答:

根据以上的分析,居第三、四、五名这三人的平均分是(92.5×6-99-98-76)÷3=94(分)。由此可知居第四、五名的得分至少是94分、93分,所以居第三名的得分至少是95分。

【小结】

我们在解这类题目时,一定要认真审题,根据题目的具体特点,仔细分析和思考,灵活和辩证地选择解法。

篇5:函数单调性与奇偶性

函数单调性与奇偶性

教学目标

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(2)能从数和形两个角度认识单调性和奇偶性.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的'标准,以便帮助学生总结规律.

函数的奇偶性概念引入时,可设计一个课件,以 的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值 开始,逐渐让 在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式 时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如 )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

函数的奇偶性教学设计方案

教学目标

1.使学生了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性.

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.

3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.

教学重点,难点

重点是奇偶性概念的形成与函数奇偶性的判断

难点是对概念的认识

教学用具

投影仪,计算机

教学方法

引导发现法

教学过程

一. 引入新课

前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?

(学生可能会举出一些数值上的对称问题, 等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如 和 等.)

结合图象提出这些对称是我们在初中研究的关于 轴对称和关于原点对称问题,而我们还曾研究过关于 轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于 轴对称的吗?

学生经过思考,能找出原因,由于函数是映射,一个 只能对一个 ,而不能有两个不同的,故函数的图象不可能关于 轴对称.最终提出我们今天将重点研究图象关于 轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.

二. 讲解新课

2.函数的奇偶性(板书)

教师从刚才的图象中选出 ,用计算机打出,指出这是关于 轴对称的图象,然后问学生初中是怎样判断图象关于 轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?

学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令 比较 得出等式 ,再令 ,得到 ,详见课件的使用)进而再提出会不会在定义域内存在 ,使 与 不等呢?(可用课件帮助演示让 动起来观察,发现结论,这样的 是不存在的)

从这个结论中就可以发现对定义域内任意一个 ,都有 成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.

(1) 偶函数的定义:如果对于函数 的定义域内任意一个 ,都有 ,那么 就叫做偶函数.(板书)

(给出定义后可让学生举几个例子,如 等以检验一下对概念的初步认识)

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出 或 的图象让学生观察研究)

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.

(2) 奇函数的定义: 如果对于函数 的定义域内任意一个 ,都有 ,那么 就叫做奇函数.(板书)

(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)

例1.  判断下列函数的奇偶性(板书)

(1) ;              (2) ;

(3) ; ;

(5) ;  (6) .

(要求学生口答,选出1-2个题说过程)

解: (1) 是奇函数.(2) 是偶函数.

(3) , 是偶函数.

前三个题做完,教师做一次小结,判断奇偶性,只需验证 与 之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?

学生经过思考可以解决问题,指出只要举出一个反例说明 与 不等.如 即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)

从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的 = 不能经受任意性的考验,当 时,由于 ,故 不存在,更谈不上与 相等了,由于任意性被破坏,所以它不能是奇偶性.

教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有 ,就必有 ,有 就必有 ,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?

可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.

(3) 定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)

由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.

经学生思考,可找到函数 .然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?

例2.  已知函数 既是奇函数也是偶函数,求证: .(板书)   (试由学生来完成)

证明: 既是奇函数也是偶函数,

= ,且 ,

= .

,即 .

证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现, 只是解析式的特征,若改变函数的定义域,如 , , , ,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类

(4) 函数按其是否具有奇偶性可分为四类: (板书)

例3.  判断下列函数的奇偶性(板书)

(1) ;       (2) ;   (3) .

由学生回答,不完整之处教师补充.

解: (1)当 时, 为奇函数,当 时, 既不是奇函数也不是偶函数.

(2)当 时, 既是奇函数也是偶函数,当 时, 是偶函数.

(3) 当 时, 于是 ,

当 时, ,于是 = ,

综上 是奇函数.

教师小结 (1)(2)注意分类讨论的使用,(3)是分段函数,当 检验 ,并不能说明 具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须 均有 成立,二者缺一不可.

三. 小结

1. 奇偶性的概念

2. 判断中注意的问题

四. 作业 略

五.板书设计

2.函数的奇偶性 例1.                 例3.

(1) 偶函数定义

(2) 奇函数定义

(3) 定义域关于原点对称是函数 例2.                  小结

具备奇偶性的必要条件

(4)函数按奇偶性分类分四类

  探究活动

(1)      定义域为 的任意函数 都可以表示成一个奇函数和一个偶函数的和,你能试证明之吗?

(2) 判断函数 在 上的单调性,并加以证明.

在此基础上试利用这个函数的单调性解决下面的问题:

设 为三角形的三条边,求证: .

篇6:函数单调性与奇偶性教案

函数单调性与奇偶性教案

教学目标

1。了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。

(2)能从数和形两个角度熟悉单调性和奇偶性。

(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。

2。通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。

3。通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的.难点是领悟函数单调性, 奇偶性的本质,把握单调性的证实。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。

(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。

函数的奇偶性概念引入时,可设计一个课件,以 的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值 开始,逐渐让 在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式 时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如 )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

篇7:函数的单调性与导数教案

函数的单调性与导数教案

一、目标

知识与技能:了解可导函数的单调性与其导数的关系 ; 能利用导数研究函数的单调性,会求函数的单调区间。

过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

二、重点难点

教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间

教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间

三、教学过程:

函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.

四、学情分析

我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。

五、教学方法

发现式、启发式

新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习

六、课前准备

1.学生的学习准备:

2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:

1课时

八、教学过程

(一)预习检查、总结疑惑

检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

提问

1.判断函数的单调性有哪些方法?

(引导学生回答“定义法”,“图象法”。)

2.比如,要判断 y=x2 的单调性,如

何进行?(引导学生回顾分别用定义法、图象法完成。)

3.还有没有其它方法?如果遇到函数:

y=x3-3x判断单调性呢?(让学生短时

间内尝试完成,结果发现:用“定义法”,

作差后判断差的符号麻烦;用“图象法”,图象很难画出来。)

4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。

以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。

(二)情景导入、展示目标。

设计意图:步步导入,吸引学生的注意力,明确学习目标。

(探索函数的单调性和导数的关系) 问:函数的单调性和导数有何关系呢?

教师仍以y=x2为例,借助几何画板动态演示,让学生记录结果在课前发的表格第二行中:

函数及图象 单调性 切线斜率k的正负 导数的正负

问:有何发现?(学生回答)

问:这个结果是否具有一般性呢?

(三)合作探究、精讲点拨。

我们来考察两个一般性的例子:

(教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。)

问:能否得出什么规律?

让学生归纳总结,教师简单板书:

在某个区间(a,b)内,

若f ' (x)>0,则f(x)在(a,b)上是增函数;

若f ' (x)<0,则在f(x)(a,b)上是减函数。

教师说明:

要正确理解“某个区间”的含义,它必需是定义域内的某个区间。

1.这一部分是后面利用导数求函数单调区间的理论依据,重要性不言而喻,而学生又只学习了导数的意义和一些基本运算,要想得到严格的证明是不现实的,因此,只要求学生能借助几何直观得出结论,这与新课标中的要求是相吻合的。

2.教师对具体例子进行动态演示,学生对一般情况进行实验验证。由观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体。

3.得出结论后,教师强调正确理解“某个区间”的含义,它必需是定义域内的某个区间。这一点将在例1的变式3具体体现。

4.考虑到本节课堂容量较大,这里没有提到函数在个别点处导数为零不影响单调性的情况(如y=x3在x=0处),这一问题将在后续课程中给学生补充。

应用导数求函数的单调区间

例1.求函数y=x2-3x的单调区间。

(引导学生得出解题思路:求导 →

令f ' (x)>0,得函数单调递增区间,令f ' (x)<0,得函数单调递减区间 → 下结论)

变式1:求函数y=3x3-3x2的单调区间。

(竞赛活动:将全班同学分成两大组指定分别用单调性的定义,和用求导数的方法解答,每组各推荐一位同学的答案进行投影。)

求单调区间是导数的一个重要应用,也是本节重点,为此,设计了例1及三个变式:

设计例1可引导学生得出用导数法求单调区间的解题步骤

设计变式1及竞赛活动可以激发学生的`学习热情,让他们学会比较,并深刻体验导数法的优越性。

巩固提高

变式2:求函数y=3e x -3x单调区间。

(学生上黑板解答)

变式3:求函数 的单调区间。

设计变式2且让学生上黑板解答可以规范解题格式,同时使学生了解用导数法可以求更复杂的函数的单调区间。

设计变式3是可使学生体会考虑定义域的必要性

例1及三个变式,依次涉及二次,三次函数,含指数的函数、反比例函数,这样一题多变,逐步深化,从而让学生领会:如何应用及哪类单调性问题该应用“导数法”解决。

多媒体展示探究思考题。

在学生分组实验的过程中教师巡回观察指导。 (课堂实录) ,

(四)反思总结,当堂检测。

教师组织学生反思总结本节课的主要内容,并进行当堂检测。

设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)

(五)发导学案、布置预习。

设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。

九、板书设计

例1.求函数y=3x2-3x的单调区间。

变式1:求函数y=3x3-3x2的单调区间。

变式2:求函数y=3e x -3x单调区间。

变式3:求函数 的单调区间。

十、教学反思

本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。

在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!

篇8:上学期 2.3 函数单调性与奇偶性

上学期 2.3 函数单调性与奇偶性

教学目标

1.使学生了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性.

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.

3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.

教学重点,难点

重点是奇偶性概念的形成与函数奇偶性的判断

难点是对概念的认识

教学用具

投影仪,计算机

教学方法

引导发现法

教学过程

一. 引入新课

前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?

(学生可能会举出一些数值上的对称问题, 等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如 和 等.)

结合图象提出这些对称是我们在初中研究的关于 轴对称和关于原点对称问题,而我们还曾研究过关于 轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于 轴对称的吗?

学生经过思考,能找出原因,由于函数是映射,一个 只能对一个 ,而不能有两个不同的,故函数的图象不可能关于 轴对称.最终提出我们今天将重点研究图象关于 轴对称和关于原点对称的'问题,从形的特征中找出它们在数值上的规律.

二. 讲解新课

2.函数的奇偶性(板书)

教师从刚才的图象中选出 ,用计算机打出,指出这是关于 轴对称的图象,然后问学生初中是怎样判断图象关于 轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?

学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令 比较 得出等式 ,再令 ,得到 ,详见课件的使用)进而再提出会不会在定义域内存在 ,使 与 不等呢?(可用课件帮助演示让 动起来观察,发现结论,这样的 是不存在的)

从这个结论中就可以发现对定义域内任意一个 ,都有 成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.

(1) 偶函数的定义:如果对于函数 的定义域内任意一个 ,都有 ,那么 就叫做偶函数.(板书)

(给出定义后可让学生举几个例子,如 等以检验一下对概念的初步认识)

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出 或 的图象让学生观察研究)

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.

(2) 奇函数的定义: 如果对于函数 的定义域内任意一个 ,都有 ,那么 就叫做奇函数.(板书)

(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)

例1.  判断下列函数的奇偶性(板书)

(1) ;              (2) ;

(3) ; ;

(5) ;  (6) .

(要求学生口答,选出1-2个题说过程)

解: (1) 是奇函数.(2) 是偶函数.

(3) , 是偶函数.

前三个题做完,教师做一次小结,判断奇偶性,只需验证 与 之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?

学生经过思考可以解决问题,指出只要举出一个反例说明 与 不等.如 即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)

从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的 = 不能经受任意性的考验,当 时,由于 ,故 不存在,更谈不上与 相等了,由于任意性被破坏,所以它不能是奇偶性.

教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有 ,就必有 ,有 就必有 ,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?

可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.

(3) 定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)

由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.

经学生思考,可找到函数 .然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?

例2.  已知函数 既是奇函数也是偶函数,求证: .(板书)   (试由学生来完成)

证明: 既是奇函数也是偶函数,

= ,且 ,

= .

,即 .

证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现, 只是解析式的特征,若改变函数的定义域,如 , , , ,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类

(4) 函数按其是否具有奇偶性可分为四类: (板书)

例3.  判断下列函数的奇偶性(板书)

(1) ;       (2) ;   (3) .

由学生回答,不完整之处教师补充.

解: (1)当 时, 为奇函数,当 时, 既不是奇函数也不是偶函数.

(2)当 时, 既是奇函数也是偶函数,当 时, 是偶函数.

(3) 当 时, 于是 ,

当 时, ,于是 = ,

综上 是奇函数.

教师小结 (1)(2)注意分类讨论的使用,(3)是分段函数,当 检验 ,并不能说明 具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须 均有 成立,二者缺一不可.

三. 小结

1. 奇偶性的概念

2. 判断中注意的问题

四. 作业 略

五. 板书设计

2.函数的奇偶性 例1.                 例3.

(1) 偶函数定义

(2) 奇函数定义

(3) 定义域关于原点对称是函数 例2.                  小结

具备奇偶性的必要条件

(4)函数按奇偶性分类分四类

篇9:导数与函数的单调性的教学反思

1、本节课由于提前撰写了教学设计,并且经过了精心的修改,通过课堂教学的实施,能够把新课标理念渗透到教学中去,体现了以学生为主体,以教师为主导的作用发挥的比较到位,学生能极思考,思维敏捷,合作学习氛围浓厚,是一堂成功的教学设计课。

2、本节课存在的不足之处是:

①教学引入时间较长,致使整堂课时间安排显得前松后紧。

②在引导学生探讨如何把导数与函数的单调性联系起来时,列举的函数有点多;应该去掉1-2个函数(一次函数只需选一个)。

③教态不够自然、大方;显得过于紧张。

④由于前松后紧,课堂小结不够到位。

3、

①本节课教学设计安排比较紧凑,加之学生基础较好,是能够完成教学任务的,而且效果显著;但在实施过程中,由于学生对函数的增减性概念不熟透,致使引入时间较长,课堂教学的结尾显得太匆忙。

②由于听课教师太多,讲课时太紧张,课堂表达显得不自然,语言不够精炼。

4、改进的思路:

①选取函数时去掉两个一次函数。

②在引导学生提问时,问题要简明扼要。

③多进行公开课,锻炼自己的胆量和语言表达能力。

篇10:导数与函数的单调性的教学反思

一、本节课的成功之处:

1.注重教学设计

本节课由于提前撰写了教学设计,并且经过了精心的修改,通过课堂教学的实施,能够把新课标理念渗透到教学中去,体现了以学生为主体,以教师为主导的作用发挥的比较到位,学生能极思考,思维敏捷,合作学习氛围浓厚,是一堂成功的教学设计课。

2.注重探究方法和数学思想的渗透

教学过程中教师指导启发学生以循序渐进的模式由简到难,再从理论上探究验证,这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知。同时也渗透了归纳推理的数学思想方法。培养了学生的探索精神,积累了探究经验。

3.突出学生主体地位,教师做好组织者和引导者

教师在整个教学过程一直保持着组织者与引导者的身份,通过抛出的若干问题,促使学生主动探索、积极思维。充分发挥学生的主动性,让学生在动脑、动口、动手的活动中掌握知识和方法,提炼规律。并体验发现规律的喜悦感,激发热爱数学的积极情绪。

4.现代信息技术的合理使用

多媒体的使用,第一,在教学上节省了时间,让学生有更多时间去探究。第二,利用几何画板的优势,使原本不能画出的图像都通过几何画板画出,直观的验证了函数的导数的正负与单调性的关系。帮助学生发现规律。使探究落到实处。

二、本节课存在的不足之处是:

(1)课件中有些漏掉的部分。

(2)作业部分未展示。

(3)复习导数概念时,由于学生说不清楚,教师没及时中断,导致引入时间有点长。

三、改进思路:

(1)加强学习现代信息技术,提高制作多媒体技术的水平。

(2)在设计教学时,在考虑全面一些,是教学过程更符合学生实际水平。

导数与函数的单调性的教学反思

函数的单调性教学设计

《函数的单调性》教学设计

《函数的单调性》数学教学反思

连续函数的单调性及凸凹性研究

保温材料检测试题

不可微函数的不变伪单调性与伪不变凸性

《悲惨世界》阅读检测试题

《琵琶行》检测试题及答案

普通话水平考试检测试题

《单调性与最大最小值的检测试题(共10篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档