下面小编给大家整理的分数的性质 教学设计(人教版五年级下册),本文共13篇,希望大家喜欢!

篇1:分数的性质 教学设计(人教版五年级下册)
第一课时
教学目标:
① 使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
② 培养学生观察、分析和抽象概括能力。
③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点 : 理解分数的基本性质。
教学用具: 每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程:
一、 创设导入
同学们,你知道哪只猴子分得多吗?
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分小猴们吃,它先把第一块饼平均切成二块,分给第一个小猴子一块。第二个小猴子见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二个小猴子两块。第三个小猴子更贪,它抢着说:“我要四块,我要四块。”于是,猴王又把第三块饼平均切成八块,分给第三个小猴子四块。这就是今天我们要解决问题。教师板书课题:分数的基本性质。
二、出示学习目标(学生齐读)
1)经历探索分数的基本性质的过程,理解分数的基本性质。
2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
三、出示自学提示(指名读)
1、分别把三张一样大的正方形纸平均分成两份、四份、八份
再把平均分成两份的将其中的一份涂上颜色,把平均分成四份的将其中的两份涂上颜色,把平均分成八份的将其中的四份涂上颜色。比一比:发现了什么?
2、根据分数与除法的关系,以及整数除法中商的变化规律,你能说明分数的基本性质吗?
四、学生自主合作学习
五、小组展示学习成果(出示展示评价分工表)
六、评价质疑拓展
1、仔细观察这三个分数什么变了?什么没变?
2、那它的分子分母发生了怎样的变化呢?让我们从左往右看。
从右往左看,它的分子分母又发生了怎样的变化呢?
(分数的分子和分母同时乘相同的数,分数的大小不变。
分数的分子和分母同时除以相同的数,分数的大小不变。)
3、根据分数与除法的关系,以及整数除法中商的变化规律,你能说明分数的基本性质吗? (被除数相当于分子,除数相当于分母;被除数与除数同时扩大或缩小相同的倍数,就是分子与分母同时乘或除以相同的数(0除外);商不变也是分数大小不变).
4、观察比较后引导学生得出: 分数的分子和分母同时乘或者除以相同的数,(0除外)分数的大小不变。这叫做分数的基本性
七、检测示答纠错
1、理解性的练习
2、判断、说理练习
3、在下面( )内填上合适的数。
八、回顾总结评价
九、作业
练习十七 第一题、第二题
板书设计:
分数的分子和分母同时乘相同的数,分数的大小不变。
分数的分子和分母同时除以相同的数,分数的大小不变
分数的分子和分母同时乘或者除以相同的数, (0除外) 分数的大小不变。这叫做分数的基本性质。
篇2:分数的基本性质 教案教学设计(人教版五年级下册)
教学过程:
一、 故事情景引入
1. 师:同学们,你们喜欢听故事吗?那我们一起来边听故事边想一想故事中告诉了我们哪些数学信息?(课件播放故事录音)
2. 师:故事中告诉我们哪些数学信息,你能用分数表示出来吗?
3. 师;现在猜猜看这三个分数哪个大?生;一样大
4. 师:也许你们的猜想是对的,科学家们的发明往往也是从猜想开始的,但只有经过验证得出的结论才是科学的,这节课就让我们来做个小数学家,一起来验证这三个分数是不是相等。
二、 动手操作,初步感知
1. 课件出示操作要求
2. 组织交流汇报
①折纸比较的方式发现
②画图观察的方式发现
③用分数、小数的关系发现
④运用商不变的规律发现
⑤其他方法发现
教师对于学生汇报到的方法一一评价鼓励
3. 那现在你同意懒洋洋的观点吗?
4. 通过验证三个分数确实相等,它们的分子和分母都不一样,可这三个分数怎么大小却一样呢?这组分数中隐藏着什么规律呢?
三、引导观察,探索规律(课件出示交流内容)
1.交流汇报;
(1)仔细观察这三个分数什么变了?什么没变?
(2)让我们从左往右看,它的分子分母发生了怎样的变化呢?
出示:分数的分子和分母同时乘相同的数,分数的大小不变。
(3)从右往左看,它的分子分母又发生了怎样的变化呢?
出示:分数的分子和分母同时除以相同的数,分数的大小不变。
(4)你还能举出几个这样的例子吗?
师:根据上面的例子,可以得出什么规律?
出示:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
师:还有什么要补充的吗?可以同时乘或者除以0吗?为什么?
出示完整的分数的性质:分数的分子和分母同时乘或者除以相同的数,(0除外)分数的大小不变,这叫做分数的基本性质。
(5)想一想:根据分数与除法的关系,以及整数除法中商的变化规律,你能说明分数的基本性质吗?
小结:被除数相当于分子,除数相当于分母;被除数与除数同时扩大或缩小相同的倍数,就是分子与分母同时乘或除以相同的数(0除外);商不变也是分数大小不变.。
其实,数学的知识中有许多地方是像商不变性质、分数基本性质一样相互联系的,同学们要善于发现,才能更好地学好数学。
3. 运用规律
师:这节课我们不但要学习分数的基本性质,还要学习它的用处,下面我们看看例2,你能独立完成吗?
师:上面两个分数的变化依据是什么?
四、 练习拓展
村长慢洋洋懂得运用分数的基本性质解决问题,那么我们能不能运用今天所学知识来解决其他问题呢?
五、课堂小结
篇3:分数的基本性质 教学案例(人教版五年级下册)
课题章节 分数的基本性质(第一课时)
教
学
目
标 知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
课
堂
教
学 重点:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
难点:让学生理解和掌握分数的基本性质
教学
方法 多媒体教学
教具 多媒体
教学过程与教学内容:
一、 创设情境
师:“同学们,每年的中秋节你们都会吃什么呢?对,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,洪老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?”
师:“好,既然大家都这么好奇,就集中注意认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵(边讲边将名字依次写在黑板上)都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边在相应的名字写出三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。”
师:“同学们,你们觉得李奶奶公平吗?现在同桌之间讨论一下。”
讨论完了请举手。
生1:“我觉得不公平,小红分得多。”
生2:“我觉得小明分得多。”
生3:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、 实践探索
师:“下面我们来做个实验。现在老师已经在黑板上画出了三个大小相同的’月饼’。”(拿出圆规画出3个等大的圆)
师: “我们就像李奶奶一样来分月饼了。首先,请在第一张圆片上我们取出1/3给小红;第二张圆片我们取出2/6给小明;最后在第三张圆片取出3/9给小兵。 好了,同学们都来想一想,我们应该怎么分呢?。
师:“下面请哪位同学说一说,你是怎么想的?”
生1:“把第一个圆片看成一个整体,平均分成三份,取其中的一份,就是它的三分之一。”
生2:“把第二个圆片看成一个整体,平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片看成一个整体,平均分成九份,取其中的三份,就是它的九分之三。 ”(随着学生说完答案,及时将分数写在对应的圆下)
师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来回想一下,李奶奶分月饼公平吗?为什么?”
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生1:“通过图上看起来,这三个分数应该是一样大的。”
生2:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(打上等号)
三、 深入探讨
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生:“它的分子分母都同时扩大了两倍。”(黑板上进行标记)
师:“跟第三个分数比,它又发生了什么变化?”
生:“它的分子分母都同时扩大了三倍。” (黑板上进行标记)
师:“现在我们从右往左看,它的分子分母发生了怎样的变化呢?”
生1:“它的分子分母都同时缩小了两倍。”
生2:“跟第三个分数比,第一个分子分母都缩小扩大了三倍。”
师:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
生:“分数的分子、分母扩大或缩小相同倍数,他们的结果不变。”
师:“分数的分子、分母扩大或缩小相同倍数我们可以换成分数的分子、分母乘或除以相同的数(0除外),分数的大小不变。这就是分数的基本性质”
师:“想一想为什么要加上“零除外”?不加行不行?”
生;“不行,根据分数和除法的关系,除数不能等于0,所以不能除以0。”
生;“可以乘上0”
师:“分母就等于除法中的除数,如果分母乘上0,那么除数就变成了0,这个分数就变得没有意义了,所以乘上0也是不行的”
师:“刚才有同学提到了除法,现在大家回忆一下除法中有一条和分数的基本性质类似的性质?”
生:“除法的商不变性质:被除数和除数同时扩大或缩小相同的倍数(零除外),商不变。”
…
师:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”
四、 应用
师:“学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能像变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。请大家把书本翻到书本76面例2。”
师:“现在同学们能写出一些分子分母不同,但是大小相同的分数吗?大家在练习本上写一下。”
五、 练习
篇4:人教版分数的基本性质教学设计
教学内容:
分数的基本性质。(课本第75-76页的例1、例2及“做一做”、第77页练习十四的第1-3题)
教学目标:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
2、过程与方法:经历探究分数基本性质的过程,感受“变与不变”数学思想方法。
3、情感、态度、价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:自主探究出分数的基本性质
教学准备:多媒体课件、圆形纸片、彩笔等。
教学流程:
一、复习(预设时间:5分钟)
1、
20÷5 =
( 20×3 )÷(5×3 ) =
( 20 ÷2 )÷(5 ÷2 ) =
我是根据:________ 规律。
在整数除法中,被除数和除数同时________或者________相同的数(0除外), ________不变。
2、7÷19= =( )÷( ) ( )÷8=
我是根据:________和________的关系。
根据分数与除法的关系,我们知道分子可以看成________,分数线可以看成________,分母可以看成________,分数值相当于除法中的________。
二、实践操作、自主探究(学生独立完成,预设时间:15分钟)
(一)用准备好的3张同样大小的圆形纸片,按要求完成下面各题。
1、把一张圆形纸片平均分成2 份,把其中的1份涂上颜色,涂上颜色的部分用分数来表示为( )
2、再把其中的一张圆形纸片平均分成4 份,把其中的2份涂上颜色,用分数表示为( )
3、拿最后一张圆形纸片平均分成8份,其中的4份涂上颜色,涂上颜色的部分用分数表示为( )
(二)把三张圆形纸片的涂色部分进行比较,我发现________。
用等式表示为:( )=( )=( )
(教师借助直观图组织学生进行第一个活动,借助直观图形找出相等的分数,使学生能够直观感知)
(三)1、观察第一张圆形纸片和第二张圆形纸片,平均分的份数由( )份变成了( )份,所取的份数也由( )份变成了( )份,分子和分母都( )到原来的( ),也就由得到,即= = 由此可以得出:分数的分子、分母 。
2、反之观察,同样大小的圆形纸片,平均分的份数由( )份变成( )份,所取的份数由( )变成( ),所以,分子、分母都________。
即:= =或= =由此可得出
三、合作探究(预设时间:10分钟)
综合以上两种变化情况,讨论:用一句话概括出其中的规律?
预设:学生的回答可能不完整
例如:一个分数的分子分母同时乘或除以相同的数,分数的大小不变。
师问:这句话中,你觉得最关键的是什么?(同时,相同的数)
“ 相同的数”指哪些数?
你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?
总结:分数的分子和分母同时乘上或者除以一个相同的数(零除外)分数大小不变,这叫做分数的基本性质
这就是我们今天所研究的分数的基本性质,(板书课题)
四、多层练习,深化应用
1、把的分子乘4,要使分数的大小不变,分母也要( )。
2、把的分母除以12,要使分数的大小不变,分子也要( )。
3、我能写出与大小相等而分子、分母不同的分数:
4、连续写出多个分子、分母不同但大小相等的分数。比一比,在1分钟内看谁写得多。
5、我能根据分数的基本性质填空。
1/4=() 10/25=()= () 1/7=()/28
五、全课总结
这节课你有什么收获?(学生从知识、能力、情感方面进行自我收获总结)
六、板书设计
分数的基本性质
分数的分子和分母同时乘上或者除以一个相同的数(零除外)分数大小不变,这叫做分数的基本性质。
篇5:分数的基本性质教案 (人教版五年级下册)
“分数的基本性质”教学预案
【教学目标】
1、知识目标
(1)通过教学使学生理解和掌握分数的基本性质。
(2)理解分数的基本性质与商不变规律的关系。
2、能力目标
(1)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(2)培养学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。
3 、德育目标
(1)渗透事物是相互联系,发展变化的辩证唯物主义观点。
(2)鼓励学生敢于发现问题,培养学生勇于解决问题的创新能力。
【教学重点和难点】
教学重点:理解和掌握分数的基本性质。
教学难点:抽象概括分数的基本性质。
【教学过程】
一、创设情境,迁移猜想
1、提问:在1-9这9个数中,你最喜欢哪两个数?
学生回答后,教师从中选取两个组成一个除法算式。(那么我们这节课就从这个同学最喜欢 的两个数出发,我们将这两个数之间加上一个除号,就变成了一个除法算式)
提问:不计算,谁能很快说出一个除法算式,使这个算式的商与黑板上算式的商相等。
学生回答后教师提问:你是根据什么想到这些算式的?并让学生说一说“商不变的规律”。
(齐读商不变的规律)
2、根据分数和除法的关系,把三个除法算式可以写成分数形式,并用等号连接。
(我们学习了分数与除法的关系,上面这三道除法算式都可以写成三个分数,根据这道除法式的相等关系,下面这三个分数也会有个什么关系?)
3、分数的分子和分母的大小发生了变化,但是分数的大小不变,分数和除法之间有着非常密切的关系,在除法中有商不变的规律,看到这个等式,你们能联想到什么?同学们猜想一下在分数中是不是也有个什么规律或者性质?
把学生的猜想板书在黑板上。
4、同学们刚才进行了大胆的猜想,那么这个猜想是否正确?我们该怎么办?
二、验证猜想,获取新知
1、教师举出12=24的例子,引导学生以小组为单位利用手中的纸验证刚才的猜想。
(李老师举个最简单的例子12和24,12到24的分子、分母同时乘3,24到12分子、分母同时除以2, 我们就一起来证明它们是否相等。请同学们利用老师发给大家的纸、自己带来的直尺等学具,同桌之间相互合作来证明12和24是否相等)
教师巡视,几分钟后,教师让每个组派代表到汇报本组的方法。
2、教师提示几种不同的验证方法
提问:通过刚才的学习你们可以得出什么样的结论?
引导学生自己概括、完善出分数的基本性质。
3、练一练。
将教材第61页的第二题、63页的第三题做成卡片,学生抢答。
三、实践应用,巩固提高
1、判断题:判断下面每组中的两个分数是否相等。(用手式表示)
3/5=6/10( ) 7/12=21/36( ) 9/18=1/9( )
5/15=1/5( ) 5/10=3/6( )
2、说一说:
(1)把 的分母乘以3,分子怎样变化,才能使分数的大小不变?
(2)把12/16 的分子除以4,分母怎样变化,才能使分数的大小不变?
(3)把 的分子加上6,分母应加上几,才能使分数的大小不变?
3、连线:(这些小动物应该进哪个房子?)
9 ÷15 6 ÷9 1 ÷4
3/1 2 3/ 4/6
4、有两个不同的杯子,里面都盛满了牛奶,小明喝了其中的一杯的 ,小红喝了另一杯的 。他们谁喝得多?
四、全课小结
通过这节课的学习你有什么收获?你对自己的表现满意吗?你是采用什么方法发现分数的基本性质的
篇6:分数的意义教学设计 (人教版五年级下册)
《分数的意义》教学设计
教学过程:
一、导入课题。
师:同学们好,这一节课又是我们的数学课,数学,顾名思义,“学习数”,当然,“学习数”并不是我们数学的全部,但是,今天这节课我们就一起来学习数。请同学们告诉老师,我们都学过了哪些数啊?(单数,双数,小数,整数,质数,数,自然然,等等……)
师:对,我们已经学过了这么多数,那么,今天我们一起来学习分数,研究分数的意义。
出示课题(分数的意义)
二、学习新课。
(一)分数的产生。
1、再现旧知识。
师:同学们看,我们有这有两个小朋友正在争论两人该怎么分吃一个饼。同学们,你觉得该怎么分呢?
生:平均分,从中间切开。
师:哦,同学们都说,从中间分开,平均分。老师知道了。这样分。(操作课件分饼)
师:嗯,这个方法真不错,那你能用学过的分数表示每们小朋友分得的份数吗?
生:12 (师演示操作。)
师:你能说说这个12 它表示什?
生:表示把一个饼平均分成两份,每个小朋友分得其中的一份,就是这个饼的12 。
对,在进行分物,测量或者计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、你还能说出哪些像这样的分数。你能分别指出它们的名称吗?
生:12 ,24 ,57 ……
(二)分数的意义。
1、认识单位“1”。
(1)动手操作:
同学们,我们已经熟悉了分数的各部分名称,现在请你们用不同的方法表示四分之一,看谁做得又快又好。(折一折,或画一画)
(2)展示学生成果。
(3)出示课件,在每一幅图上表示出它的四分之一。(交流,汇报,师在这个过程中,引导学生说出每个分数所表示的意义)
(4)概括总结:
师:刚才同学们在表示四分之一的过程中,有什么发现吗?
学生甲:都是把物体平均分成四份,表示其中的一份。
学生乙:有的是把一个物体看作一个整体,有的是把一些物体看作一个整体,把这个整体平均分成四分,每份是这个整体的四分之一。
师:对,一个实物好理解,但是有的是由几个单个的物体组成的,我们可以把它看作一个整体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数“1”来表示,通常把它叫做单位“1”。
(5)像这样的整体,你还能举出一些例子吗?(一筐鸡蛋,一堆煤,一个年级的人数,一些桃子,一个年级的人数………………)
师:也就是说,单位“1”可以表示一个物体,也可以表示一些物体,它可以很大也可以很少,可以很多也可以很少。
(6)把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。(强调平均分)
2、学习分数单位:
(1)出示课件:师引导学生填一填。
(2)说说,这些分数分别表示什么意思。
(3)分数单位的意义。
把单位“1”平均分成若干份,表示这样一份的数就是分数的分数单位。
(4)分数单位的特点。
A、都是几分之一。为什么:分数单位是把单位1平均分成若干份,表示这样的一份的数就是分数单位。
B、分数是由分数单位组成的,因为不同分母的分数,把单位“1”平均分成的份数不一样,所以不同分母的分数有不同的分数单位。
三、课堂作业设计。
四、总结。
同学们,我们今天学习了什么呀?你学会了吗?
篇7:五年级数学下册分数的基本性质的教学设计
教学内容:
人教版小学数学五年级下册“分数的基本性质”。
教学目标:
1、理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。
2、能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重、难点:
理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。
教具准备:
课件、写有分数的卡片。
学具准备:
3张同样大小的卡纸、彩笔。
教学过程:
一、基本练习,引入新知
1、说一说。
(1)什么是商不变的性质?
(2)150÷30=,被除数和除数都扩大4倍,商是();被除数和除数都缩小10倍,商是()。
2、想一想。
(1)分数与除法的关系是怎样的?
(2)1÷2=
二、创设情境,激趣引入
有位老爷爷把一块地分给三个儿子。老大分到了这块地的3分之1,老二分到了这块地的6分之2。老三分到了这块的9分之3。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的`原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)
三、探究新知,揭示规律
1、动手操作,形象感知。
让学生发表自己的意见后,教师请学生拿出3张同样大小的卡纸。师生一起折一折、画一画、剪一剪、比一比、想一想。
2、观察比较,探究规律。
这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。
3、抓住焦点,辨中求真。
分数的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。分数里分母不能为0,所以分数的分子、分母不能同时乘以0。在除法里0不能做除数,所以分数的分子、分母也不能同时除以0。
4、抽象概括,总结规律。
引导学生观察、比较,回忆知识的形成过程,总结概括出分数的基本性质。不完善的互相补充。
5、运用规律,自学例题。
(1)分组讨论。把和分别化成分母是12而大小不变的分数。分子应怎样变化?变化的依据是什么?
(2)汇报讨论情况。
(3)小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。
四、多层练习,巩固深化
1、基本练习。根据分数的基本性质,把下列等式补充完整。学生口答后,要求说出是怎样想的。
2、判断,并说理由。
3、综合练习。请帮小熊和小山羊找回大小相等的分数。
4、深化练习。
5、动脑筋出教室游戏。
拿出课前发的写有分数的纸片,看清手中的分数,找一人报出自己的分数,与之相等的,和他一起离开教室。
五、全课小结,形成技能。
通过这节课的探究学习,你有什么新的收获?
篇8: 五年级下册数学《分数的基本性质》教学设计
一、教学目标
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、 教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)故事引入,揭示课题
1、教师讲故事。
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
2、组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1428312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3468912。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12242040。
3、引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,
分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
( 二)比较归纳,揭示规律
1、出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2、集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的呢? 怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3、出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4、讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5、质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
( 三)沟通说明,揭示联系
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:343÷4(3×3)÷(4×3)9÷12912
( 四)多层练习,巩固深化
1、口答。(学生口答后,要求说出是怎样想的?)
2、判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想――验证――完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
篇9:人教版五年级数学下册分数的意义和性质教学反思
《分数的意义和性质》这一单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,最大公因数与约分,最小公倍数与通分以及分数与小数的互化。
通过本单元的教学,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。这些知识在后面系统学习分数四则运算及其应用都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决问题一系列实际问题的必要基础。为了让学生掌握好本单元的知识,我特别注重学生知识的形成过程,教学设计也体现了以下特征:
一、充分利用教材资源,用好直观手段。
本单元的概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观。
如在教学《分数的意义》时,我利用课件演示,让学生根据图示直观地理解“1/4”的含义,从而引导学生理解单元“1”的含义,为了让学生进一步理解分数的意义,我还利用幻灯片演示将12块糖平均分成不同的等份,表示其中一份或几份是几分之几,是多少块糖。
二、及时抽象,在适当的抽象水平上建构数学概念的意义。
在充分展开直观教学的基础上,抓住时机引导学生由实例、图示加以概括,建构概念的意义。例如:比较 1/3与1/2 的大小,有学生回答不一定谁大谁小,要看他们分的那个圆哪个大。教师要及时给予说明,指出比较两个分数的大小,指的都是在相等单位“1”的情况下比较的,因此只要考虑怎样比较两个分数的大小。
三、揭示知识与方法的内在联系,在理解的基础上掌握方法。
比如:约分和通分,这两概念学生很容易混淆,因此教学时要提醒学生,不管是约分还是通分都是根据分数的基本性质,使分数的大小保持不变,约分就是把一个分数的分子和分母变小,而通分则是把几个异分母分数变成同分母分数。
通过单元综合测试,从卷面上看,多数学生基本掌握本单元知识的方法,如约分、通分等的方法,但准确率不很高,因而失分很多,同时学生对分数的意义及分数与除法的关系掌握得不好,出现混淆现象,中下成绩学生没能运用所学知识解决生活中的实际问题。根据学生的知识弱点,在后面的教学中要加强练习,让学生通过练习巩固所学生知识,并要学会解决生活中的一些实际问题。
篇10:人教版五年级数学下册分数的意义和性质教学反思
◆学习目标
1. 经历分数产生的过程,理解分数的意义,明确分数与除法的关系。
2. 认识真分数与假分数,知道带分数是一部分的假分数的另一种书写形式,能把假分数化成带分数或整数。
3. 经历分数的基本性质的形成过程,理解和掌握分数的基本性质,会比较分数的大小。
4. 现实情境与数学知识相结合,理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数和最小公倍数,能比较熟练地进行约分和通分。
5. 会进行分数与小数的互化。
6. 培养灵活的思维方式和解决实际问题的能力,培养收集、处理问题的能力。
7. 加强数学知识与现实生活的联系,培养学习数学的兴趣,获得学习的成功体验,增进学好数学的信心。
◆学习重点
分数的意义;分数的基本性质;约分;通分。
◆学习难点
建立单位“1”的概念;建立分数单位的概念;分数与除法的关系。
在课上学生反应都不错,习题也都是些基础题,完成得蛮好,但在综合练习(单元测评与单元测试)中却暴露出了许多问题:有对分数的意义理解不透的;有计算结果忘记约分的;特别是在“解决问题”时,更是有点理不清头绪,总量该用单位“1”表示的却用具体数量,总量该用具体数量表示的却用单位“1”。经过进一步地分析,大部分学生能较好地掌握,仍有一部分学生还是理解不透。我坚信现在他们暂时不会的,等他们再长大一些的时候自然会学会的。
>>>下一页更多“五年级数学下册分数的知识点”
篇11:人教版五年级数学下册分数的意义和性质教学反思
今天完成了《分数的意义》的一课的教学,本来是作为考核课,由于要进行课题研究,供大家参考,所以短短的四天时间,从备课到课件的制作、学具都要到位。由于本身心里还有很多困惑,所以在备课、制作课件时,总是很犹豫,一些地方不知该怎么处理,虽然在集备时大家给了许多意见,但意见也不太统一,只有等上课后,大家才能根据实际出现的问题,给予解决方案。
首先谈谈课前的主要困惑:
1、知识之间如何串联?本节课的知识点较多,包括:分数的产生、分数的意义、单位“1”、分数单位、分数的发展史,这些知识有的是互相牵扯,有的是互有联系,如何过渡?
2、学生动手操作是否必要?学生在三年级时已经学过分数的初步认识,有过一些经验,从图中也可直观看出平均分后的结果,那么还要不要动手操作?
3、如何顺利导入?是从难点单位“1”入手,还是从本概念引入的必要性入手,还是……?
4、是否要逐字逐句的扣概念?对于分数的意义中的重点词如“一个物体”、“一些物体”、“一个整体”、“平均分”、“若干份”、“一份”、“几份”?
5、如何引导学生看课本?课本中规范的概念也应让学生有所了解,看书是很有必要的,怎样引导呢?
6、提供学生什么样的材料?是只给一些物体的,还是一个物体,一些物体的材料都给学生?
7、对知识的拓展到什么程度?学生对概念的认知需要从初步理解到深入理解,那么也需要有一定程度上的延伸,如何把握这个度?
数学不只是一种有趣的活动,仅仅使数学变得有趣起来并不能保证数学学习一定能够获得成功,因为,数学上的成功还需要艰苦的工作。
试教后的自我反思:
1、关于媒体的使用。教学中,有的是学生操作,有的是课件演示,还有老师的板书,感觉比较乱如何处理好课件的播放时机?
2、关于如何更有条理。对本节课环节有些不熟练,导致一些话或播放课件迂回,给人有些错乱的感觉。
3、如何让学生能说,会说,想说?概念教学本身比较枯燥,要让学生通过自己的操作,观察、对比等活动得到概念,并能归纳出概念,如何提高学生学习兴趣?
4、讲求策略。
出现的问题:
整个教学中,没有对分数的意义进行规范的定义,或看书完善。本来是想借助操作,让学生明的不管分的物体是多是少,只要平均分成四份,其中的一份都可以用四分之一来表示,进而将一个整体的概念扩展到大数目。但是对于操作后的思考,引导得不得力,导致学生无法说出“核心”。
求同比较:
主要是两个层面的比较:
① 分的东西不一样,为什么都可以用四分之一来表示呢?
② 分一个物体和分多个物体的数量明明不一样多,为什么每个人分到的,都可以用四分之一表示呢?
两层比较,突出了四分之一这个分数的本质:与分的东西是什么无关,与分东西的数量多少也无关,只要将这些物体平均分成四份,其中的一份就是这个物体总数的四分之一。
存异比较:
由于教材在揭示分数意义之前只有一个四分之一这一个例子,所以我想让学生先完成“做一做”,让学生思考这些分数是怎样得到的?从而体会分数不同的原因在哪?平均分的份数不同,表示的份数就不同。
篇12: 《分数基本性质》教学设计
一、教学内容
分数的基本性质。(课本第75―76页的例1、例2及“做一做”、第77页练习十四的第1―3题)
二、教材简析
《分数的基本性质》是人教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
三、教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。
根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。
基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想――验证――反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想――实验操作、验证猜想――质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
四、设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。
6、在游戏活动中对数学知识进行拓展运用。
五、教学目标
1、知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。
(2)体验数学与日常生活密切相关。
3、过程与方法
(1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。
(2)培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
六、教学重点
理解分数的基本性质
七、教学难点
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
八、教学准备
教师:电脑课件
学生:圆纸片长方形纸
九、教学过程:
(一)回顾复习,旧知铺垫。
课件出示复习题
1、商不变的性质
12÷3=
(12×10)÷(3×10)=()
(12÷3)÷(3÷3)=()
利用什么知识填空的?
2、除法与分数的关系
30÷120=()/()
()÷()=17/51
利用什么知识填空的?
(二)故事引人,揭示课题。
课件出示故事(动画):从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦不对,是三个小和尚。小和尚最喜欢吃老和尚做的饼啦。有一天,老和尚做三块大小一样的饼,想给小和尚吃,还没给,小和尚就叫开了,“我要一块”,“我要两块”,“嘻嘻,我不要多,只要四块。”老和尚二话没说,把第一块饼平均分成4块,取出其中1块给第一个和尚;把第二块饼平均分成8块,取其中2块给高和尚。把第三块饼平均分成16块,取其中的4块给了胖和尚。小朋友,你知道哪个和尚分得多吗?
生1:胖和尚吃的多。
生2:矮和尚吃的多。……
师:到底谁回答得对呢?我们一起动手分饼来求证吧
1、合作探究
师:请同学们以两人一组,拿出三个大小相等的圆,分别用阴影部分表示每个和尚分得的饼(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契。)
师:比较一下阴影部分的大小,结果怎样?
生:阴影部分的大小相等。
师:阴影部分相等说明每个和尚分的饼相等。
师:请同学们用分数表示阴影部分。
师:阴影部分相等说明这三个分数怎样?
生:三个分数相等。(随着学生的回答,老师将板书的三个分数用“=”连接。)
2、组织讨论。
师:仔细观察这三个分数什么变了,什么没有变?
让学生小组讨论后答出:它们分数的分子和分母变化了,但分数的大小不变。
师:它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3、比较归纳
同学们:从左往右观察,这三个分数的分子和分母是按照什么规律变化的才保证了分数的大小不变的?
集体讨论几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。(边讲边板书)
师:从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。(边讲边板书)
4、揭示规律
教师小结:“刚才大家都观察得很仔细,像分数的分子、分母发生的这种有规律的变化,它的大小不变。就是我们这节课学习的新知识。(板书课题:分数的基本性质)
师:“什么叫做分数的基本性质呢?就你的理解,能把它归纳成一句话吗?(小组讨论发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到75页。看看和我们总结的有什么不同,并用波浪线表出关键的词。(如:同时,相同,0除外等)
全班讨论:为什么要规定0除外”?
引导:现在同学们知道了聪明的老和尚是用运用什么规律来分饼,既满足小和尚的要求,又分得那么公平?
(三)梳理沟通,灵活运用。
1、分数的基本性质与商不变的性质的联系。
想一想,根据分数与除法的关系,以及整数除法中商不变的规律,你能说明分数的基本性质吗?
启发学生说出它们之间的联系:
(1)分子相当于被除数,分母相当于除数;
(2)被除数和除数同时乘以或除以相同的数就相当于分子和分母同时乘以或除以相同的数;
(3)“相同的数”中要求“0除外”;
(4)商不变相当于分数的大小不变。
2、分数基本性质的应用
(1)出示课本第76页例2,把2/3和10/24分别转化成分母是12而大小不变的分数。
(2)认真审题,弄清题意。
要求学生读题后归纳出题目的要求。
a、分母都变成12
b、分数的大小不变
(3)想一想:怎么化,根据什么?
过程要求:
a、学生独立思考,完成题目要求;
b、全班反馈,教师课件显示。
(四)多层练习,巩固深化。
1、完成教科书第77页练习十四的第1―3题。
(1)第1题
此题着重练习分数的相等和不等。练习时,让学生按照题目的要求涂色。
(2)第2题
此题是运用分数的基本性质比较分数大小的实际问题,学生在练习中将2/5化成4/10,或者把4/10化成2/5,再作比较,都是可以的。
(3)第3题,说出相等的分数(对口令)
此题是运用分数基本性质的游戏练习,游戏时,让学生以同桌为单位,仿照第3题的样子,一个人先说一个分数,另一个人回答一个相等的分数,然后交换先后顺序。
2、教科书76页“做一做”
(1)由学生独立完成,然后同学交流。
(2)全班反馈,说一说思维过程。
(五)小结
教师:同学们,通过今天的学习,你有什么收获?题界知家数同时乘以或除以相同的数就相当于分子和分母同时乘以或除。
(六)动脑筋出教室游戏(机动)
让学生拿出课前发的写有分数的纸片,要求学生看清手中的分数。与相等的,报出自已的.分数后先离场,与相等的再离场,与相等的最后离场。
十、板书设计
商不变的性质
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数与除法的关系
a÷b=a/b(b≠0)
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
篇13:人教版五年级数学下册分数的意义和性质教案
人教版五年级数学下册分数的意义和性质教案
【教学要求】
1 .知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2 . 认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3 .理解和掌握分数的基本性质,会比较分数的大小。
4 .理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数最大公因数与最小公倍数,能比较熟练地约分和通分。
5 .会进行分数与小数的互化。
【 教学建议】
1 .充分利用教材资源,用好直观手段。
本单元教材在加强教学与现实世界的联系上作了不少努力.同时,教材还运用了多种形式的直观图式,数形结合,展现了数学概念的几何意义。从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。
本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、化抽象为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情况,调动学生相关的生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图式来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段
2 .及时抽象,在适当的水平上,建构数学概念的意义。为了搞好木单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如,比较和的大小,有的学生回答不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出可能比 大,也可能比小、,还可能和相等。造成这样错误的主要原因就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,建构概念的意义。
3 .揭示知识与方法的内在联系,在理解的基础掌握方法。在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
第一课时
一 教学内容:分数的产生
教材第60 页的内容。
二 教学目标:
1 .使学生知道分数的产生过程。
2 .使学生感受到数学知识同样是在人类的生产和生活实践中产生的。
三 重点难点:理解分数的产生。
四 教具准备
米尺,挂图,几张长方形、正方形的纸。
五 教学过程
(一)导入
同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?
学生通过回忆说出已学过的分数知识。
1 .复习分数各部分名称。
( 1 )举一个分数的例子。( )
( 2 )以 为例,说说分数的各部分名称。
2 … … 分子
— … … 分数线
3 … … 分母
( 3 )还可以用什么来表示分数?(用图、线段或正方形来表示分数。)请你用线段图表示。
把正方形纸平均分后,画出阴影,用分数表示阴影部分。
(二)教学实施
1 .测量。
师生合作测量黑板的长,观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)
2 .计算。
老师把一个西红柿平均分给两个同学,每人分得的西红柿的个数怎样表示?( l ÷ 2 的结果不能用整数表示。)
3 .讲述。
在人们实际生产和生活中,人类在测量和计算的时候,往往不能得到整数的结果,这就需要用一种新的数来表示,这样就产生了新的数—分数。最初,人们只认识一些简单的分数,如二分之一、三分之一等。我国是世界上发明和使用分数比较早的国家之一。
4 .资料介绍。
请学生结合自己课前查找的资料说说分数是怎样产生的。
(三)课堂小结
同学们相互交流本节课的学习收获。
第二课时
一 教学内容:分数的意义
教材第61 页的内容。
二 教学目标
1 .使学生进一步理解并掌握分数的意义。
2 . 知道一个物体、一个计量单位、一个整体都可以用单位“1 ”表示。
3 . 引导学生学会抽象概括,培养初步的逻辑思维能力。
三 重点难点
1 .理解和掌握分数的意义。
2 .理解单位“1 ”。
3 .突破一个整体的教学。
四 教具准备
投影,练习投影片,长方形、圆形纸各一张。
五 数学过程
(一)导入
请学生举出几个具体的分数。(老师板书)
根据学生举例的分数,请同学们说出都知道这个分数的什么?如这个分数表示的意义,它的各部分名称,以及自己的课外知识等。
老师举例并板书:
请学生说出 表示什么意思。
学生甲:表示把一块月饼平均分成4份,吃了其中的1份,可以说吃了这块月饼的。
学生乙: 还可以表示把一根绳子平均剪成4份,其中的1份,就是
这根绳子的 。
(二)教学实施
1 .认识单位“1 ”。
( 1 )动手操作。
老师:如果用图表示 ,可能你们每人会有不同的表示方法,现在请你动手折一折或画一画来表示 。
学生展示成果。
( 2 )老师投影出示图片。
老师:投影片上的这些图,你能在每一幅图上表示出它的吗?学生先小组内交流,再集体反馈。
学生甲:我把4根香蕉看作一个整体,一根香蕉是这个整体的 。
学生乙:把8 个苹果看作一个整体,把这个整体平均分成4 份,每份两个苹果是这个整体的。
学生丙:我把12 个△看作一个整体,把这个整体平均分成4 份,每份3个△是这个整体的。
学生丁:我把1 米看作一个整体,把它平均分成4 份,其中的1 份,就是1米的 。
( 3 )概括总结。
老师:刚才同学们在表示的过程中,有什么发现吗?
学生甲:都是把物体平均分成4 份,表示这样的一份。
学生乙:我发现有的是把1 个图形平均分,有的是把8 个苹果、12 个△平均分,还有的是把1 米平均分。
老师:一个图形,一个实物比较好理解,我们把它称为一个物体,那么8个苹果、12 个△ 是由许多单个物体组成的,我们称作一个整体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1 来表示,通常把它叫做单位“1 ”。
( 4 )举例。
老师:对于这个整体,你还能想出其他的例子吗?
学生:这个整体还可以是一筐茄子、一车煤、一个年级的人数、全中国人口等。
2 .概括分数。
老师:通过上面的学习,同学们对于单位“1 ”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1 ”可以很小,也可以很大… …
刚才同学们举了很多分数的例子,那到底什么是分数,你能尝试用文字描述一下吗?
先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?
学生相互交流补充。
明确:把单位“ 1 ”平均分成若干份,表示这样一份或几份的数,叫分数。(板书)
老师强调必须是平均分。
(四)思维训练
说一说下图中的阴影部分占整个图的几分之几。
(五)课堂小结
这节课我们学习了什么?师生共同回忆总结。
第三课时
一 教学内容:分数单位
教材第62 页的内容。
二 教学目标
1 .使学生理解分数单位。
2 .引导学生学会抽象概括。
3 .培养学生初步的逻辑思维能力。
三 重点难点
理解分数单位。
四 教具准备(小圆片)
五 教学过程
(一)导入
1 .用分数表示下面各图中的阴影部分。
2 . 下列分数表示图中的阴影部分对不对?
3 . 说一说。
( l )拿走9 块饼干的 ,拿走了几块?为什么?
( 2 )拿走剩下的 ,拿走几块?为什么?
( 3 )再拿走剩下的 ,拿走几块?
( 4 )写一写,想一想。
请学生任意写3 个分数,说一说每个分数的意义。
老师板书学生写出的分数。如, , 。
老师: ,, 各有几个几分之一?( 有,1个 , 有3个 , 有14个 。)
(二)教学实施
1 .学习分数单位。
2 . 投影出示。
一堆糖,平均分成2 份,每份是这堆糖的 。
平均分成3 份,2 份是这堆糖的 。
平均分成4 份,3 份是这堆糖的 。
平均分成6 份,5 份这堆糖的 。
然后把结果填在课本上。
( 2 )动手操作
学生用小圆片表示糖块,动手分一分,然后把结果填在课本上。
( 3 )集体订正。
请学生说出 , , , 分别表示什么意思:
( 4 )引导学生明确分数单位的意义。
老师: 表示什么意思:(表示把单位“1 ”平均分成2 份,表示这样的一份。)谁是单位“1 ”。(这堆糖是单位“1 ”。)表示什么意思?(表示把单位“1 ”平均分成3 份,表示这样的2 份。)谁是单位“1 ” ? (还是这堆糖是单位“l ”。)
老师引导学生发现: , , , 这些分数的分母分别是2 , 3 , 4 , 6 … … 表示什么意思?(表示把单位“1 ”平均分成的份数。)分子又表示什么意思?(表示这样的一份或者几份。)
讲述:把单位“1 ”平均分成若干份,表示这样一份的数就是分数的分数单位。如,的分数单位是 。
老师指明说出黑板上其它分数的分数单位。
集体说一说自已写出的三个分数的分数单位。
( 5 )发现分数单位的特点。
老师:你们发现这些分数的分数单位有什么特点?(它们都是几分之一。)为什么?(因为分数单位是把单位“1 ”平均分成若干份,表示这样一份的数就是分数单位。)
说一说黑板上这些分数分别有几个这样的分数单位。
2 .不同分母的分数,它们的分数单位是否相同?为什么?
( 1 )学生思考,同桌讨论。
( 2 )学生交流后,老师引导学生明确:
分数是由分数单位组成的,因为不同分母的分数,把单位“1 ”平均分的份数不一样,所以不同分母的分数有着不同的分数单位。
(三)课堂小结
今天,我们一起学习了分数单位,谁来说一说什么是分数单位?(把单位“1 ”平均分成若干份,表示其中一份的数叫分数单位。你能说出几个分数的分数单位吗?每个分数又有几个这样的分数单位呢?请你与同桌互说3 个分数,分别说出这个分数的分数单位是什么?是由几个这样的分数单位组成的。看哪组同学说得又对又快。)
第四课时
一 教学内容
分数与除法
教材第65、66页例1和例2
二 教学目标
1 .使学生理解两个整数相除的商可以用分数来表示。
2 .使学生掌握分数与除法的关系。
三 重点难点
1 .理解、归纳分数与除法的关系。
2 .用除法的意义理解分数的意义。
四 教具准备
圆片。
五 教学过程
(一)导入
1 .口算。
3 . 8 + 1 . 29 = 0 . 6 × 0 . 5 =
12 一3 . 6 = 7 . 4 – 3 . 6 =
2 .14 + 0 . 6 = 1 . 5 ÷ 0 . 3 =
2 . 口答
(1) 表求什么意思?它的分数单位是什么?它有几个这样的分数单位?
(2)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?你们把谁看作单位1
(二)教学实施
1 .学习教材第65 页的例1 。
( l )投影出示例题。
把1 个蛋糕平均分给3 人,每人分得多少个?
( 2 )请学生读题。
( 3 )分组讨论,如何解决这个问题。
( 4 )指名学生把讨论结果告诉大家。
我解答这道题列式是1 ÷ 3 ,从分数的意义上理解1 ÷ 3 ,就是把1 个蛋糕看成单位“1 “ ,把单位“1 ”平均分成三份,表示这样一份的数,可以用分数 来表示, 1 块的 就是块。
老师根据学生回答。(板书:1 ÷ 3 = )
老师:从图中可以看出1 ÷ 3 和 都表示阴影部分这一块,它们之间是相等关系。
2 .学习例2 。
( 1 )板书例题。
把3 块月饼平均分给4 人,每人分得多少块?
( 2 )指名读题,理解题意并列出算式。板书:3 ÷ 4
老师:3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 ” ? (把3 块月饼看作单位“1 ”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1 个1 个地分,先把1 块月饼平均分成4 份,得到4 个 ,3 块月饼共得到,12个 ,平均分给4 个学生。每个学生分得3个 ,合在一起是 块月饼。
方法二:可以把3 块月饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到 块月饼,所以两人分得块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
( 3 )理解。
老师: 个饼表示什么意思:
学生甲:表示把3 个饼平均分成4 份,表示这样一份的数。
学生乙:表示把1 个饼平均分成4 份,表示这样3 份的数。
现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 '平均分成4 份,表示这样3 份的数;还可以表示把3平均分成4份,表示这样一份的数。)
( 4 )练习。
说说下面分数的两种意义。
3 .归纳分数与除法的关系。
( l )观察讨论。
请学生观察1 ÷ 3 = (米)3 ÷ 4 = (块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数= 这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
老师:现在想想用这节课我们所学知识,能否解答刚上课时5 ÷ 9 的商是多少?你会做了吗?
文档为doc格式