欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

等腰三角形教学课件

时间:2022-08-07 07:59:13 其他范文 收藏本文 下载本文

以下是小编为大家收集的等腰三角形教学课件,本文共18篇,欢迎参阅,希望可以帮助到有需要的朋友。

等腰三角形教学课件

篇1:等腰三角形教学课件

教学目标:

1.掌握等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算。

2.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想。

3.发展学生独立思考、勇于探索的创新精神和关于数学内容间普遍存在的相互联系、相互转化的观点。

教学重点:

等腰三角形的判定定理及应用 。

教学难点:

等腰三角形的性质定理与判定定理的区别 。

教学过程一、复习提问:

师:等腰三角形的性质有哪些?

生:①等腰三角形的两个底角相等(等边对等角)

②等腰三角形的顶角平分线、底边中线、底边高线互相重合。(三线合一)

师:利用这些知识用2分钟时间完成讲学稿上复习部分。(核对答案)

二、新课过程:

例题:已知:在△ABC中,∠B=∠C(如图)。求证:AB=AC.

师:分析,请大家思考。 利用学过的知识证明。  (大部分学生能做出来。等大部分学生思考出来时,抽成绩差的学生说出解题过程。)

生:要证明AB=AC,转化先证明△ABD≌△ADC即可。(我们要证明的两条线段若在两个三角形中,则思考的一个方向是去证明三角形全等。若这两条线段是在同一个三角形中,则一个思考方向是证明它是等腰三角形。 )

生:证明:作∠BAC的平分线交BC与点D,则∠1=∠2

由角角边得,△ABD≌△ADC,故AB=AC。

师:同学们一起好好观察这个题目,发现了什么?

生:在同一个三角形中,等角对等边。

师:对,这个今天我们要学习的等腰三角形的判定。这位同学说的很好,注意:是在同一个三角形中。

例2:已知:如图,∠CAE是△ ABC的外角,∠EAD=∠EAC,AD∥BC。 求证:AB=AC (留时间给学生观察、思考。班上大部分学生能做出来,找同学到黑板板书。)

生: ∵∠EAD=∠EAC.

又∵AD∥BC,

∴∠EAD=∠B,∠EAC=∠C,

∴∠B=∠C.

∴AB=AC(等角对等边。)

师:这位同学做的对不?做的和他相同的同学请举起手。做这个题目中,用了什么知识?

生:平行线。

生:等角对等边。

生:等量代换。

师:刚才大家七嘴八舌说了很多,说得很好。(至此课堂很活跃。)刚才我听到有的同学说很简单,我也这样认为这例题并不难,但难题来自于简单的组合,奥秘隐藏于简单之中,还要仔细分析,这题能够给我们带来怎样的收获。

生:证明两个边相等又多了一种方法,等角对等边。

师:对,这个同学说的很好,证明两个边相等除了证明两个边所在的两个三角形全等以外还可以利用等角对等边。同时等角对等边还可以用来证明等腰三角形。

师:学习了上面的例题请同学们试着理解一下,如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。

生:都是汉字怎么办呢?

师:对,数学、数学,我们经常用数学语言来说明问题。

生:老师,是不是和刚刚的例题是同一个题目啊?

师:问得很好。在这里,我们首先应该把这些文字转化成数学语言,即写出已知和求证,然后再证明。今后,我们在思考问题时,按我们的规律进行思考,将大大推进我们对问题的思考。下面学生完成巩固练习部分,检查一下今天你的收获。

1.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度数,并说明图中有哪些等腰三角形。

2.已知:如图,AD∥BC,BD平分∠ABC. 求证:AB=AD.

师:请同学们认真思考,能独立完成的'同学请举手。(学生思考,思考如何去做。两、三分钟后,大部分学生已经能做出。)

师:好,找同学分析一下这两个题目。

生:第一题利用等角对等边可得∠1=72°,∠2=36°,图中-共有3个等腰三角形。

生:第二题要先证明∠ABD=∠ADB,然后利用等角对等边得到AB=AD。

师:这两个同学分析的很好,给大家5分钟时间自己完成。(找两个同学来黑板完成)

师:既然学习了等腰三角形,那么怎么画它呢?同学们试着用尺规画一个等腰三角形ABC,使得底边BC为4cm,底边上的高AD为5cm。

生:很容易,不用圆规,直尺和三角板就好了。先画一条BC=4cm,然后取中间2cm部分点D,用三角板过D做垂线,在垂线在取AD=5 cm。然后连接AB、AC,就得到等腰三角形了。

生:老师,我也是这样想的。

师:好,生活往往不一帆风顺,学习也是一样,如何按照要求用直尺和圆规来画等腰三角形呢?

(1)作线段BC=4cm;

(2)作线段BC的垂直平分线ED,与BC交于点D;

(3)在ED上截取AD=5cm;

(4)连接AB、AC,△ABC就是所求的等腰三角形,

师:好,同学们仿照刚才做法,自己动手做出等腰三角形,然后完成例题3.

例3:如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?

生黑板板书:选取比例尺为1:100(即为1cm代表1m)。

(1)作线段DE=4cm;

(2)作线段DE的垂直平分线MN,与DE交于点B;

(3)在MN上截取BC=2.5cm;

(4)连接CD、CE,△CDE就是所求的等腰三角形,量出CD的长,就可以算出要求的绳长。

师:好,今天就学习这些知识,请同学们自己回忆总结。

生:等腰三角形的判定:等角对等边。

生:证明等腰三角形的方法:等角对等边;全等三角形。

生:证明等腰三角形的方法还有等腰三角形的定义。

生:等腰三角形的判定与性质的区别。

生:按照要求画等腰三角形。

生:数学与生活的联系。

师:好,这些同学总结的很好,数学知识是很奇妙的,生活中经常遇到,如果同学们以后遇到生活中数学问题不知道怎么办,可以随时找老师帮忙。今天我们就学习这么多知识,下面时间同学们检测一下自己今天的学习,完成讲学稿上自我检测部分。

篇2:等腰三角形课件

等腰三角形课件

等腰三角形课件

【教材分析】

1、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位

2、 本节内容是《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用

3、 等腰三角形是在《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

【教学对象分析】

1、 授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。

2、 该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。

3、 本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。

【教学目标】

知识目标: 等腰三角形的相关概念,两个定理的理解及应用。

技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。

情感目标: 体会数学的对称美,体验团队精神,培养合作精神。

【教学重点、难点】

重点: 1、等腰三角形对称的概念。

2、“等边对等角”的理解和使用。

3、“三线合一”的理解和使用。

难点: 1、等腰三角形三线合一的具体应用。

2、等腰三角形图形组合的观察,总结和分析。

【教学手段】

1、使用导学法、讨论法。

2、运用合作学习的方式,分组学习和讨论。

3、运用多媒体辅助教学。

【教学过程设计】

1、学生活动

预习相关概念及定理

【教学设想】培养学生良好的学习习惯

教师活动

课题引入:让学生观察两把三角尺,从三角形分类思考“两把三角尺的形状除了角度不同外还有什么区别”在对学生思考结果的总结基础上,引入新课题。

【教学设想】在小学知识和第八章三角形知识的基础上,学生比较容易得到结论。

2、教师新授:

等腰三角形的相关概念,腰,底边,顶角,底角。

学生同步回答

【教学设想】由于学生有相应的小学的知识和预习,基本概念的理解不成问题。

3、教师指导学生做一做,要求:在事先准备的纸上,画一个腰长为a的等腰三角形,并将它剪下来,与组内其他成员的作品放在一起,并观察和回答问题。

学生运用直尺或圆规和剪刀进行绘图和剪切。

【教学设想】由于三角形的形状不限,方法不限,学生绘制的结论也有所不同。深入体会,等腰三角形的构成和画三角形的方法。

4、学生观察并思考,然后讨论,然后积极回答。第一个问题:观察所剪得的三角形形状是否相同,在满足条件的.情况下,可以画几个不同类的等腰三角形。

【教学设想】此题学生较容易总结,至于体会到什么程度特别是目标2不作具体要求,体现新教材的“不同人在数学上得到不同的发展”理念。

5、学生以小组形式进行操作和讨论第二个问题:将这些三角形放在一起,并且使顶点重合,观察另外的一些顶点,看看有什么特点和发现

【教学设想】此题教难,关键在于引导和启发,给予学生充分的时间,必要时候使用事先准备的多媒体辅助教学,从实际结果看,学生在多媒体的启发作用下,应该会有一个思维上的突破。

6、学生对自己剪得的等腰三角形作操作,体会对称的思想。

在讨论的基础上,回答更高层次的问题。问题:等腰三角形是否为轴对称图形,如何通过具体的操作体现他是轴对称,并指出对称轴。问题:等边三角形是否为轴对称图形,对称轴有几条。 等腰三角形的对称轴有几条。

【教学设想】体现新教材的操作理念,回归学习的本质,体验学习的过程。对问题的一般到特殊做一些体会。

7、学生观察,并且以小组竞赛的方式进行大范围的搜索和体验。教师通过刚才的折叠结合屏幕上图形的字母,说明轴对称图形的等量关系和位置关系。

【教学设想】体会轴对称图形中的等量关系和由此得到的特殊位置关系。为下面定理的引出得出有用的结论。

8、学生观察,体验,领会新概念。集体讨论并互相帮助记忆重要的结论。每个小组抽查记忆。教师在总结刚才观察结论的基础上,引出两条重要的定理。通过小组竞争的方式要求每个同学清晰记忆和理解定理2中的具体条件。

【教学设想】在概念1中强调:在一个三角形中。在概念2中强调:三条线的具体描述。定理2可以视情况使用多媒体辅助理解。特别是对相关逆定理的理解,但不作表述。

9、学生思考,看书理解,然后讨论每一步的理由。

教师分析例题1:已知: 在△ABC中,AB=AC, ∠B=80°.求∠C和∠A的度数.

例题2:如果等腰三角形的一个外角等于140°,那么等腰三角形三个内角等于多少度?

【教学设想】理由的叙述是数学能力培养的重要一环,认真完成每一步。同时,鼓励学生讨论,共同提高。注意两解的情况。注意两解分类的表达。

10、拓展训练(1)在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数

(2)建筑工人在盖房子的时候,要看房梁是否水平,可以用一块等腰三角形放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板的底边中点,那么房梁就是水平的,为什么?

(3)等腰△ABC中,AB=AC,D、E是BC上的两点,若BD=CE,那么AD和AE相等吗?为什么

学生讨论,并且试图写出过程。

【教学设想】书写角度有很多选择,对每种书写只要合理就给予鼓励。

11、课堂小结:通过今天的学习,你体会到什么?有益的思考:通过今天的学习,你有哪些方法判断剪得的三角形是等腰三角形。

【教学评析】由于运用了新课程教学方法和理念,知识从不同的方向得到了渗透。基本完成了课前制定的教学目标和教学要求,为进一步的深入理解打下了基础。

篇3:等腰三角形说课课件

认识等腰三角形

有两条边相等的三角形叫做等腰三角形.

等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.

你能发现等腰三角形有什么性质吗?说一说你的猜想.

性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

练一练

1、等腰三角形的一个角是40度,它的另外两个角的度数是多少呢?

2、等腰三角形的一个角是100度,它的另外两个角的度数是多少呢?

3、等腰三角形的底边长为7cm,一腰长的中线把周长分为两部分,其差为3cm,则等腰三角形的腰长为多少?

这节课我们学习了什么?

1、求有关等腰三角形的问题,作顶角平分线、底边中线,底边的高是常用的辅助线;

2、熟练掌握求解等腰三角形的顶角、底角的度数;

3、掌握等腰三角形三线合一的应用。

篇4:等腰三角形说课课件

你能说说这三个三角形各是什么三角形吗?

从下面每个三角形三条边的长度中,看看这三个三角形有什么共同的特点?

用一根18厘米长的'线,可以围成边长是几厘米的等边三角形?

要围一个边长是8厘米的等边三角形需要多少长的铁丝?

说一说 填一填

1. ( )的图形叫做三角形,三角形具有( )性。三角形有( )个顶点,( )条边,( )个角,( )条高。

2. 三角形按角的不同可以分成( )、( )、( )。

3. ( )的三角形是等腰三角形,两个底角( )。( )的三角形是等边三角形,每个角都是( )度,它又是一个( )。

4.(1)一个三角形的内角和是( )度。

(2)用两块完全一样的三角形拼成一个三角形,这个三角形的内角和是( )度。

(3)把一个大三角形剪成两个小三角形,每个小三角形的内角和是( )度。

篇5:《等腰三角形》教学反思

《等腰三角形》教学反思

本节课中,性质的引入体现了新课程的理念,学生合作学习,课堂上,学生充分猜想、验证,用实验方法得出各种不同的结论,借助小组合作学习的方式,使学生的思维充分展开,在课堂上通过讨论,点评了两种方法,其余给学生课后验证,拓展了课堂的.空间。从“折叠等腰三角形”这一实践中,通过“小组内交流→小组间交流→小组内归纳”这一过程,总结出等腰三角形的各种性质(现象),学生学习的兴趣增强了,对知识的探究也深入了,印象也比较深刻,明显比教师讲解有更强的作用。另一方面也说明了教师有深厚的学科功底,对教材的理解非常深刻,是在“用课本教”而不是在“教课本”。

在本节课中还应处理好以下几点:

⑴等腰三角形“三线合一”定理的强调,尤其是书写。因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。

⑵加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。

⑶加强学生的书写能力的培养。本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。

篇6:等腰三角形教学设计

等腰三角形教学设计

第1课时 等腰三角形(一)

教学目标

【知识与技能】

1.寻找生活实例中的等腰三角形,给等腰三角形下定义,探求等腰三角形的轴对称性和它的相关性质.

2.培养学生自主、合作、探究的学习方式,亲身体验“再发现”过程.

【过程与方法】

在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.

【情感、态度与价值观】

经历探索等腰三角形的轴对称及相关性质的过程,进一步体验轴对称的特征,发展学生的空间意识.重点难点

【重点】

等腰三角形有关性质的探索和应用.

【难点】

等腰三角形性质的验证.

教学过程

一、创设情境,导入新知

教师出示学生熟悉的人字梁屋架:

师:图中的人字架屋架的外观结构形式是什么图形?

生:等腰三角形.

师:它有什么特点呢?

学生思考.

师:我们从这节课开始学习等腰三角形的有关知识(板书课题).

二、共同探究,获取新知

教师引导学生操作:

画一个等腰三角形ABC,把边AB叠合到边AC上,这时点B与点C重合,并出现折痕AD,如图

学生操作,教师巡视指导.

师:△ADB与△ADC有什么关系?

生:全等.

师:哪些线段或角相等?

学生思考,教师参与探究.

学生口答:AB与AC相等,DB与DC相等,∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC.

师:AD与BC垂直吗?

生:垂直.

师:由此你能得出什么结论?

学生小组讨论.

生:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴.

师:很好!这样也就是说等腰三角形的两个底角相等,简称“等边对等角”.

学生熟记.

师:你能证明这个性质定理吗?

学生交流讨论.

教师提示:你先把这个命题分解为条件和结论两部分,写出已知、求证,然后给出证明.

教师找一名学生板演,其余同学在下面做,然后集体订正.

已知:如图,△ABC中,AB=AC.

求证:∠B=∠C.

证明:取BC的中点D,连接AD.在△ABD和△ACD中,

∴△ABD≌△ACD.(SSS)

∴∠B=∠C.(全等三角形的对应角相等)

三、合作交流,深化理解

师:通过全等可以看出AD和BC有什么关系呢?

生:AD垂直平分BC.

师:很好!等腰三角形顶角的平分线垂直平分底边,∠BAD和∠CAD有什么关系呢?

生:相等.

师:综合上面的结论,你发现了什么?

学生思考.

共同总结:等腰三角形顶角的平分线平分底边并且垂直于底边,即等腰三角形顶角的平分线是底边上的中线也是底边上的高(简称三线合一).

根据性质1,师生共同得到等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.

四、乘胜追击,学以致用

教师多媒体出示:

【例1】 已知:如图所示,在△ABC中,AB=AC,∠BAC=120°,点D、E是底边上两点,且BD=AD,CE=AE.求∠DAE的度数.

学生讨论方法.

教师巡视指导,然后集体订正.

解:∵AB=AC,(已知)

∴∠B=∠C.(等边对等角)

∴∠B=∠C=×(180°-120°)=30°.

又∵BD=AD,(已知)

∴∠BAD=∠B=30°.(等边对等角)

同理∠CAE=∠C=30°.

∴∠DAE=∠BAC-∠BAD-∠CAE

=120°-30°-30°

=60°

【例2】 已知:如图所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A和∠C的度数.

师:由AB=AC,你能得到什么结论?

生:∠ABC=∠C.

师:由BD=BC=AD呢?

生:∠C=∠BDC,∠A=∠ABD.

师:你能找出∠A与∠C的关系吗?你能找出∠A与∠BDC的关系吗?

生:能.∠BDC=∠A+∠ABD,又因为∠ABD=∠A,所以∠BDC=2∠A.

师:现在你知道∠A与∠C的关系吗?

生:知道.∠C=∠BDC=2∠A.

教师找一名学生板演,其余同学在下面做,然后集体订正.

解:∵AB=AC,BD=BC=AD,(已知)

∴∠ABC=∠C=∠BDC,

∠A=∠ABD.(等边对等角)

设∠A=x°,

则∠BDC=∠A+∠ABD=2x°.(三角形的一个外角等于与它不相邻的两个内角的和)

∵∠ABC=∠C=∠BDC=2x°,

∴x+2x+2x=180.(三角形三个内角和等于180°)

得x=36.

∴∠A=36°,∠C=72°.

五、课堂小结

师:今天我们学习了什么知识?你有哪些收获?

学生回答.

师:你还有哪些疑问?

学生提问,教师解答.

教学反思

等腰三角形是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特征.为此,我以轴对称图形为切入点,先让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.善于做解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步做一题多变、一题多问、一题多解,挖掘例题的深度和广度,扩大例题的辐面,无疑对能力的提高和思维的发展是大有裨益的.

第2课时 等腰三角形(二)

教学目标

【知识与技能】

1.掌握等腰三角形的判定定理及推论,并能够灵活应用它进行有关的论证和计算.

2.掌握等边三角形的判定定理,并能够 灵活应用它进行有关论证和计算.

【过程与方法】

1.在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.

2.通过观察等腰三角形和等边三角形的判定定理,培养学生的观察、分析能力,发展学生的形象思维能力.

【情感、态度与价值观】

1.发展学生的动手、归纳猜想能力,培养学生的文字表达能力和几何证明能力.

2.掌握归纳思维方法,领会数学的转化思想.

3.发展学生的独立思考、勇于探索的创新精神.

重点难点

【重点】

等腰三角形的判定定理及其应用.

【难点】

等腰三角形的性质定理与判定定理的区别.

教学过程

一、创设情境,导入新知

师:请同学们回顾一下,等腰三角形的性质有哪些?

生:等腰三角形的两底角相等,简写为“等边对等角”.

师:这个命题的逆命题是什么?

生:等角对等边.

师:这是个真命题吗?我们今天就来研究这个问题.

二、共同探究,获取新知

师:作出图形,根据图形,在△ABC中,∠C=∠B,AB=AC吗?

学生讨论交流、思考回答.

教师让学生作一个有两个角相等的三角形,量一量它们所对的边.

师:你发现了什么结论?

生:AB=AC.

师:为什么?

生:在△ABC中,过点A作∠A的平分线交BC于点D,则顶角被平分,又两底角相等,由三角形内和性质得∠ADB=∠ADC.沿直线AD折叠,点B与点C重合,因此AB=AC.

师:很好,这就是等腰三角形的`判定定理:有两个角相等的三角形是等腰三角形(简称等角对等边).

学生熟记.

师:大家想一下,三个角都相等的三角形是什么三角形?

学生思考,教师点拨:分别与邻边相等.

生:三个角都相等的三角形是等边三角形.

师:有一个角是60°的等腰三角形是什么三角形呢?

生:有一个角是60°的等腰三角形是等边三 角形.

师:在证明中,由△ABD≌△ACD我们能得到什么?

生:BD=DC,∠BAD=∠CAD,∠ADB=∠ADC=90°.

师:这说明了什么?

学生思考后回答:说明AD既是中线,又是角平分线,还是高.

师:对,同学们观察得很仔细.所以我们能得到等腰三角形的又一性质:等腰三角形顶角的平分线垂直平分底边.换句话说,等腰三角形的顶角平分线、底边上的中线和底边上的高三线合一.

学生熟记.

三、合作交流,深化理解

教师多媒体出示:

学生小组合作分析.

师:BC和BD是什么关系?

生:BC等于BD的一半.

师:BC和AB是什么关系呢?

生:BC等于AB的一半.

师:你可以得到什么结论?

生:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边是斜边的一半.

师:同学们能给出证明吗?

生:能,如上图所示,易证得△ACD≌△ACB,∴AD=AB,∠BAC=∠DAC=30°,∠BAD=60°,∴△ABD是等边三角形,∴BD=AB,BC=BD=AB,故得证.

师:很好!下面我们再来看一个题目.

求证:Rt△ABC≌Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.

已知:如图(1),在Rt△ABC≌Rt△A'B'C'.

证明:在平面内移动Rt△ABC和Rt△A'B'C',使点A和点A'、点C和点C'重合,点B和点B'在AC的两侧,如图(2).

(1) (2)

∵∠BCB'=90°+90=180°,(等式性质)

∴B、C、B'三点在一条直线上.(平角的定义)

在△ABB'中,

∵AB=AB',(已知)

∴∠B=∠B'.(等边对等角)

在Rt△ABC和Rt△A'B'C'中,

∴Rt△ABC≌Rt△A'B'C'.(AAS)

四、讲解例题,加深认识

教师多媒体出示:

【例】 如图,一艘船从A处出发,以每小时10n ile(海里)的速度向正北航行,从A处测得一礁石C在北偏西30°的方向上.如果这艘船上午8:00从A处出发,10:00到达B处,从B处测得礁石C在北偏西60°的方向上.

学生交流讨论.

师:根据哪些信息来确定它的位置呢?

生:根据“在A处测得礁石C在北偏西30°的方向”和“从B处测得礁石C在北偏西60°的方向上”这两句.

师:然后你怎样找出礁石C的位置呢?

生:以B为顶点,向北偏西60°作角,这角一边与AC交于点C,则C点就是礁石C的位置.

师:很好.

教师引导学生思考作答,然后集体订正.

五、课堂小结

师:今天你学习到了什么内容?有什么收获?

学生回答.

教学反思

本节课我先让学生复习了上节课学习的等腰三角形的性质定理,然后让他们说出它的逆定理,由判断它的真假引出本节课,增强学生的好奇心和求知欲.在教法设计上,我把重点放在了逐步展示知识的形成过程上,由个别现象到一般抽象,体现出了学生从感性认识到理性认识发生发展的认知过程.在教学过程中,注意引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论数学思想,注意培养学生形成积极探索主动学习的态度,充分体现数学教学主要是数学活动的教学,促进学生之间的合作、交流意识,培养学生的语言表达能力,增强小组合作意识.

篇7:《等腰三角形》教学反思

本节课《等腰三角形》中,性质的引入体现了新课程的理念,学生合作学习,课堂上,学生充分猜想、验证,用实验方法得出各种不同的结论,借助小组合作学习的方式,使学生的思维充分展开,在课堂上通过讨论,点评了两种方法,其余给学生课后验证,拓展了课堂的空间。从“折叠等腰三角形”这一实践中,通过“小组内交流→小组间交流→小组内归纳”这一过程,总结出等腰三角形的各种性质(现象),学生学习的兴趣增强了,对知识的探究也深入了,印象也比较深刻,明显比教师讲解有更强的作用。另一方面也说明了教师有深厚的学科功底,对教材的理解非常深刻,是在“用课本教”而不是在“教课本”。

在本节课中我还应处理好以下几点:

(1)等腰三角形“三线合一”定理的强调,尤其是书写。因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。

(2)加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。

(3)加强学生的书写能力的培养。本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。

篇8:等腰三角形教学教案设计

等腰三角形教学教案设计

重点与难点分析:

本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

教法建议:

本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

(1)参与探索发现,领略知识形成过程

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的`判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

(3)总结,形成知识结构

为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?  (2)怎样判定一个三角形是等边三角形?

一.教学目标:

1.使学生掌握等腰三角形的判定定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征.

二.教学重点:等腰三角形的判定定理

三.教学难点:性质与判定的区别

四.教学用具:直尺,微机

五.教学方法:以学生为主体的讨论探索法

六.教学过程:

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

篇9:等腰三角形是什么

性质有哪些

1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。

2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的'直线,和高所在的直线就是等边三角形的对称轴。

8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。

9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。

面积公式求法

1.已知三角形底a,高h,则S=ah/2

2.已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)

S=sqrt[p(p-a)(p-b)(p-c)]

=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

3.已知三角形两边a,b,这两边夹角C,则S=?absinC,即两夹边之积乘夹角的正弦值。

4.设三角形三边分别为a、b、c,内切圆半径为r,则三角形面积=(a+b+c)r/2

5.设三角形三边分别为a、b、c,外接圆半径为R,则三角形面积=abc/4R

6.海伦——秦九韶三角形中线面积公式:

S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3。其中Ma,Mb,Mc为三角形的中线长.

7.根据三角函数求面积:S=?absinC=2R2sinAsinBsinC=a2sinBsinC/2sinA

注:其中R为外切圆半径。

篇10:等腰三角形的教学设计

教材分析

《等腰三角形》是山东教育出版社义务教育课程实验教科书八年级数学上册第一章。等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的。它不仅是对前面所学知识的综合应用,也是后面研究等边三角形等内容的预备知识,同时也是今后证明角相等、线段相等及两直线垂直的重用依据。

学情分析

学生在前面已接触过轴对称和全等三角形的有关知识,所以等腰三角形的这两个性质学生可以通过折叠发现,并用全等三角形的性质加以证明而通过探究等腰三角形的“三线合一”的性质,可以激发学生浓厚的学习数学的兴趣,使学生体会性质定理的来龙去脉;了解、感知知识发生、发展的全过程;拓宽学生探索图形变化的视野。掌握等腰三角形及其性质在生活中的应用,更有益于学生了解数学价值,体会数学来源于生活,并应用于生活。

本节课主要通过小组合作、交流解决疑难问题,并在教师设疑与学生设疑、教师引导与学生讲解、教师评价与学生评价相结合中实施差异合作教学。

背景介绍

新课程中等腰三角形的性质不是通过论证得出的,而是让学生动手操作,通过等腰三角形的轴对称变换得出的。在上“轴对称的认识”一节时,我引导学生采用折纸的方法,较为成功地得出了线段的中垂线、角平分线的性质。我考虑本节内容也能否让学生通过折纸的方法,实验、探索、归纳得出相关的结论呢?于是我进行了大胆地尝试。

教学目标

(一)知识目标

学优生通过启发引导探究出几何推理的方法得到等腰三角形的性质;中等生、学困生通过动手操作验证等腰三角形的性质。在复杂图形中正确运用“三线合一”的方法应予以指导,安排分层次的习题,以适应不同学生的需要。

(二)能力目标

发展学生的思考能力、语言表达能力和推理问题的能力,深化逆向思维能力和综合应用问题能力。

(三)情感目标

培养学生自信心、合作能力、竞争意识以及勇于探索的精神。

课堂教学活动过程:

1、创设情境,引出课题

活动一:多媒体展示图片

学生活动:学生欣赏图片,感受生活中等腰三角形的数学美.

【目的】:通过图片的展示,让学生感受到生活中处处都有等腰三角形,体会数学来源于生活,激发学生探究的积极性,并由此引入课题。

2、实验操作,探究规律

活动二 :操作体验

师:什么叫等腰三角形?知道等腰三角形你能得到什么结论?

生:两条边相等的三角形是等腰三角形。等腰三角形的两个底角相等。

师:等腰三角形还有别的特点吗?请同学们通过动手折叠等腰三角形(纸片)进行探究。

学生动手操作,同桌交流实验结果。

师:说说你的发现。并向大家展示一下,你是怎样发现这个结论的?

【自评】:此时学优生和中等生能够发现结论,而学困生能折出来,但不能用语言阐述,所以老师只能让学优生和中等生回答。通过动手,加深学生对知识形成过程的理解,发展学生的思维能力、动手操作能力和数学语言表达能力。让不同层次的学生进行回答,激发学生的求知欲,培养学生的探索意识和创新精神。

师:折痕是等腰三角形中的什么线段?

生:顶角的角平分线。(有的答底边上的高或底边上的高。)

师:是不是想告诉我们等腰三角形顶角的平分线也是底边上的中线和高线?

生:是。

师:还想告诉我们什么?

生:等腰三角形底边上的中线也是顶角的平分线和底边上的高线.

师:非常聪明。还想告诉我们什么?

生:等腰三角形底边上的高线也是顶角的平分线和底边上的中线.

师:那就是说等腰三角形的“三线合一”实际上有几层意义?

生:三层。

师板书性质定理的内容。

师:你能用几何推理的方法证得等腰三角形“三线合一”这一性质定理吗?(师把图和已知、求证写在黑板上)

【自评】:加强知识形成过程的教学,不断完善知识体系,教给学生分析问题的方法。让学优生通过启发引导探究出几何推理的方法得到“三线合一”,中等生、学困生通过动手操作验证“三线合一”即可。

师:在等腰三角形中,如果出现这“三线”中的“一线”时,同学们会联想到什么?

生:另外“两线”。

师:这三层意义能不能分别用符号语言表示?

自评:优等生能够表述几何语言,中等生和学困生就有困难,他们只能是从动手操作的过程中形象地认知,并不能上升到理论的高度来总结。

师板演:

①∵AB =AC, BD =CD

∴∠BAD = ∠CAD, AD ⊥BC

②∵AB =AC, AD ⊥BC

∴∠BAD = ∠CAD, BD =CD

③∵AB =AC, ∠BAD = ∠CAD

∴BD =CD, AD⊥BC

师:这三段推理有什么共同的特点?

生:有一个条件推出其余的两个条件。

师:是有一个条件推出的吗?

生:再加上等腰三角形这个条件。

师:非常好。等腰三角形“三线合一”是说明两个角相等、两条线段相等或垂直的重要依据。以后我们就可以用“三线合一”的三段推理去证明或解决其它的问题。

自评:对于定理的学习,学生要从理解到会应用是有一个过程的,等腰三角形的“三线合一”这一定理的学习难点就是怎样去应用。我把教材这样处理,不但要使全体学生透彻的理解了这一定理,更让学优生知道这一定理的几何推理过程,为这一定理的应用打下了基础。设计好了这一思路后,我采用互动式教学法,通过师生对话和学生的操作和思考,使学生掌握等腰三角形的“三线合一”性质,从而发展其空间观念,并为定理的应用打下了坚实的基础。

3、应用新知,尝试成功

尝试练习一:

(1)如果等腰三角形的一个底角为50°,则其余两个角为

(2)如果等腰三角形的顶角为80°,则它的一个底角为

(3)如果等腰三角形的一个外角为70°,则它的三个内角为

(4)如果等腰三角形的一个外角为100°,则它的三个内角为

【意图】:通过本练习,巩固理角等腰三角形“等边对等角”的性质和等边三角形的性质;特别通过练习(4)设计,得出不同的结果,培养学生思维的开放性与灵活性。

尝试练习二:

如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。这根房梁是否保持水平呢?为什么?

【意图】:此例与引入课题时提出的问题模型呼应,体现了数学来源于实践,反过来又作用于实践的辩证唯物主义的观点。培养学生学数学,用数学的意识。

4、课堂小结,掌握方法

(1)小结本堂课的收获。(学生畅所欲言)

(2)掌握方法:等腰三角形的性质提供了说明两角相等的常用方法;“三线合一”是说明两条线段相等、两个相等及两条直线互相垂直的依据。

5、布置作业,课外拓展

(略)

【设计体会】:

在数学活动中如何真正让每一位学生积极行动起来,能提出自己的方法和建议,成为数学活动中的一分子,培养学生相对独立地获取知识和能力,逐步学会运用分析、类比、转化等方法。本课例中围绕一个“折”字较为成功地体现了这一点。

在新授课的差异教学中,我认为最重要的是课堂环节的安排和问题的设置。有效的课堂提问必须清楚、明确、具有启发性,要考虑到不同层次的学生的心理特点、认知特点,适应学生的认识水平。通过分层测试使学生掌握等腰三角形的性质,并能初步运用。满足不同学生的需求,促进全体学生健康发展。帮助学生反思学习过程,使学生树立成功者的自信。

[等腰三角形的教学设计]

篇11:《等腰三角形性质》教学反思

本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现,通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

通过本节课的教学要求学生掌握等腰三角形的性质定理1、2、3,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力。而等腰三角形的性质定理是本课的重点,等腰三角形“三线合一”性质的运用是本课的难点

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

首先我用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活,紧接着进入第二个环节。在本章的开始已经学习了三角形的分类,并且认识了等腰三角形,为了更好地学好本节课,让学生画一个等腰三角形,指出其各部分的名称,然后让学生猜测等腰三角形除了两腰相等以外它还具有哪些性质?猜想形成不成熟的结论∠B=∠C,那么,我们如何来证明呢?为学生提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就像数学家那样发现问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度,通过引导,学生容易想到可添加辅助线构造全等三角形来加以证明。通过这样一个过程既培养了学生动口、动手、动脑的能力,也使本节课的难点得以突破,最后师生共同完成证明过程,定理得证,从而由感性认识上升到了理性认识。

性质得出后再引导学生观察。既然△ABC≌△ACD,那么∠BAD、∠CAD,BD与CD、AD与BC有什么关系呢?让学生自己去发现、去联想,能充分地发挥学生主观能动性。通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

学完定理,我出示了一组练习,集中学生的注意力,同时为了突出重点,我设计了具有变式性的练习,通过口答、抡答形式来完成,既培养了学生的语言表达能力,又发挥了学生的主体地位,激发了学习兴趣,活跃了课堂气氛。

课堂教学,一是注重引入激发兴趣,二是注重教学过程,重视方法,三是注重概括总结,首先我让学业生总结本节课你都学到了哪些知识哪些解题方法、学习方法,然后教师对肯定学生的积极性,在今后的学习中继续发扬,让学生带着成功感走出课堂。

作业必做题面向全体学生,注重基本知识的巩固,选做题面向学有余力的同学,培养他们产生学好数学的长久愿望。总之,在整个教学过程中,我遵循着“教师为主导,学生为主体,训练为主线”的原则,在课上的每个环节中通过各种媒体,各种手段,始终注重兴趣的激发,培养学生学习的热情,让他们在轻松愉快中学习知识。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动了学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

篇12:等腰三角形性质教学反思

等腰三角形性质教学反思

优点:本人在等腰三角形性质(第三课时)的教学中,采用我们学校数学组的教学方法,一、让学生自主学习,二、小组交流,三、教师点拨四、拓展提高,五、当堂检测。力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的.问题在答问过程中还不时得到本人的提醒,这样导致的结果是难于发现学生真实的思维过程。“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度。但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。五步教学法的本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。

不足:令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。而在探索问题的关键时候,本人也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。还有八年级学生级分化严重,有一部分学生上课什么也不想做!

教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。

篇13:等腰三角形复习教学反思

等腰三角形复习教学反思

本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:

1 、起点的教学设计,有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。

2、学习数学离不开解题,但如果陷入茫茫的题海中,解题千万道,解后抛九霄,是难以达到提高解题能力、发展思维的目的的。初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。既来源于教材,又高于教材,较有新意,又能提高综合应用知识的能力,这才是高层次的复习课。

3、复习课既不像新授课那样有新鲜感,又不像练习课那样有成功感。如何上好一节行之有效的复习课,一直是我关注的教学问题,在教学中要将已学过的知识一一再现在学生面前,同时还要做到在更深的层面系统的处理前后知识的关联,我决定大胆尝试,不按以往传统复习法一章一章的复习,而是以一类问题的解决方法探索来涵盖我要复习的知识点。

4、这堂课涉及的几何基础知识非常广泛,它既能充分的'考察学生基础知识的掌握的熟练程度,又能较好的考察学生的观察,分析,比较,概括的能力及发散思维能力。

在本节复习课教学中我注意到避开以下问题:

(1)以教师思维代替学生思维,忽视学生学习的能动性;

(2)重习题的机械**练,轻认知策略的教学;

(3)复习方法呆板,缺少生动性和趣味性;

(4)为追求应试效果、强化训练和解题技巧指导过多,学生独立自主的探究知识学习太少。

篇14:等腰三角形复习教学反思

本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:

1 、起点的教学设计,有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。

2、学习数学离不开解题,但如果陷入茫茫的题海中,解题千万道,解后抛九霄,是难以达到提高解题能力、发展思维的目的的。初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。既来源于教材,又高于教材,较有新意,又能提高综合应用知识的能力,这才是高层次的复习课。

3、复习课既不像新授课那样有新鲜感,又不像练习课那样有成功感。如何上好一节行之有效的复习课,一直是我关注的教学问题,在教学中要将已学过的知识一一再现在学生面前,同时还要做到在更深的层面系统的处理前后知识的关联,我决定大胆尝试,不按以往传统复习法一章一章的复习,而是以一类问题的解决方法探索来涵盖我要复习的知识点。

4、这堂课涉及的几何基础知识非常广泛,它既能充分的考察学生基础知识的掌握的熟练程度,又能较好的考察学生的观察,分析,比较,概括的能力及发散思维能力。

在本节复习课教学中我注意到避开以下问题:

(1)以教师思维代替学生思维,忽视学生学习的能动性;

(2)重习题的机械的练,轻认知策略的教学;

(3)复习方法呆板,缺少生动性和趣味性;

(4)为追求应试效果、强化训练和解题技巧指导过多,学生独立自主的探究知识学习太少。

篇15:等腰三角形复习教学反思

本节课中,性质的引入体现了新课程的理念,学生合作学习,课堂上,学生充分猜想、验证,用实验方法得出各种不同的结论,借助小组合作学习的方式,使学生的思维充分展开,在课堂上通过讨论,点评了两种方法,其余给学生课后验证,拓展了课堂的空间。从“折叠等腰三角形”这一实践中,通过“小组内交流→小组间交流→小组内归纳”这一过程,总结出等腰三角形的各种性质(现象),学生学习的兴趣增强了,对知识的探究也深入了,印象也比较深刻,明显比教师讲解有更强的作用。另一方面也说明了教师有深厚的学科功底,对教材的理解非常深刻,是在“用课本教”而不是在“教课本”。

在本节课中还应处理好以下几点:

⑴等腰三角形“三线合一”定理的强调,尤其是书写。因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。

⑵加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。

⑶加强学生的书写能力的培养。本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。

篇16:等腰三角形复习教学反思

在新的课程标准中十分强调过程一词,既要重视学生的参与过程,又要重视知识的在先过程。有了学生的.参与,课堂教学才显得生机勃勃,学生才会变成课堂学习的主人。知识的再现过程有助于让学生了解所学知识从何而来,解决何种问题,在有限的时间内探究知识,主动获取知识。

在教学中我们常常回遇到这样一种现象,学生年龄在增长,他们的学习困难也在增多,学生一年一年在升级,而求知的兴趣却在逐渐减弱,不少数学学得不错的学生在长大以后却远离数学,甚至讨厌数学,原因是什么呢?

从学生的方面来讲,这主要是部分学生在他们的整个学习过程中对一些概念,结论,判断不是在研究事实的过程后形成的,而是听教师讲解后知道的。因此,学生在学习中缺少主动的参与,更缺少积极的思考,确实依靠自己的实践去获取知识的过程。从教师的方面将,可能已经将教材将明白,难点,重点归纳清楚,课堂上尽量减少学习的困难,让学生走一条平坦的路,但这样学生就的不到积极的思考。所以教师要全面的积极准备教学过程,让学生参与到教学果实中来,主动思考教师为他们准备的问题,让学生体会发现的乐趣,依靠自己的分析,独立思考获取知识,这中知识才是最宝贵的。例如在等腰三角形三线合一的教学中,两个班级出现了截然相反的效果。其中我是这样设计的:

1画出等腰三角形底边上的高;

2观察图中的全等三角形;

3证明得出的全等三角形;

4证出垂足就是底边上的中点、角平分线上的焦点;

5归纳结论

通过此过程学生也了解了等腰三角形的三线合一。但是学生的迁移、运用能力不是很强;于是在三年六班上课时,考虑到学生的参与热情、理解能力,改变了教学方法,注重强调过程,于是设计:

(1)出示不等式三角形(可用几何画板)。

(2)画出同一边上高线、中线、角平分线、观察三线位置。

(3)慢慢拖动三角形一顶角将不等边三角形转化为等腰三角形,同时观察三线位置的变化过程,让学生自己去发现,展示汇报,可相互质疑。为此学生的积极性一下子被调动起来了,在相互交流中掌握了知识。

教师如何去做“过程”?这是新课程改革时期我们每位教师必须思考的首要问题,在课堂教师应设计一定情景下的数学问题,设计一些结论开放适合学生实际的问题,让学生参与到问题的探究中去,给学生思考,动手的时间和空间,变教师“主讲”为“主学”,真正让探究过程成为课堂教学的主旋律。

篇17:等腰三角形性质教学反思

安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。

性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话。

一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”。

三句话是“1、等腰三角形的顶角平分线平分底边、垂直于底边;2、等腰三角形的底边上的中线平分顶角、垂直于底边;3、等腰三角形的底边上的高平分顶角、平分底边。”

13.3等腰三角形的性质教学反思——《初中数学解题能力与解题策略的研究》课题研究阶段材料六句话是“1等腰三角形的顶角平分线平分底边;2等腰三角形的顶角平分线垂直于底边;3等腰三角形的底边上的中线平分顶角;4等腰三角形的底边上的中线垂直于底边;5等腰三角形的底边上的高平分顶角;6等腰三角形的底边上的高平分底边”。结合图形概括起来就是:在ABc中,AB=Ac,下列论断∠BAD=∠cAD,BD=cD,AD⊥Bc中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。

性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,安排了两个同学在黑板上板演,提升学习的六道题没有讨论。要培养学生讨论和自觉纠错的学习习惯。

性质在证明中的应用,集体备课安排的两道题很好,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”,课堂至此,到了思维的最高潮,两道题最优解法的得到是学生取得成功的最好感受,这是我觉得提升学习的一道题可以不要了,留有更多的时间进行课堂小结,本课的课堂小结还应当更充分些。

篇18:等腰三角形性质教学反思

安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

在证明性质时,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的不是很充分。

性质2的应用比较多,学生往往不能灵活应用这条性质,因此要由图形训练和规范符号语言。

在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,设计一组填空题,有利于性质2的应用。

要培养学生讨论和自觉纠错的学习习惯。性质在证明中的应用,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”最后留出时间进行课堂小结。

《等腰三角形》教学反思

等腰三角形的性质教学设计

等腰三角形和等边三边形教学反思

等腰三角形性质教学反思及建议

教学课件

等腰三角形性质说课稿

等腰三角形边长公式

等腰三角形有几条对称轴

等腰三角形的性质说课稿

体育教学课件

《等腰三角形教学课件(精选18篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档