欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

《充分条件与必要条件》的说课稿

时间:2022-08-18 08:24:05 其他范文 收藏本文 下载本文

以下是小编收集整理的《充分条件与必要条件》的说课稿,本文共13篇,希望对大家有所帮助。

《充分条件与必要条件》的说课稿

篇1:充分条件与必要条件

充分条件与必要条件

教学目标

(1)正确理解充分条件、必要条件和充要条件的概念;

(2)能正确判断是充分条件、必要条件还是充要条件;

(3)培养学生的逻辑思维能力及归纳总结能力;

(4)在充要条件的教学中,培养等价转化思想.

教学建议

(一)教材分析

1.知识结构

首先给出推断符号“ ”,并引出充分条件与必要条件的意义,在此基础上讲述了充要条件的初步知识.

2.重点难点分析

本节的重点与难点是关于充要条件的判断.

(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件 和结论 之间的因果关系.

(2)在判断条件 和结论 之间的因果关系中应该:

①首先分清条件是什么,结论是什么;

②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;

③最后再指出条件是结论的什么条件.

(3)在讨论条件 和条件 的关系时,要注意:

①若 ,但 ,则 是 的充分但不必要条件;

②若 ,但 ,则 是 的必要但不充分条件;

③若 ,且 ,则 是 的充要条件;

④若 ,且 ,则 是 的充要条件;

⑤若 ,且 ,则 是 的既不充分也不必要条件.

(4)若条件 以集合 的形式出现,结论 以集合 的形式出现,则借助集合知识,有助于充要条件的理解和判断.

①若 ,则 是 的充分条件;

显然,要使元素 ,只需 就够了.类似地还有:

②若 ,则 是 的必要条件;

③若 ,则 是 的充要条件;

④若 ,且 ,则 是 的既不必要也不充分条件.

(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题 逆否命题,逆命题 否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.

(二)教法建议

1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的 , 与四种命题中的 , 要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若 则 ”形式的复合命题.

2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.

3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.

4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.

教学设计示例

充要条件

教学目标:

(1)正确理解充分条件、必要条件和充要条件的概念;

(2)能正确判断是充分条件、必要条件还是充要条件;

(3)培养学生的逻辑思维能力及归纳总结能力;

(4)在充要条件的教学中,培养等价转化思想.

教学重点难点:关于充要条件的判断

教学用具:幻灯机或实物投影仪

教学过程设计

1.复习引入

练习:判断下列命题是真命题还是假命题(用幻灯投影):

(1)若 ,则 ;

(2)若 ,则 ;

(3)全等三角形的面积相等;

(4)对角线互相垂直的四边形是菱形;

(5)若 ,则 ;

(6)若方程 有两个不等的实数解,则 .

(学生口答,教师板书.)

(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

置疑:对于命题“若 ,则 ”,有时是真命题,有时是假命题.如何判断其真假的?

答:看 能不能推出 ,如果 能推出 ,则原命题是真命题,否则就是假命题.

对于命题“若 ,则 ”,如果由 经过推理能推出 ,也就是说,如果 成立,那么 一定成立.换句话说,只要有条件 就能充分地保证结论 的成立,这时我们称条件 是 成立的充分条件,记作 .

2.讲授新课

(板书充分条件的定义.)

一般地,如果已知 ,那么我们就说 是 成立的充分条件.

提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

(学生口答)

(1)“ ,”是“ ”成立的充分条件;

(2)“三角形全等”是“三角形面积相等”成立的充分条件;

(3)“方程 的有两个不等的实数解”是“ ”成立的充分条件.

从另一个角度看,如果 成立,那么其逆否命题 也成立,即如果没有 ,也就没有 ,亦即 是 成立的必须要有的条件,也就是必要条件.

(板书必要条件的定义.)

提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

(学生口答).

(1)因为 ,所以 是 的充分条件, 是 的必要条件;

(2)因为 ,所以 是 的必要条件, 是 的充分条件;

(3)因为“两三角形全等” “两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

(4)因为“四边形的对角线互相垂直” “四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

(5)因为 ,所以 是 的必要条件, 是 的充分条件;

(6)因为“方程 的有两个不等的实根” “ ”,而且“方程 的有两个不等的实根” “ ”,所以“方程 的有两个不等的实根”是“ ”充分条件,而且是必要条件.

总结:如果 是 的充分条件, 又是 的.必要条件,则称 是 的充分必要条件,简称充要条件,记作 .

(板书充要条件的定义.)

3.巩固新课

例1  (用投影仪投影.)

B

A是B的什么条件

B是 的什么条件

是有理数

是实数

       

、 是奇数

是偶数

                   

是4的倍数

是6的倍数

   

(学生活动,教师引导学生作出下面回答.)

①因为有理数一定是实数,但实数不一定是有理数,所以 是 的充分非必要条件, 是 的必要非充分条件;

② 一定能推出 ,而 不一定推出 ,所以 是 的充分非必要条件, 是 的必要非充分条件;

③ 、 是奇数,那么 一定是偶数; 是偶数, 、 不一定都是奇数(可能都为偶数),所以 是 的充分非必要条件, 是 的必要非充分条件;

④ 表示 或 ,所以 是 成立的必要非充分条件;

⑤由交集的定义可知 且 是 成立的充要条件;

⑥由 知 且 ,所以 是 成立的充分非必要条件;

⑦由 知 或 ,所以 是 , 成立的必要非充分条件;

⑧易知“ 是4的倍数”是“ 是6的倍数”成立的既非充分又非必要条件;

(通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

例2  已知 是 的充要条件, 是 的必要条件同时又是 的充分条件,试 与 的关系.(投影)

解:由已知得

所以 是 的充分条件,或 是 的必要条件.

4.小结回授

今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

课内练习:课本(人教版,试验修订本,第一册(上))第 35页练习l、2;第36页练习l、2.

(通过练习,检查学生掌握情况,有针对性的进行讲评.)

5.课外作业:教材第36页     习题1.8    1、2、3.

篇2:《充分条件与必要条件》的说课稿

一、背景分析

1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

在旧教材中,这节内容安排在《解析几何》第二章“圆锥曲线”的第三节讲授,而在新教材中,这节内容被安排在数学第一册(上)第一章中“简易逻辑”的第三节。除了教学位置的前移之外,新教材中与充要条件相关联的知识体系也作了相应的扩充。在“充要条件”这节内容前,还安排了“逻辑联结词”和“四种命题”这二节内容作为必要的知识铺垫,特别是“逻辑联结词”这部分内容是第一次进入中学数学教材,安排在充要条件之前讲授,既可以使学生丰富并深化对命题的理解,也便于老师讲透充要条件这一基本数学概念。

教学重点:充分条件、必要条件和充要条件三个概念的定义。

2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。

教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=>A”,称A是B的'必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。

教学关键:找出A、B,根据定义判断A=>B与B=>A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。

二、教学目标设计:

(一)知识目标:

1、正确理解充分条件、必要条件、充要条件三个概念。

2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。

3、在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系。

(二)能力目标:

1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。

2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。

3、培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中。

(三)情感目标:

1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。

2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。

3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。

三、教学结构设计:

数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。

整体思路为:教师创设情境,激发兴趣,引出课题 引导学生分析实例,给出定义 例题分析(采用开放式教学) 知识小结 扩展例题 练习反馈

整个教学设计的主要特色:(1)由生活事例引出课题;

(2)例1采用开放式教学模式;

(3)扩展例题2是分析生活中的名言名句,又将数学融入生活中。

努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。

四、教学媒体设计:

本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。

五、教学过程设计:

第一,创设情境,激发兴趣,引出课题:

考虑到高一学生学习这一章的知识储备不足,为了让学生更易接受这一节内容,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。

我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。

第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。

用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。

第二,引导学生分析实例,给出定义。

在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。

篇3:高中数学说课稿《充分条件与必要条件》

高中数学说课稿《充分条件与必要条件》

一、背景分析

1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

教学重点:充分条件、必要条件和充要条件三个概念的定义。

2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。

教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=A”,称A是B的必要条件难于接受,A本是B推出的.结论,怎么又变成条件了呢?对这学生难于理解。

教学关键:找出A、B,根据定义判断A=B与B=A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。

二、教学目标设计:

(一)知识目标:

1、正确理解充分条件、必要条件、充要条件三个概念。

2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。

(二)能力目标:

1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。

2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。

(三)情感目标:

1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。

2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。

3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。

三、教学结构设计:

数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。

整体思路为:教师创设情境,激发兴趣,引出课题 引导学生分析实例,给出定义 例题分析(采用开放式教学) 知识小结 扩展例题 练习反馈

整个教学设计的主要特色:

(1)由生活事例引出课题;

(2)采用开放式教学模式;

(3)扩展例题是分析生活中的名言名句,又将数学融入生活中。

努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。

四、教学媒体设计:

本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。

五、教学过程设计:

第一,创设情境,激发兴趣,引出课题:

考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。

我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。

第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。

用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。

第二,引导学生分析实例,给出定义。

在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。

得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作: 。

还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“ ,A是B的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。

当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作: 。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。

篇4:充分条件与必要条件教案

一. 教学目标:

1.使学生初步掌握充要条件

2.培养学生理解、分析、归纳、解决问题的能力

二. 教学重点:关于充要条件的判断

教学难点:关于充要条件的判断

三. 教学过程

(一)复习提问

1.什么叫充分条件?什么叫必要条件?说出“ ”的含义

2.指出下列各组命题中,“p q”及“q p”是否成立

(1)p:内错角相等 q:两直线平行

(2)p:三角形三边相等 q:三角形三个角相等

(二)授新课

1.(通过复习提问直接引入课题)充要条件定义:

一般地,如果既有p q,又有q p,就记作:p q。

这时,p既是q的充分条件,又是q的必要条件,我们说p是q的充分必要条件,简称充要条件

点明思路 :判断p是q的什么条件,不仅要考查p q是否成立,即若p则q形式命题是否正确,还得考察q p是否成立,即若q则p形式命题是否正确。

2.辨析题:(学生讨论并解答,教师引导并归纳)

思考:下列各组命题中,p是q的什么条件:

1) p: x是6的倍数。 q:x是2的倍数

2) p: x是2的倍数。 q:x是6的倍数

3) p: x是2的倍数,也是3的倍数。q:x是6的倍数

4) p: x是4的倍数 q:x是6的倍数

总结:1) p q 且q≠> p 则 p是q的充分而不必要条件

2) q p 且p≠>q 则p 是q 的必要而不充分条件

3) p q 且q p 则q 是p的充要条件

4) p≠>q 且q≠>p则 p是 q的既不充分也不必要条件

强调:判断p是q的什么条件,不仅要考虑p q是否成立,同时还要考虑q p是否成立。

且p是q的什么条件,以上四种情况必具其一.

3 巩固强化

例一:指出下列各命题中,p是q的什么条件:

1) p:x>1 q:x>2

2) p:x>5 q:x>-1

3) p:(x-2)(x-3)=0 q:x-2=0

4) p:x=3 q: =9

5) p:x=±1 q:x -1=0

篇5:充分条件与必要条件第二课时的说课稿

充分条件与必要条件第二课时的说课稿

一 教材分析:

学习数学需全面理解概念,正确地进行表述、判断和推理,这就离不开对逻辑知识的掌握和运用,更广泛地说,在日常生活、工作、学习中,基本的逻辑知识也是认识问题,研究问题不可缺少的工具。作为高中数学起始章节的内容,充要条件在高中数学中地位是最基本,也是最重要的。通过本课学习着重培养学生逻辑思维﹙如理解、判断、推理、归纳等﹚的能力。针对教材依据《数学教学大纲》,结合《数学课程标准》,确定本课教学目标为:

(1) 使学生初步掌握充要条件;

(2) 培养学生逻辑思维能力。

教学重点:关于充要条件的判断.

从学生学习角度观察,虽有前面所学知识作铺垫,但学生在学习了充要条件并应用所学内容判断p是q的什么条件时,仍存在易混淆、思路不够清晰等问题,针对如上情况,确定本课的教学难点: 关于充要条件的判断。本课教学采用以学生为主教师为辅的教学理念,结合学生对本课学习好奇心强这一特点,采用师生互动的教学模式,在轻松的教学氛围中,通过师生间交流合作,引导学生树立锲而不舍、实事求是、一丝不苟的学习理念,同时培养学生对数学的学习兴趣。

二 过程分析:

本课教学采取从基本入手,由简到繁,由浅入深的教学思想,设计了复习提问→引入新知 → 辨析 → 巩固强化 → 拓展练习→ 巩固提高 → 小结的教学流程。我将分别就以上各环节说明我的设计意图:

首先复习两个重要的概念:.充分条件、必要条件定义,及“p=>q”的含义,复习旧知的同时为新知的引入做铺垫,配备练习由旧知做实例开门见山引入充要条件,学生易直观理解本课所学内容,同时抛砖引玉为分散难点:充要条件的判断做准备。

继而讲述充要条件的定义,并点明思路 :判断p是q的什么条件,不仅要考查p=>q是否成立,即若p则q形式命题是否正确,还要考察q=>p是否成立,即若q则p形式命题是否正确。目的是理清并巩固思路,具有突出重点、分散难点的作用。

为加强学生辨析能力,同时帮助学生梳理知识体系,配备辨析题并引导学生总结:1) p=>q,但q=>p不成立,则p是q的充分而不必要条件;2) q=>p,但p=>q不成立,则p是q的必要而不充分条件;3)p=>q 且q=>p ,则p是q的充要条件;4)p=>q不成立且q=>p也不成立,则 p是q的既不充分也不必要条件。强调:判断p是q的什么条件,不仅要考虑p=>q是否成立,同时还要考虑q=>p是否成立。且p是q的什么条件,以上四种情况必具其一。设计思想加强学生辨析及归纳能力同时进一步巩固思路,达到强调重点、分散难点的作用。

由例一巩固强化学生认知体系同时进一步引导学生观察归纳:当p、q分别以集合A、B出现时:

若A B但B不包含于A,即A 是B的'真子集,则p是q的充分而不必要条件

若A B 但A 不包含于B, 即B是A的真子集,则p是q的必要而不充分条件

若A B且B A ,即A=B , 则p是q的充要条件

若A不包含于B,且B不包含于A ,则p是q的既不充分也不必要条件,继而师生共同总结判断p是q的什么条件的方法有:1 判断p=>q及q=>p是否成立;2 集合观点。以达到进一步丰富和完善学生认知体系目的。

通过拓展练习给学生自我发展空间,建立师生交流平台并进一步巩固完善学生认知体系(如举反例在说明“a>b”是“a >b ”的充分条件是假命题时应用)同时激发学生学习数学兴趣。

经过复习提问→拓展练习等教学环节,在简单的例题和练习及轻松教学环境中学生基本掌握本课教学重点,解决本课难点,并有愿望探索更深层次问题时,配备巩固提高题开阔学生视野,充分调动学生主观能动性,开展师生对话,使学生明确旧知(如“若p则q”命题与其逆否命题“若┑q则┑p”同真假)在解决新问题中的应用,以进一步丰富和完善学生认知体系,并完成培优工作。

通过小结这一环节帮助学生梳理知识体系,进一步强调本课教学重点,最后布置作业督促学生练习,培养学生运用所学知识独立解决问题能力,为教师了解学生对所学知识掌握情况作载体,从而进一步完善教学、补差、及课后反思等工作。

三 课后反思:

﹙1﹚本课学习是为今后进一步学习其他知识作准备,随着后续章节的学习,对逻辑知识的应用将越来越广泛和深入,相应的对逻辑知识的理解和掌握水平也将越来越高,同时学生的认知是一循序渐进的过程,片面地强调求难,求偏均不能很好的完成本课教学任务,因此本课教学一定要从学生实际和教科书的具体内容出发,提出恰如其分的教学要求,避免一步到位。

(2)依据《大纲》,本课内容教学约2课时,本章小结与复习约3课时。在约定课时内。不仅让全体学生掌握基本的逻辑知识和思维,同时还要为同学们特别是中等及中上学生的后继学习及其个体独立深入研究搭桥铺路,有意配备具有巩固提高性质的三道题,不仅补充题型,扩展学生知识面,使学生认识到旧知与新知的联系,同时点拨思路,引导学生思维纵深发展。解题难度不大,可能因刚接触,少部分学生存在理解困难等问题,但随学生后继学习巩固及学生认知规律特点 ,基本能达到本题最初设计意图,因此,巩固提高题有必要放入本课教学计划中。经实践,效果较好。

篇6:1.8充分条件与必要条件(2课时)

教学目的:1.使学生正确理解充分条件、必要条件和充要条件三个概念,并能在判断、论证中正确运用.2.增强逻辑思维活动,为用等价转化思想解决数学问题打下良好的逻辑基础.教学重点:正确理解三个概念,并在分析中正确判断。 教学难点:。充分性与必要性的推导顺序教学过程:

第一课时一、复习回顾:   判断下列命题的真假:    (1)若a>b,则ac>bc;(2)若a>b,则a+c>b+c;(3)若x≥0,则x2≥0;(4)若两三角形全等,则两三角形的面积相等。二、讲授新课1、推断符号“ ”的含义如果p成立,那么q一定成立,此时可记作“p q”。如果p成立,推不出q成立,此时可记作“p q”。2、充分条件与必要条件定义:如果已知pþq,那么就说:p是q的充分条件;q是p的必要条件。应注意条件和结论是相对而言的。由“pþq”等价命题是“┐qþ┐p”,即若q不成立,则p就不成立,故q就是p成立的必要条件了。但还必须注意,q成立时,p可能成立,也可能不成立,即q成立不保证p一定成立。讨论上述问题(2)、(3)、(4)中的条件关系: 3、例题讲解例:指出下列各组命题中,p是q的什么条件,q是p的什么条件:(1)p:x=y;q:x2=y2;(2)p:三角形的三条边相等;q:三角形的三个角相等;(3)p:x=1或x=2,q:x2-3x+2=0;(4)p:x=2或x=3,q:x-3= .命题按条件和结论的充分性、必要性可分为四类:(1)充分不必要条件,即pþq,而q p;(2)必要不充分条件,即p q,而qþp;(3)既充分又必要条件,即pþq,又有qþp;(4)既不充分也不必要条件,即p q,又有q p。三、课堂练习:课本p35  1、2        四、课时小结:五、课后作业:书面作业:课本p36,习题1.8:1(1)、(2);2:(1)、(2)、(3);预习提纲:充分必要条件的意义是什么?怎样判断命题的充要条件?

篇7:上学期 1.8 充分条件与必要条件

充要条件

教学目标 :

(1)正确理解充分条件、必要条件和充要条件的概念;

(2)能正确判断是充分条件、必要条件还是充要条件;

(3)培养学生的逻辑思维能力及归纳总结能力;

(4)在充要条件的教学中,培养等价转化思想.

教学重点难点:关于充要条件的判断

教学用具:幻灯机或实物投影仪

教学过程 设计

1.复习引入

练习:判断下列命题是真命题还是假命题(用幻灯投影):

(1)若 ,则 ;

(2)若 ,则 ;

(3)全等三角形的面积相等;

(4)对角线互相垂直的四边形是菱形;

(5)若 ,则 ;

(6)若方程 有两个不等的实数解,则 .

(学生口答,教师板书.)

(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

置疑:对于命题“若 ,则 ”,有时是真命题,有时是假命题.如何判断其真假的?

答:看 能不能推出 ,如果 能推出 ,则原命题是真命题,否则就是假命题.

对于命题“若 ,则 ”,如果由 经过推理能推出 ,也就是说,如果 成立,那么 一定成立.换句话说,只要有条件 就能充分地保证结论 的成立,这时我们称条件 是 成立的充分条件,记作 .

2.讲授新课

(板书充分条件的定义.)

一般地,如果已知 ,那么我们就说 是 成立的充分条件.

提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

(学生口答)

(1)“ ,”是“ ”成立的充分条件;

(2)“三角形全等”是“三角形面积相等”成立的充分条件;

(3)“方程 的有两个不等的实数解”是“ ”成立的充分条件.

从另一个角度看,如果 成立,那么其逆否命题 也成立,即如果没有 ,也就没有 ,亦即 是 成立的必须要有的条件,也就是必要条件.

(板书必要条件的定义.)

提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

(学生口答).

(1)因为 ,所以 是 的充分条件, 是 的必要条件;

(2)因为 ,所以 是 的必要条件, 是 的充分条件;

(3)因为“两三角形全等” “两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

(4)因为“四边形的对角线互相垂直” “四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

(5)因为 ,所以 是 的必要条件, 是 的充分条件;

(6)因为“方程 的有两个不等的实根” “ ”,而且“方程 的有两个不等的实根” “ ”,所以“方程 的有两个不等的实根”是“ ”充分条件,而且是必要条件.

总结:如果 是 的充分条件, 又是 的必要条件,则称 是 的充分必要条件,简称充要条件,记作 .

(板书充要条件的'定义.)

3.巩固新课

例1  (用投影仪投影.)

B

A是B的什么条件

B是 的什么条件

是有理数

是实数

、 是奇数

是偶数

是4的倍数

是6的倍数

(学生活动,教师引导学生作出下面回答.)

①因为有理数一定是实数,但实数不一定是有理数,所以 是 的充分非必要条件, 是 的必要非充分条件;

② 一定能推出 ,而 不一定推出 ,所以 是 的充分非必要条件, 是 的必要非充分条件;

③ 、 是奇数,那么 一定是偶数; 是偶数, 、 不一定都是奇数(可能都为偶数),所以 是 的充分非必要条件, 是 的必要非充分条件;

④ 表示 或 ,所以 是 成立的必要非充分条件;

⑤由交集的定义可知 且 是 成立的充要条件;

⑥由 知 且 ,所以 是 成立的充分非必要条件;

⑦由 知 或 ,所以 是 , 成立的必要非充分条件;

⑧易知“ 是4的倍数”是“ 是6的倍数”成立的既非充分又非必要条件;

(通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

例2  已知 是 的充要条件, 是 的必要条件同时又是 的充分条件,试 与 的关系.(投影)

解:由已知得

所以 是 的充分条件,或 是 的必要条件.

4.小结回授

今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

课内练习:课本(人教版,试验修订本,第一册(上))第 35页练习l、2;第36页练习l、2.

(通过练习,检查学生掌握情况,有针对性的进行讲评.)

5.课外作业 :教材第36页     习题1.8    1、2、3.

篇8:充分条件和必要条件的记忆口诀

充分条件:如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的.也属于A,则A与B相等。

必要条件:必要条件是数学中的一种关系形式。如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。

篇9:前提是必要条件还是充分条件

假设A是条件,B是结论(1)由A可以推出B,由B可以推出A,则A是B的充要条件(A=B)(2)由A可以推出B,由B不可以推出A,则A是B的`充分不必要条件(AB)(3)由A不可以推出B,由B可以推出A,则A是B的必要不充分条件(BA)(4)由A不可以推出B,由B不可以推出A,则A是B的既不充分也不必要条件(A¢B且B¢A)有命题p、q,如果p推出q,则p是q的充分条件,q是p的必要条件;如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件。例如:x=y推出x^2=y^2,则x=y是x^2=y^2的充分条件,x^2=y^2是x=y的必要条件(x为负数,y为正数时,不能推出x=y)。(x^2表示x的平方)a、b一正一负推出ab<0,ab<0推出a、b一正一负,则a、b一正一负和ab<0互为充要条件。

篇10:高一数学《充分条件与必要条件》教学设计

一、教学目标设计

通过实例理解充分条件、必要条件的意义。

能够在简单的问题情境中判断条件的充分性、必要性。

二、教学重点及难点

充分条件、必要条件的判断;

充分条件、必要条件的判断方法。

三、教学流程设计

四、教学过程设计

一、概念引入

早在战国时期,《墨经》中就有这样一段话有之则必然,无之则未必不然,是为大故无之则必不然,有之则未必然,是为小故。

今天,在日常生活中,常听人说:这充分说明,没有这个必要等,在数学中,也讲充分和必要,这节课,我们就来学习教材第一章第五节充分条件与必要条件。

二、概念形成

1、 首先请同学们判断下列命题的真假

(1)若两三角形全等,则两三角形的面积相等。

(2)若三角形有两个内角相等,则这个三角形是等腰三角形。

(3)若某个整数能够被4整除,则这个整数必是偶数。

(4) 若ab=0,则a=0。

解答:命题(2)、(3)、(4)为真。命题(4)为假;

2、请同学用推断符号写出上述命题。

解答:(1)两三角形全等 两三角形的面积相等。

(2) 三角形有两个内角相等 三角形是等腰三角形。

(3) 某个整数能够被4整除则这个整数必是偶数;

(4)ab=0 a=0。

3、充分条件与必要条件

继续结合上述实例说明什么是充分条件、什么是必要条件。

若某个整数能够被4整除则这个整数必是偶数中,我们称某个整数能够被4整除是这个整数必是偶数的充分条件,可以解释为:只要某个整数能够被4整除成立,这个整数必是偶数就一定成立;而称这个整数必是偶数是某个整数能够被4整除的必要条件,可以解释成如果某个整数能够被4整除 成立,就必须要这个整数必是偶数成立

充分条件:一般地,用、分别表示两件事,如果这件事成立,可以推出这件事也成立,即,那么叫做的充分条件。[说明]:①可以解释为:为了使成立,具备条件就足够了。②可进一步解释为:有它即行,无它也未必不行。③结合实例解释为: x = 0 是 xy = 0 的充分条件,xy = 0不一定要 x = 0。)

必要条件:如果,那么叫做的必要条件。

[说明]:①可以解释为若,则叫做的必要条件,是的充分条件。②无它不行,有它也不一定行③结合实例解释为:如 xy = 0是 x = 0的必要条件,若xy0,则一定有 x若xy = 0也不一定有 x = 0。

回答上述问题(1)、(2)中的条件关系。

(1)中:两三角形全等是两三角形的面积相等的充分条件;两三角形的面积相等是两三角形全等的必要条件。

(2)中:三角形有两个内角相等是三角形是等腰三角形的充分条件;三角形是等腰三角形是三角形有两个内角相等的必要条件。

4、拓广引申

把命题:若某个整数能够被4整除,则这个整数必是偶数中的条件与结论分别记作与,那么,原命题与逆命题的真假同与之间有什么关系呢?

关系可分为四类:

(1)充分不必要条件,即,而

(2)必要不充分条件,即,而

(3)既充分又必要条件,即,又有

(4)既不充分也不必要条件,即,又有。

三、典型例题(概念运用)

例1:(1)已知四边形ABCD是凸四边形,那么AC=BD是四边形ABCD是矩形的什么条件?为什么?(课本例题p22例4)

(2) 是 的什么条件。

(3)a+b是1,b什么条件。

解:(1)AC=BD是四边形ABCD是矩形的必要不充分条件。

(2)充分不必要条件。

(3)必要不充分条件。

[说明]①如果把命题条件与结论分别记作与,则既要对进行判断,又要对进行判断。②要否定条件的充分性、必要性,则只需举一反例即可。

例2:判断下列电路图中p与q的充要关系。其中p:开关闭合;q:

灯亮。(补充例题)

[说明]①图中含有两个开关时,p表示其中一个闭合,另一个情况不确定。②加强学科之间的横向沟通,通过图示,深化概念认识。

例3、探讨下列生活中名言名句的充要关系。(补充例题)

(1)头发长,见识短。 (2)骄兵必败。

(3)有志者事竟成。 (4)春回大地,万物复苏。

(5)不入虎穴、焉得虎子 (6)四肢发达,头脑简单

[说明]通过本例,充分调动学生生活经验,使得抽象概念形象化。从而激发学生学习热情。

四、巩固练习

1、课本P/22练习1。5(1)

2:填表(补充)

p q p是q的

什么条件 q是p的

什么条件

两个角相等 两个角是对顶角

内错角相等 两直线平行

四边形对角线相等 四边形是平行边形

a=b ac=bc

[说明]通过练习,及时巩固所学新知,反馈教学效果。

五、课堂小结

1、本节课主要研究的内容:

推断符号,

充分条件的意义 命题充分性、必要性的判断。

必要条件的意义

2、 充分条件、必要条件判别步骤:

① 认清条件和结论。

② 考察p q和q p的真假。

3、充分条件、必要条件判别技巧:

① 可先简化命题。

② 否定一个命题只要举出一个反例即可。

③ 将命题转化为等价的逆否命题后再判断。

六、课后作业

书面作业:课本P/24习题1。51,2,3。

五、教学设计说明

1、充分条件、必要条件以及下节课中充要条件与集合的`概念一样涉及到数学的各个分支,用推出关系的形式给出它的定义,对高一学生只要求知道它的意义,并能判断简单的充分条件与必要条件。

2、由于充要条件与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入充分条件的概念,进而引入必要条件的概念。

3、教材中对充分条件、必要条件的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识充分条件的概念,从互为逆否命题的等价性来引出必要条件的概念。

4、由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键。教学中始终要注意以学生为主,结合相关学科及学生生活经验让学生在自我思考、相互交流中去给概念下定义,去体会概念的本质属性。

篇11:高一数学《充分条件与必要条件》教学设计

教学目标:

知识目标:

1、理解充分、必要条件的概念;

2、初步掌握充分、必要条件的判断方法。

能力目标:培养学生的阅读理解能力、逻辑推理能力和归纳总结的能力。

情感目标:让学生感受“在生活中数学地思维”,增加对学习逻辑知识的兴趣和信心,激发求知欲。

教学重点:

充分、必要条件的概念和判断方法。

教学难点:

理解必要条件的概念。

教学方法:

老师引导,小组讨论、自主探究等多种方式循序渐进

教具:

多媒体

教学过程:

教学过程分为6个环节,其中,第4、5环节交叉进行,体现学习螺旋式上升的规律。

(一)创设情境、导入新课。

(二)归纳推理、总结概念。

(三)循序渐进、螺旋上升。

(四)合作探究、把握内涵。

(五)演绎推理、拓展提升。

(六)归纳小结、课后延伸。

(1)创设情境、导入新课。

思考1:林州人是不是安阳人?林州人是安阳人的什么条件?

思考2:《三国演义》 “万事俱备,只欠东风”东风是火烧赤壁成功的什么条件?

设计意图:这样生活化的问题让学生感到亲切,集中了注意力,学生不一定回答对,只是让学会对充分条件和必要条件有个感性的认识,为后继教学埋下伏笔.

(2)归纳推理、总结概念

引例1:

“已知 条件p: a=0 ,条件q: ab=0 。将其写成若p则q的形式,并判断命题的真假。”

如果命题“若p则q”为真,则记作p q,我们就说p是 q 的充分条件,也可以说q是p 的必要条件。

设计意图:作为概念的引例,没有选用课本中的“若x>a2+b2,则x>2ab。”我选用了这样一道题的是因为概念教学时尽量避开学生不熟悉的知识,学生掌握相等关系要比不等关系熟练。

老师点拨:1、推出的含义。

2、充分必要的相对性。

引例2:

“已知 条件p: a=0 ,条件q: ab=0 。写出若p则q的逆命题,并判断其真假。”

如果命题“若p则q”为假,则记作p q,我们就说p不是 q 的充分条件,也可以说q不是p 的必要条件。

设计意图:用同一个例子来引入推不出的含义,减少了知识上的难度,也是对上节课逆命题的一个复习,有利用学生对概念的理解。该例子也为后面的充分不必要条件做好铺垫。

(3)循序渐进、螺旋上升

思考3:林州人是安阳人的什么条件?

思考4:东风是火烧赤壁成功的什么条件?

设计意图:此处我又将导课的例子拿来重新探究,是想通过学生对该问题的再思考,加深对概念的理解,使学生对概念的理解从感性认识上升到理性认识。

在探究东风是火烧赤壁成功的什么条件时,学生出现了分歧。通过学生讨论,老师点拨,发现只有东风不行,没有东风也不行。从而得出是必要条件。最后老师强调充分条件既有了这个条件就足够了,不需要其他条件就能得出结论。必要条件是有了这个条件才行了,缺少了该条件就能得不出结论。该环节的设计突破本节课的难点。(附:活动照片)

(四)合作探究 把握内涵

教学活动:提问学生试举出几个充分条件和必要条件的例子

设计意图:在学生已经理解充分条件和必要条件的情况下.让学生试举出几个充分条件和必要条件的例子,发现学生的问题,及时点拨。通过课堂活动,使教学过程活动化、学习过程自主化、获取知识的过程体验化。

(5)演绎推理、拓展提升

多媒体投影:

例1、下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件

(1)若 x=y,则x2=y2;

(2)若a>b,则a+c>b+c.

例2、 下列“若p,则q”形式的命题中,哪些命题中的p是q的必要条件

(3)若 x2-4x+3=0,则x=1;

(4)若a>b,则ac>bc.

设计意图:为了加深学生对概念的'理解,在此设计了2个例题,设计这2道题主要是为了将充分条件与必要条件再细分,充分不必要、充分必要、必要不充分、既不充分也不必要。从而突破本节课的教学难点.

多媒体投影:

1)若A是B的真子集,则甲是乙的

2)若A和B相等 ,则甲是乙的

3) 若B是A的真子集,则甲是乙的

4)若A不含于B,B不含于A,则甲是乙的

设计意图:在此,出了四个填充分必要条件的填空题,让学生小组讨论、合作探究的方式,通过观察4个特殊例子概括出一般结论,提升学生观察发现、归纳总结的能力,培养他们从具体到抽象、从特殊到一般的归纳推理能力。

多媒体投影:

若条件甲为x∈A,条件乙为x∈B,集合B 满足甲是乙的充分非必要条件

(1) A={ x/x>2 } ,B=

设计意图:本题考查的是必要条件的概念,开放性题,答案不唯一。在实际教学时,学生可能会在大范围和小范围出错。

若条件甲为x∈A,条件乙为x∈B,集合B 满足甲的充分非必要条件是乙

(2) (1)A={ x/x>2 } ,B=

设计意图:在做题时,有很多同学因审题不清,或理解错误而导致做题错误,该变式练习的设计意图就在此。“甲是乙的充分非必要条件”和“甲的充分非必要条件是乙”表述的意义正好相反。

思考5:林州人是安阳人的什么条?

思考6:东风是火烧赤壁成功的什么条件?”

设计意图:为了巩固集合法,让学生从集合的角度在分析这两个问题。在判断{东风}和{火烧赤壁}的关系时,可能会有学生认为{火烧赤壁}={万事俱备、东风},而导致错误。老师及时给学生点拨:{火烧赤壁}={万事俱备}∩{东风}。

(6)归纳小结、课后延伸

定义法:

1、原命题为真,逆命题为假

2、原命题为真,逆命题为真

3、原命题为假,逆命题为真

4、原命题为假,逆命题为假

1、p是q的充分不必要

2、p是q的充分必要

3、p是q的必要不充分

4、p是q的既不充分也不必要

集合法:

1、若A是B的真子集

2、若A和B相等

3、若B是A的真子集

4、若A不含于B,B不含于A 1、p是q的充分不必要

2、p是q的充分必要

3、p是q的必要不充分

4、p是q的既不充分也不必要

设计意图:在这个环节,我以填空的形式让学生将本节课的概念和方法作了总结,加深本节课重点在学生大脑中的印象。

作业布置:

指出下列条件间的关系

1、p:{}是等差数列,q:,d为定值。

2、p:{}是等比数列,q:。

3、p:在三角形ABC中,A>B , q:sinA>sinB。

4、p:,q:与垂直。

5、p:,q:。

6、 p:q:

7、 p: q:

8、 p: q:

9、 p: q:

10、p: q: s: t:

设计意图:我将必修1-必修5中易错的知识点编成作业,加深学生对知识的理解。

6、教学反思

本节课以两个贴近生活的实例为主线,先是引出概念,激发了学生的学习兴趣,并产生了感性认识;再通过分层次地不断提问、启发、引导,触发了学生的理性思考,并让学生通过活动加深了对知识的理解;通过及时有效的点拨,使知识得到巩固,能力得以提升.

不足之处:

在学生举例的教学环节,我只是将同学说的予以纠正,没有将几种数集的关系给予拓展,有点遗憾。作为弥补,出了一道类似的作业T10。

篇12:《工作DNA》(29):更上层楼的充分与必要条件

如果说三十岁之前的第一个阶段,是靠我们的努力与劳力来工作,那么三十到四十岁的第二个阶段,我们就要靠专业与经验来工作了,

简单地说,如果前面的阶段是在基层里磨练,现在则是可以更上层楼、向一个更高职位挑战的时候了。

怎样判断自己是否已经可以进入这个阶段?

从主观上来说,要进入这个阶段,大致能够体会到以下几件事情:

1.你已经在工作的技能上拥有了足够的知识。工作相关联的上下游环节是怎么运作的,都已经相当明白。

2.即使没主持过,也参与过一些重要任务。这些任务中,有成功的,更有失败的。成败经验可以七三开,但绝不能没有失败的任务。没有失败的任务,表示你对这个工作的探索还不够,在这个工作上接受的训练还不够,体会也还不够。

3.你对自己的能力有所掌握,换言之,已经可以体会到自己的强弱所在。知道如何发挥自己的长处,避免暴露自己的弱点,

4.懂得观察别人的工作,可以体会竞争对手的强弱所在,以及对方在工作上出招的意义及其作用。

5.要有自己承担失败的准备。

6.有信心也有准备组织团队内部运做,以及这些人与其他单位之间的协调。

7.对自己更上层楼之后可以做些什么不同于别人的事情,大致已经有设想与看法了。

当然,这些都只是更上层楼的充分条件。另外,还有必要条件。

必要条件就是机会。

然而,机会之出现,有其因缘,不是受个人意愿左右的事。读章回小说,经常看到 “怀才不遇,抑郁以终” 的人物。怀才没有一定要遇的道理。大致可以比喻为买奖券不一定会中奖的道理。

我听过一个很好的说法是:“机会是一个怪物,一个头发长在前额的怪物。所以要抓住机会,跟在它后面跑是没有用的。你一定要等在它的前面,看它过来,就当面一把抓住。”

所以,机会不能去追寻,而只能等待。只是这种等待有时是很漫长、很寂寞的。但如果对自己有极大的信心,就不怕这种漫长与寂寞。

等待机会,诸葛亮当然是最潇洒的代表;左宗棠,则是最颠簸的代表。清末的名将里,左宗棠几乎是在最后才亮相的,他在长期为他人做嫁衣、当幕僚的过程里,对自己登台的机会还能一直保持最挑剔的选择,真是精彩。

篇13:《分类与》说课稿

一、单元教学内容:

第三单元(分类与整理)

二、单元教材分析

分类是一种基本的数学思想。它是根据一定的标准,对事物进行有序划分和组织的过程。分类能力的发展,反映了儿童思维的发展,特别的概括能力的发展水平。在实际生活中,分类思维有着广泛的应用。本单元主要是为了让学生掌握初步的分类方法。先让学生学会按一定标准分类,然后,让学生自己选择不同标准分类,并对分类结果作出简单的整理与分析。

三、学情分析

一年级学生,年龄小生活经验少,教材将本部分教学内容由原来的一年级上册调整到下册学习,并且在原来只单纯教学分类进行简单数据统计的基础上增加了对数据的整理和用简单统计表表示结果的内容。这时候的学生经过了一学期的学习生活之后,对周围的一些实际现象或事物有了一些观察和思考的意识,他们强烈的好奇心和乐于观察、思维活跃的特性有利于更加深刻的理解本部分教学内容。更有利于培养学生从根据事物的非本质的、表面的特征把事物进行分类,发展到根据事物的功用进行分类,最后能够根据客观事物抽象、本质的特征进行分类的能力,并能用简单统计表表示分类结果。从而初步促进学生逻辑思维能力的形成和发展。

四、单元教学目标

1、使学生能够根据给定的标准或自己选定的标准进行分类,体验分类结果在单一标准下的一致性和不同标准的多样性。

2、使学生经历简单的数据整理过程,能够用自己的方式(文字、图画、表格等)呈现分类的结果。

3、使学生能够对数据进行简单的分析,并能根据数据提出简单的问题。

五、本单元课时安排

本单元用3课时进行

六、单元教学建议与注意事项

1、为学生提供充分地从事教学活动和交流的机会,使学生从中体会分类的意义。可以设计各种形式的分类活动,如分学具、整理书包等。使学生充分体验分类,培养动手操作的能力和合作学习的意识。

2、要重视学生的经验和体验,紧密结合学生的生活设计徐诶素材。

首先,在引入时,应注意由熟悉生活情境引入,突出分类的实际需要。其次,可结合学生的日常生活组织分类活动。如整理书包、整理自己的房间,让学生感受分类在生活中的作用。最后,教学中要结合具体情境强调分类结果正确的重要性,同时要将分类结果的呈现方式由实物图逐步过度到图和表。

3、对学生不同的方法可以可定但要有引导,突出分类的实际意义。

首先因为学生的知识经验不同,对问题的理解和看法也会千差万别。体现在对物品的分类上,选择的标准往往不同。对于学生对所选标准所作的解释,合理的应当肯定。但不要过多引导学生找不同标准,否则会使分类失去意义,也将难以驾驭课堂。

七、分课时分析教学重难点

例1的教学重点是掌握不同的标准进行分类的方法,在具体分类过程中做到不重复不遗漏。难点是会用不同的标准进行分类。例2的教学重点是让学生会按不同标准进行不同的分类,并用简单的统计表表示分类的结果。难点是体验不同分类标准下的结果的多样性。这里关键还要让学生从中体会到虽然分类标准不同,分类结果也不同,但是有一点是相同的,那就是物品的总数是不变的。

充分近义词

平面直角坐标系的说课稿件

合同成立的要件

《物体的浮沉条件及应用》说课稿件

浅议检察资源的充分开发与利用论文

仲裁协议的形式要件

组装简历的九大要件

如何充分让求职信发挥作用

小故事大道理——理由充分

小故事大道理——理由充分

《《充分条件与必要条件》的说课稿(精选13篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档