下面是小编整理的高一数学必修课件,本文共11篇,欢迎阅读分享,希望对大家有所帮助。

篇1:高一数学必修课件
高一数学必修课件
教学目标
1、通过对幂函数概念的学习以及对幂函数图像和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。
2、使学生理解并掌握幂函数的图像与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。
教学难点
幂函数图像和性质的发现过程
教学重点
幂函数的性质及运用
教学过程
一、教学导入
数学和日常生活是密不可分的,观察下列问题中的函数个有什么共同特征?
(1)如果李斯在超市买了每支1元的水笔n(支),那么他应支付p=n元。这里p是n的函数。
(2)如果正方形的边长a,那么正方形的面积为S=a2 ,这里S是a的函数。
(3)如果立方体的边长a,那么立方体的体积为V=a3 ,这里V是a的函数。
(4)如果正方形的面积为S,那么这个正方形的边长为a=S ,这里a是S的函数。
(5)如果壮壮t(s)内骑车行进了1(km),那么他骑车的平均速度为v=t-1 ( ),这里v是t的函数。
由学生讨论,总结,即可得出:p=n,S=a2 ,V=a3 ,a=S ,v=t-1 都是自变量的'若干次幂的形式。
这节课,我们将来共同学习另一种函数--幂函数(老师板书课题)
二、讲授新课
1、定义:一般地,函数y=xa 叫做幂函数,其中x是自变量,a是实常数。
判断一个函数是否是幂函数?注意:①是否为幂的形式;②自变量是幂的底数,指数可以是任意实数。
例1、(1)y=xa 与y=ax 一样吗?
(2)在函数y=x+2,y=1,y=x2+x,y=2x2+3,y= 中,哪几个函数是幂函数?
(3)已知幂函数y=f(x)的图像过点(2, ),试求出这个函数的解析式。
2、对于幂函数y=xa ,讨论当a=1,2,3, ,-1时的函数性质
表格如下:
y=x y=x2 y=x3 y=x y=x-1
定义域
值 域
奇偶性
单调性
定 点
下面先请五位同学分别在黑板上画出每个函数的图像,其他同学可以在同一坐标系内作五个幂函数的图像。(要给学生留出充分时间去研究函数性质)
通过观察图像与表格
(1)函数y=x,y=x2 ,y=x3 ,y=x 和y=x-1 的图像都通过(1,1) ;
(2)函数y=x ,y=x3 ,y=x-1 是奇函数,函数y=x2 是偶函数;
(3)在第一象限内,函数y=x,y=x2 ,y=x3 和y=x 是增函数,函数y=x-1 是减函数;
(4)在第一象限内,函数y=x-1 的图像向上与y轴无限接近,向右与x轴无限接近。
例2、求下列函数的定义域,并判断函数的奇偶性
(1)f(x)=-2x5 (2)g(x)=x4+2
(3)f(x)=-x+ x (4)g(x)=5x+ x
3、拓展题
证明幂函数f(x)= x3在R上是增函数
三、课外作业
P49 习题2-5 A组 1、2
教学后记
本节课主要从五个具体幂函数中认识幂函数的一些性质,画五个幂函数的图像并由图像概括其性质是教学中可能遇到的困难,所以要注意引导学生亲自动手画图像、分组讨论等形式,让学生自己去探究,把主动权交给学生。
篇2:高一数学必修二课件
一、教学目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本P8,习题1.1 A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7 练习1、2(1)(2)
课本P8习题1.1 第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本P8 练习题1.1 B组第1题
课外练习课本P8习题1.1 B组第2题
1.2.1 空间几何体的三视图(1课时)
篇3:高一数学必修二课件
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的'空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本P12 练习1、2 P18习题1.2 A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
1.2.2 空间几何体的直观图(1课时)
篇4:高一数学必修3课件
高一数学必修3课件
高一数学必修3教学设计课件
第一章 算法初步
本章教材分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.
本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.
在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.
本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:
(1)知识间的联系;
(2)数学思想方法;
(3)认知规律.
本章教学时间约需12课时,具体分配如下(仅供参考):
1.1.1 算法的概念 约1课时
1.1.2 程序框图与算法的基本逻辑结构 约4课时
1.2.1 输入语句、输出语句和赋值语句 约1课时
1.2.2 条件语句 约1课时
1.2.3 循环语句 约1课时
1.3算法案例 约3课时
本章复习约1课时
1.1 算法与程序框图
1.1.1 算法的概念
整体设计
教学分析
算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为 了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.
三维目标
1.正确理解算法的概念,掌握算法的基本特点.
2.通过例题教学,使学生体会设计算法的基本思 路.
3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.
重点难点
教学重点:算法的含义及应用.
教学难点:写出解决一类问题的算法.
课时安排
1课时
教学过程
导入新课
思路1(情境导入)
一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.
思路2(情境导入)
大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?
答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.
上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.
思路3(直接导入)
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.
推进新课
新知探究
提出问题
(1)解二元一次方程组有几种方法?
(2)结合教材实例 总结用加减消元法解二元一次方程组的步骤.
(3)结合教材实例 总结用代入消元法解二元一次方程组的步骤.
(4)请写出解一般二元一次方程组的步骤.
(5)根据上述实例谈谈你对算法的理解.
(6)请同学们总结算法的特征.
(7)请思考我们学习算法的意义.
讨论结果:
(1)代入消元法和加减消元法.
(2)回顾二元一次方程组
的求解过程,我们可以归纳出以下步骤:
第一步,①+②×2,得5x=1.③
第二步,解③,得x= .
第三步,②-①×2,得5y=3.④
第四步,解④, 得y= .
第五步,得到方程组的解为
(3)用代入消元法解二元一次方程组
我们可以归纳出以下步骤:
第一步,由①得x=2y-1.③
第二步,把③代入②,得2(2y-1)+y=1.④
第三步,解④得y= .⑤
第四步,把⑤代入③,得x=2× -1= .
第五步,得到方程组的解为
(4)对于一般的二元一次方程组
其中a1b2-a2b1≠0,可以写出类似的求解步骤:
第一步,①×b2-②×b1,得
(a1b2-a2b1)x=b2c1-b1c2.③
第二步,解③,得x= .
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④
第四步,解④,得y= .
第五步,得到方程组的解为
(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.
在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的`步骤.
现在,算法通常可以编成计算机程序,让计算机执行并解决问题.
(6)算法的特征:①确定性:算法的每一步都 应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.
(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.
应用示例
思路1
例1 (1)设计一个算法,判断7是否为质数.
(2)设计一个算法,判断35是否为质数.
算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.
算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.
第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.
第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.
第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.
第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.
(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.
第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.
第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.
第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.
点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.
变式训练
请写出判断n(n >2)是否为质数的算法.
分析:对于任意的整数n( n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判 断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.
这个操作一直要进行到i的值等于(n-1)为止.
算法如下:第一步,给定大于2的整数n.
第二步,令i=2.
第三步,用i除n,得到余数r.
第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.
第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.
例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.
分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.
“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.[来源:学&科&网Z&X&X&K]
解:第一步,令f(x)=x2-2,给定精确度d.
第二步,确定区间[a,b],满足f(a)f(b)<0.
第三步,取区间中点m= .
第四步,若f(a)f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
当d=0.005时,按照以上算法,可以得到下表.
a b |a-b|
1 2 1
1 1.5 0.5
1.25 1.5 0.25
1.375 1.5 0.125
1.375 1.437 5 0.062 5
1.406 25 1.437 5 0.031 25
1.406 25 1.421 875 0.015 625
1.414 062 5 1.421 875 0.007 812 5
1.414 062 5 1.417 968 75 0.003 906 25
于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求 的近似值的一个算法.
点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如 申请出国有一系列的先后手续,购买物品也有相关的手续……
思路2
例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不 少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.
分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.
解:具体算法如下:
算法步骤:
第一步:人带两只狼过河,并自己返回.
第二步:人带一只狼过河,自己返回.
第三步:人带两只羚羊过河,并带两只狼返回.
第四步:人带一只羊过河,自己返回.
第五步:人带两只狼过河.
点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.
例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷 茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.
分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.
解:算法一:
第一步,洗刷水壶.
第二步,烧水.
第三步,洗刷茶具.
第四步,沏茶.
算法二:
第一步,洗刷水壶.
第二步,烧水,烧水的过程当中洗刷茶具.
第三步,沏茶.
点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.
例3 写出通过尺轨作图确定线段AB一个5等分点的算法.
分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.
解:算法分析:
第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.
第二步,在射线上任取一个不同于端点A的点C,得到线段AC.
第三步,在射线上沿AC的方向截取线段CE=AC.
第四步,在射线上沿AC的方向截取线段EF=AC.
第五步,在射线上沿AC的方向截取线段FG=AC.
第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.
第七步,连结DB.
第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.
点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.
知能训练
设计算法判断一元二次方程ax2+bx+c=0是否有实数根.
解:算法步骤如下:
第一步,输入一元二次方程的系数:a,b,c.
第二步,计算Δ=b2-4ac的值.
第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.
点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.
拓展提升
中国网通规定:拨打市内电话时, 如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.
解:算法分析:
数学模型实际上为:y关于t的分段函数.
关系式如下:
y=
其中[t-3]表示取不大于t-3的整数部分.
算法步骤如下:
第一步,输入通话时间t.
第二步,如果t≤3,那么y=0.22;否则判断t∈Z 是否成立,若成立执行
y=0.2+0.1×(t-3);否则执行y=0.2+0.1×([t-3]+1).
第三步,输出通话费用c.
课堂小结
(1)正确理解算法这一概念.
(2)结合例题掌握算法的特点,能够写出常见问题的算法.
作业
课本本节练习1、2.
设计感想
本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基 础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体 会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.
篇5:高一数学必修三课件
改进:在应用于课堂教学过程中,经过反复斟酌推敲,以更简洁的方法,结合实际,以自主探究、协作互助的方式,将原精品课程进行了相关变更,添加具体实例,并在授课过程中参阅经典算法,将之穿插于教学中,激趣导学,效果感觉更好。
一、教学内容分析
本节内容为人教版高一数学必修3模块第一章算法初步第1.1.2节第一课时,
主要包括程序框图的图形符号、算法的程序框图表示、算法的的逻辑结构等三部分内容。
算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
通过对解决具体问题的过程与步骤的分析,体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。进一步体会算法的另一种表达方式。
本章节的重点是体会算法的思想,通过模仿、操作、探索,通过设计程序框图解决实际生活问题的过程。通过解决具体问题,理解三种基本逻辑结构中顺序和条件结构,经历将具体问题用程序框图来表示,在实际问题中能设计相关程序框图解决实际问题。
二、学情分析
关于本节内容,相对学生来说,全是新知识,因它涉及到计算机科学相关内容,也是数学及其应用的重要组成部分。大部分学生并没有学习过程序框图的设计,在编写程序方面基本上都是“零起点”,而且认为程序框图设计是一件困难的事情,因此本课的举例和任务都适当降低难度,让学生能在实践中体会成功的喜悦,领略程序设计之算法程序框图表示的乐趣。另一方面要充分利用课外资料和实例,设置问题情景,激发学生的学习兴趣,通过建构模型,化抽象为具体,教师在整个学习过程中进行指导、启发、补充与完善。
三、教学目标
(一)知识与技能
1、通过学习程序框图的图形符号,区分不同符号所表示的不同含义,能模仿正确书写简单程序框图;
2、理解并掌握算法的三种基本逻辑结构,培养学生分析问题、解决问题的能力;
3、培养学生在实际现实生活中,能正确运用相关逻辑结构分析、解决实际问题;
(二)过程与方法
1、通过实例分析,学生经历、模仿、探索程序框图表达解决问题的算法的过程,学习程序框图的画法;
2、在具体问题的解决过程中理解程序流程图的三种基本逻辑结构之顺序结构、条件结构,寻找解决实际问题的规律与方法。
(三)情感态度与价值观
1:通过本节的学习,使学生对计算机的算法语言有一个基本的了解,明确算法的要求,认识计算机是人类征服自然的一种有力工具,进一步提高探索、认识世界的能力。
2:培养学生迎难而上,战胜困难的大无畏精神,克服畏难情绪,培养严谨的思维习惯、塑造认真、细致的做事态度。
四、教学重点和难点
教学重点:程序框图的图形符号、算法的基本逻辑结构及应用
教学难点:算法的条件结构在实际生活中的运用
五、教学策略
1、任务驱动策略:据不同层次的学生,设置不同等级的任务,引导启发学生自己看书学习新知,从而建立新的知识结构;如程序框图图形符号如何绘制、各表示什么意思,对一些简单问题,程序框图的画法,学生模仿、探索、学习
2、创设问题情景策略:以学生活动为中心,教师精心设计问题,引导学生讨论与交流,充分发挥学生的主体作用。例:算法的基本逻辑结构有哪些,有什么区别,具体问题时如何正确选取相应算法的逻辑结构
3、竞争机制策略:据本章节中部分内容,合理设置分组竞争,小组赛形式激发学生高涨的学习热情,不仅引导学生将所学知识应用于解决实际问题,且培养学生团队合作探究精神。
六、教学方法
任务驱动法、启发引导式、小组合作探究学习法、模仿建构学习法
七、教具准备
多媒体课件、生活中具体实例、同步学案
八、教学过程课时1
教学程序 教师组织与引导 学生活动 设计意图
发放“任务”纸质 1、把任务学案发给学生
2、查阅、收集有关实际生活中实例,用于本节教学 1、预习
2、查阅相关资料 学生是学习主体,自主合作、探究式学习
回顾旧知,引入新课
改进:生活中的问题,描述解决步骤(1)算法的描述:要交换两杯不同液体的方法、步骤;(自然语言描述法,复习)
穿插经典算法在教学中,激趣导学
1:鸡兔同笼、2:谁在说谎
(2)你还知道有什么渠道能使算法描述得更直观、高效、准确吗?引导学生看书自学
学生思考、回答,
学生看书自学本节程序框图相关知识:程序框图图形符号
激发学生对本节课内容的关注
探究不同程序框图符号表示的不同含义,初步探讨程序框图的画法
重点部分强记 据教材设疑,并逐一提出下列问题:
(1)程序框图共有哪些图形符号?
改进:同学们,你们所常见的图形有哪些??学生回答
现在,从这些常用图形中,我们选出几中种来用于表示“算法”中的含义
(2)不同符号所表示的什么含义?
(3)具体应用,实例列举,老师在黑板上“补”画“长方形面积”流程图
(4)要求学生结合上述老师所讲实例,模仿“补充”画出,改进:
A: 圆的面积、周长的流程图(老师完成)
B: 正方形面积、周长的流程图(师生共同完成)
C: 三角形面积、周长的流程图(学生自己完成)
D:求学生语、数、英三科成绩平均分的程序框图(学生自己完成)
(5)例3.已知三角形三边长,求三角形面积的程序框图(老师提示公式,学生自己理解)
(6)判别整数n是否为质数后面学
篇6:高一数学必修三课件
授课
时间 第 周 星期 第 节 课型 新授课 主备课人
学习
目标
1理解互斥事件、对立事件的定义,会判断所给事件的类型;
2.掌握互斥事件的概率加法公式并会应用。
重点难点 重点:概率的'加法公式及其应用;事件的关系与运算
难点:互斥事件与对立事件的区别与联系
学习过程与方法
自主学习
1.互斥事件:在一个随机试验中,把一次试验下___________的两个事件A与B称作互斥事件。
2.事件A+B:给定事件A,B,规定A+B为 ,事件A+B发生是指事件A和事件B________。
3.对立事件:事件“A不发生”称为A的对立事件,记作_________,对立事件也称为________,在每一次试验中,相互对立的事件A与事件 不会__________,并且一定____________.
4.互斥事件的概率加法公式:
(1)在一个随机试验中,如果随机事件A和事件B是互斥事件,那么有P(A+B)=_________.
(2)如果随机事件 中任意两个是互斥事件,那么有 ____________。
5.对立事件的概率运算: _____________。
探索新知:
1.如何从集合的角度理解互斥事件?
2.互斥事件与对立事件有何异同?
3.对于任意两个事件A,B,P(A+B)=P(B)+P(B)是否一定成立?
4.某战士在一次射击训练中,击中环数大于6的概率为0.6,击中环数是6或7或8的概率为0.3,则该战士击中环数大于5的概率为0.6+0.3=0.9,对吗?
5.什么情况下考虑用对立事件求概率呢?
6.阅读p143 例3和p144例4,你的问题是什么?
精讲互动
例1.判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由。
从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取一张。
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”。
例2 . 解读课本例5和例6
达标训练
1.课本p147 练习1 2 3 4
2.(选做)一盒中装有各色球12个,其中5个红球、,4个黑球、2个白球、1个绿球。从中随机取出1球,求:
(1) 取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率。
篇7:高一数学必修三课件
学习目标:
1、了解普查和抽样调查的概念。
2、明确两种调查的优缺点。
自主学习
阅读章前引言,了解统计学讨论的问题(合理收集、整理、分析数据)。
一、普查
阅读课本P3回答下列问题:
什么叫普查?什么样的调查适用普查?
例1 医生是如何检察人的血液中血脂的含量是否偏高的?你觉得这样做的合理性是什么?
二、抽样调查
回答课本思考交流的问题得到:
1、抽样调查的 定义:
2、抽样调查与普查相比各有什么优缺点。(在课本中画出)
3、独立完成课本例2,说明在抽样调 查中应注意什么问题?
三、精讲互动
我 们引入了几个概念:
(1)总体:在抽样调查中,调查对象的全体称为总体。
(2)个体: 总体中的每一个元素称为个体 。
(3)样本: 被抽取的一部分称为样本。
(4)样本容量: 样本中个体的数目称 为样本容量。
练习:为了了解一批炮弹的杀伤力,选取100发进行实弹射击实验:
总体:
个体:
样本:
样本容量:
四、达标训练
1.我国每日公布非典疫情,其中有关数据收集所采用的调查方式是_____ ___ ____________
2.为了了解某校高一年级40 0名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个 问题中,总体是指( )
A 400名学生
B 被抽取的50名学生
C 400名学生的体重
D 被抽取的50名学生的体重
3.体育测试中,从某校高一(1)班中抽取男、女生各15名人进行三项体育成绩复查测试,在这个问题中,下列叙述正确的是( )
A 该校所有初三学生是总体
B 所抽取的30名学生是样本
C 所抽取的15名学生是样本
D 所抽取的30名学生的体育成绩是样本
4.下列调查,哪些是抽样调查?并说明理由.
1)为了了解高一年级(6)班每个学生的身高情况,对全班同学进行调查.
2)为了了解人们对春节晚会(央视)的收视情况,对部分电视观众作了调查.
3)灯泡厂为了了解一批灯泡的使用寿命,从中选取了10个灯泡进行实验
4)试验 某种绿豆的发芽率;
5)审查自己某篇作文的错别字;
6)了解江苏省居民年收入情况.
篇8:高一数学必修1课件
目标:
了解高中阶段数学学习目标和基本能力要求,了解新程标准的基本思路,了解高考意向,掌握高中数学学习基本方法,激发学生学习数学兴趣,强调布置有关数学学习要求和安排。批 注
重点:使学生掌握高中数学学习基本方法。
教学难点:如何激发学生学习数学的兴趣.
教学用具:投影仪.
教学方法:学生通过自主学习.思考.交流.讨论和概括,从而更好地完成高中的学习.
教学过程:
一、欢迎词:
1、祝贺同学们通过自己的努力,进入高一级学校深造。希望同学们能够以新的行动,圆满完成高中三年的学习任务,并祝愿同学们取得优异成绩,实现宏伟目标。
2、同学们军训辛苦了,收获应是:吃苦耐劳、严肃认真、严格要求
3、我将和同学们共同学习高中数学,暂定一年,…
4、本节和同学们谈谈几个问题:为什么要学数学?如何学数学?高中数学知识结构?新程标准的基本思路?本期数学教学、活动安排?作业要求?
二、几个问题:
1.为什么要学数学:数学是各科之研究工具,渗透到各个领域;活脑,训练思维;计算机等高科技应用的需要;生活实践应用的需要。
2.如何学数学:
请几个同学发表自己的看法 → 共同完善归纳为四点:抓好自学和预习;带着问题认真听;独立完成作业;及时复习。注重自学能力的培养,在学习中有的放矢,形成学习能力。
高中数学由于高考要求,学习时与初中有所不同,精通书本知识外,还要适当加大难度,即能够思考完成一些后练习册,教材上每复习参考题一定要题题会做。适当阅读一些外资料,如订阅一份数学报刊,购买一本同步辅导资料.
3.高中数学知识结构:
书本:高一上期(必修①、②),高一下期(必修③、④),高二上期(必修⑤、选修系列),高二下期(选修系列),高三年级:复习资料。
知识:密切联系,必修(五个模块)+选修系列(4个系列)
能力:运算能力、逻辑思维能力、空间想像能力、分析和解决实际问题的能力、应用能力。
4.新程标准的基本理念:
①构建共同基础,提供发展平台; ②提供多样程,适应个性选择; ③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力; ⑤发展学生的数学应用意识; ⑥与时俱进地认识“双基”; ⑦强调本质,注意适度形式化; ⑧体现数学的化价值; ⑨注重信息技术与数学程的整合; ⑩建立合理、科学的评价体系。
5.本期数学教学、活动安排:
本期学习内容:高一必修①、②,共72时,必修① 第一13时(4+4+3+1+1)+第二14时(6+6+1+1)+第三9时(3+4+1+1);必修②第一8时(2+2+2+1+1)+第二10时(3+3+3+1)+第三9时(2+3+3+1)+第四9时(2+4+2+1).
上方式:每周新授5节,问题集中1节(双节连排时)。
学习方式:预习后做节后练习;补充知识写在书的边缘;
主要活动:学校、全国每年的数学竞赛;数学外活动等。
6.作业要求: (期末进行作业评比)
① 堂作业设置两本;② 提倡用钢笔书写,一律用铅笔、尺规作图,书写规范;③ 墨迹、错误用橡皮擦擦干净,作业本整洁;④ 批阅用“?”号代表错误,一般点在错误开始处;⑤ 更正自觉完成;⑥ 练习册同步完成,按进度交阅,自觉订正;⑦ 当天布置,当天第二节晚自习之前交(若无晚自习,则第二天早读之前交)。⑧ 每次作业按A、B、C、D四个等级评定,每本作业本完成后自行统计得分并上交科代表审核、教师评定等级,得分A,B为优良等级,A为优秀等级。
三、了解情况:
初中数学开情况;暑假自学情况;作图工具准备情况。
四.请同学们预习教材.
篇9:高一数学必修5课件
高一数学必修5课件
一、教学目标
1、知识与技能
(1)理解直线与圆的位置关系的几何性质;
(2)利用平面直角坐标系解决直线与圆的位置关系;
(3)会用“数形结合”的数学思想解决问题.
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建 立适当的.平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论.
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分 析问题与解决问题的能力.
二、教学重点、难点:
重点与难点:直线与圆的方程的应用.
三、教学设想
问 题设计意图师生活动
1.你能说出直线与圆的位置关系吗?启发并引导学生回顾直线与圆的位置关系,从而引入新课.师: 启发学生回顾直线与圆的位置关系,导入新课.
生:回顾,说出自己的看法.
2.解决直线与圆的位置关系,你将采用什么方法?
理解并掌握直线与圆的位置关系的解决办法与数学思想.师:引导学生通过观察图形,回顾所学过的知识,说出解决问题的方法.
生:回顾、思考、讨论、交流,得到解决问题的方法.
问 题设计意图师生活动
3.阅读并思考教科书上的例4,你将选择什么方 法解决例4的问题
指导学生从直观认识过渡到数学思想方法的选择.师:指导学生观察教科书上的图形特征,利用平面直角坐标系求 解.
生:自 学例4,并完成练习题1、2.
师:分析例4并展示解题过程,启发学生利用坐标法求 ,注意给学生留有总结思考的时间.
4.你能分析一下确定一个圆的方程的要点吗?使学生加深对圆的方程的认识.教师引导学生分析圆的方程中,若横坐标确定,如何求出纵坐标的值.
5 .你能利用“坐标法”解决例5吗?巩 固“坐标法”,培养学生分析问题与解决问 题的能力.师:引导学生建立适当的平面直角坐标系,用坐标和方程表示相应的几何元素,将平面几何问题转化为代数问题.
生:建立适当的直角坐标系, 探求解决问题的方法.
6.完成教科书第140页的练习题2、3、4.使学生熟悉平面几何问题与代数问题的转化,加深“坐标法”的解题步骤. 教师指导学生阅读教材,并解决课本第140页的练习题2、3、4.教师要注意引导学生思考平面几何问题与代数问题相互转化的依据.
7.你能说出练习题蕴含了什么思想方法吗?反馈学生掌握“坐标法”解决问题的情况,巩固所学知识.学生独立解决第141页习题4.2A第8题,教师组织学生讨论交流.
8.小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题.
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
(4)建立不同的平面直角坐标系,对解决问题有什么直接的影响呢?用“坐标法”解决实际问题的作用. 教师引导学生自己归纳总结所学过的知识,组织学生讨论、交流、探究.
篇10:高一数学必修1课件
一、目标:
用五点法画函数 的图象.
二、重点难点:
重点是用五点法列表画函数画图;
难点是五点的确定.
三、过程:
【创设情境】
在物理学中,物体做简谐运动时,位移s和时间t的关系为
这里A是物体振动时离开平衡位置的最大距离,称为振动的振幅;往复振动一次所需的时间
称为这个振动的周期;单位时间内往复振动的次数
称为振动的频率; 称为相位,t=0时的相位 称为初相.
在物理和工程技术的许多问题中,经常会遇到形如 的函数,今天我们来探究函数 的图象与函数 的图象关系.
【自主学习探索研究】
1.作函数 和 的图象 (学生用五点法列表画图)
010-10
010-10
描点画图,思考上述两函数的图象五点差异.
(函数 的五点横坐标可以看作函数 的图象上五点横坐标减去 而得.纵坐标不变)
2.作函数 的图象
(学生五点法列表画图)回答函数 的图象与函数 五点差异
思考:函数 的图象与函数 的图象有什么关系?
3.作函数 和 的图象
(学生五点法列表画图)回答上述两函数的图象关系? 图象上的五点与函数 五点差异.
5.函数 的图象并与函数 的图象比较之间的关系?
6.思考函数 的五点如何确定?
7.课堂练习
(1)用五点法画函数 的图象
(2)课本p.42.练习5
【提炼总结】
1. 用五点法画三角函数图象时,要先确定周期,再将周期四等份,找出五个关键点:1, , , ,,然后再列表画图;
2.作图时,要注意坐标轴刻度,x轴是实数轴,角一律用弧度制.
四、布置作业
1.修改并保留本节课列表画图所得图象;
篇11:高一数学必修1课件
一、内容与解析
(一)内容:对数函数的概念与图象
(二)解析:本节课要学的内容是什么是对数函数,对数函数的图象形状及画法,其核心是对数函数的图象画法,理解它关键就是要理解掌握对数函数的图象特点.学生已经掌握了指数函数的图象画法及特点,函数图象的一般画法,本节课的内容就是在此基础上的发展.由于它是研究对数函数性质的依据,是本学科的核心内容.的重点是对数函数的图象特点与画法,解决重点的'关键是利用函数图象的一般画法画出具体对数函数的图象,从而归纳出对数函数的图象特点,再根据图象特点确定对数函数的一般画法。
二、目标及解析
(一)教学目标:
1,理解对数函数的概念;掌握对数函数的图象的特点及画法。
2,通过具体实例,直观感受对数函数模型所刻画的数量关系;通过具体的函数图象的画法逐步认识对数函数的特征;
3,培养学生运用类比方法探索研究数学问题的素养,提高学生分析问题、解决问题的能力。
(二)解析:
1,理解对数函数的概念是来源于实践的,能从函数概念的角度阐述其意义;掌握对数函数的图象和性质,做到能画草图,能分析图象,能从图象观察得出对数函数的单调性、值域、定点等;了解同底指数函数和对数函数互为反函数,能说出它们的图象之间的关系,知道它们的定义域和值域之间的关系,了解反函数带有逆运算的意味;
2,通过具体的实例,归纳得出一般的函数图象特征,并能够通过图象特征得到相应的函数特征,培养学生的作图、识图的能力和归纳总结能力;
3,类比指数函数的图象和性质的研究方法,来研究对数函数,让学生认识到研究问题的方法上的一般性;同时,让学生认识到类比这一数学思想,即对相似的问题可以借鉴之前问题的研究方法来研究,有助于提高学生分析问题、解决问题的能力。
三、问题诊断分析
本节课容易出现的问题是:对数函数的图象特点的探究容易出现图象不对、归纳不全、有所偏差等情形。出现这一问题的原因是:学生作图能力、识图能力、归纳能力不强。要解决这一问题,教师要通过让学生类比指数函数图象和性质的探究,时时回过头看看之前是怎么做的,考虑了哪些问题,得到了哪些结论,让学生类比自主探究,必要时给予适当引导,让学生自主的得出结论,对于出错的地方要让学生讨论,教师做出适当的评价并最终给出结论。
文档为doc格式