以下是小编为大家准备的数学四年级下册鸡兔同笼知识点总结,本文共15篇,仅供参考,欢迎大家阅读。

篇1:数学四年级下册鸡兔同笼知识点总结
数学四年级下册鸡兔同笼知识点总结
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数_总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数_总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2_36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4_36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数_总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数_总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数_总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数_总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数_产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数_总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4_1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15_1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费__元,破损者不仅不给运费,还需要赔成本__元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
鸡兔同笼
1、鸡兔同笼属于假设问题,假设的和最后结果相反。
2、“鸡兔同笼”问题的解题方法
假设法:
①假如都是兔
②假如都是鸡
③古人“抬脚法”:
解答思路:
假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。
3、公式:
鸡兔总脚数÷2-鸡兔总数=兔的只数;
鸡兔总数-兔的只数=鸡的只数。
数学四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
小学数学几何公式
1、长方体的表面积=(长_宽+长_高+宽_高)_2。
2、长方体的体积=长_宽_高:V=abh。
3、正方体的表面积=棱长_棱长_6:S=6a_a。
4、正方体的体积=棱长_棱长_棱长:V=a.a.a=a。
5、圆柱的侧面积=底面圆的周长_高:S=ch。
6、圆柱的表面积=上下底面面积+侧面积:
S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch。
7、圆柱的体积=底面积_高:V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h。
8、圆锥的体积=底面积_高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。
篇2:四年级数学知识点总结下册
小学四年级数学《统计》知识点归纳
栽蒜苗(一)(条形统计图)
【知识点】:
1、统计图中1格表示不同单位量,要结合具体的情况来判断1个表示几个单位。数据大,每1格所表示的单位就多,数据小,每1格所表示的单位就小。
2、理解条形统计图上的数据所表示的意义。
3、明确条形统计图的特点:直观、方便、便于察看。
4、制作条形统计图的方法:确定水平方向,标出项目;确定垂直方向代表的数量(一格代表的数量);根据数据的大小画出长度不同的直条;写出标题。
补充【知识点】:初步了解复式条形统计图,能够从中获得信息,并能回答相应的问题。
栽蒜苗(二)(折线统计图)
【知识点】:
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充【知识点】:
1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
四年级数学《数一数》知识点归纳
【知识点】:
亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管有几个零,只读一个零。
亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个也没有,就在那一位上写0。
比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
国土面积(多位数的改写)
【知识点】:
改写以“万”或“亿”为单位的数的方法。
以“万”为单位,就要把末尾的四个0去掉,再添上万字;以“亿”为单位,就要把末尾八个0去掉,再添上亿字。
改写的意义。
为了读数、写数方便。
森林面积(求近似数)
【知识点】:
精确数与近似数的特点。
精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。
用四舍五入法保留近似数的方法。
根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。
数学学习方法技巧四年级
一:记笔记
这方法其实很普遍也很简单,但恰恰是很多同学不容易做到的,记笔记有很多好处,一是可以把老师的精华记录下来方便复习,二是练习学生的书写能力,三是可以让学生养成边听边写的学习能力,这对于提高学习效率是非常有效的。
二:错题本
很多孩子都马虎,但有些马虎其实是同学对知识点理解不清晰造成的,这类的题目一定要记录下来。还有的是出题者故意设计的陷阱,这也可以记录下来,定时复习,久了之后很多马虎自然而然地就避免了。
三:学习小组
定期地和小组成员分享好试题,好方法,好技巧,好经验,即可以增加同学之间的情感,又可以在交朋友的过程学习到新的东西,提高学习效率,培养合作精神,增强协调能力。
四:题目分类本
和错题本一样,专门记录自己做过的试题,分类指的是将自己做过的试题分为几大类,一类是极其简单,自己一看就会的。一类是有一定难度,需要思考找到突破口的,还有一类就是难度很大,需要综合运用很多知识并进行推理才能解答的,后两类都应该是我们的记录重点。在对试题分类的过程中同学自然地就增强了对试题的进一步理解。
五:旧题新解
不定时的翻翻原来做过的试题,但是重点是思考有没有新的解题思路和解题技巧。这样不断地增加思考有利于形成学生思考习惯的形成,也有利于学生发散思维的形成,多角度考察问题的思路,并随时利用新学知识去解决问题。
篇3:四年级数学下册知识点总结
小学四年级数学下册知识点
数与代数
一 .小数的认识
小数的意义:
①能用小数表示图中的阴影,或根据小数在图中图色。
②能正确读、写小数。
③能知道分母是10、100、1000的分数分别能用一位、两位、三位小数表示。并能让这些分数与小数互换。
④能用小数表示日常的生活中的实物。
⑤能在数轴上表示某个小数。
⑥数位顺序及小数的组成。
⑦能把十进、百进、千进的计量单位用小数表示。
⑧小数的大小比较。(先比较整数部分,再比较十分位...)
二.小数的运算
1.小数的加减法
①不进位、不退位。 1.2+3.4 6.6-1.3
②进一位、退一位。 20.6+3.7 19.1-2.7
③连续进位,连续退位。 12.75+2.25 71.13-16.55
④位数不同。 16.3+2.75 60-2.88
2.小数的乘法
①一般情况。 2.8×1.1
②乘数中间有“0”。 1.06×3.3
③乘数末尾有“0”。 1.06×470
④积末尾有“0”。 8.5×0.88
⑤积与因数之间的关系。 0.49×0.9○0.49
⑥小数点的移动引起小数大小的变化。
⑦小数的性质。(在不改变1.3的大小的情况下,把它改写成两位小数)
3.小数的除法
①除数是整数。
②除数是小数。
③商中间有“0”。
④商末尾有“0”。
⑥商与被除数之间的关系。0.49÷0.9○0.49
⑦循环小数。
会判断循环小数、商用循环小数表示。
⑧余数问题。(把一段长3.6米的绳剪成长为0.6米的小段,最多可以剪几段,还剩几米?)
⑨近似数。四舍五入或者根据实际情况求近似数,如去尾、收尾法(进一法)。
小学数学四年级知识点:有趣的算式
探索与发现(-)(有趣的算式)
知识点:
第一组算式:积的位数是两个因数位数之和-1,积的位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)
第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)
第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。
第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。
数学学习方法技巧
一:记笔记
这方法其实很普遍也很简单,但恰恰是很多同学不容易做到的,记笔记有很多好处,一是可以把老师的精华记录下来方便复习,二是练习学生的书写能力,三是可以让学生养成边听边写的学习能力,这对于提高学习效率是非常有效的。
二:错题本
很多孩子都马虎,但有些马虎其实是同学对知识点理解不清晰造成的,这类的题目一定要记录下来。还有的是出题者故意设计的陷阱,这也可以记录下来,定时复习,久了之后很多马虎自然而然地就避免了。
三:学习小组
定期地和小组成员分享好试题,好方法,好技巧,好经验,即可以增加同学之间的情感,又可以在交朋友的过程学习到新的东西,提高学习效率,培养合作精神,增强协调能力。
四:题目分类本
和错题本一样,专门记录自己做过的试题,分类指的是将自己做过的试题分为几大类,一类是极其简单,自己一看就会的。一类是有一定难度,需要思考找到突破口的,还有一类就是难度很大,需要综合运用很多知识并进行推理才能解答的,后两类都应该是我们的记录重点。在对试题分类的过程中同学自然地就增强了对试题的进一步理解。
五:旧题新解
不定时的翻翻原来做过的试题,但是重点是思考有没有新的解题思路和解题技巧。这样不断地增加思考有利于形成学生思考习惯的形成,也有利于学生发散思维的形成,多角度考察问题的思路,并随时利用新学知识去解决问题。
篇4: 四年级数学下册知识点总结
1、已经学过的面积单位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公顷、平方千米(km2)。
2、(1)边长是1厘米的正方形,面积是1平方厘米。
(2)边长是1分米的正方形,面积是1平方分米。
(3)边长是1米的正方形,面积是1平方米。
(4)边长是100米的正方形,面积是1公顷。1公顷=10000平方米
测量土地的面积,可以用公顷作单位。
例如:鸟巢的占地面积约1公顷。400跑道围起来的部分的面积大约是1公顷。
(5)边长是1000米的正方形,面积是1平方千米。
1平方千米=100公顷=1000000平方米
我国陆地领土面积约为960万平方千米。
3、面积单位之间的换算:
(1)首先要记住它们之间的进率:
1平方千米=100公顷=1000000平方米
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方米=10000平方厘米
(2)换算方法:
○1把高级单位化为低级单位,要用乘法计算,只要用高级单位前面的数去乘这两个单位之间的进率。(即高化低,乘进率,小数点向右移,移几位,看进率。)
○2把低级单位聚成高低级单位,要用除法计算,只要用低级单位前面的数去除以这两个单位之间的进率。(即低化高,除以进率,小数点向左移,移几位,看进率。)
a、把公顷转化为平方米,只要在公顷前面的数据后面直接添写4个0。
b、把平方米转化为公顷,只要在平方米前面的数据后面直接去掉4个0。
c、把平方千米转化为公顷,只要在平方千米前面的数据后面直接添写2个0。
d、把平方千米转化为平方米,只要在平方千米前面的数据后面直接添写6个0。
e、把平方米转化为平方千米,只要在平方米前面的数据后面直接去掉6个0。
4、填写面积单位的规律:
(1)国土面积、省份(含直辖市)面积、省会城市面积、州(市)面积、县、乡镇面积、村委会、村庄面积、一般要用“平方千米”作单位。
(2)公园、院(校)园、体育场(馆)等,一般要用“公顷”作单位。
(3)房屋(建筑)面积、教室面积、校园绿化面积等,一般要用“平方米”作单位。
篇5: 四年级数学下册知识点总结
运算定律及简便运算
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。
(a+b)×c=a×c+b×c a-b×c=a×c-b×c
鸡兔问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
鸡兔同笼
1、鸡兔同笼属于假设问题,假设的和最后结果相反。
2、“鸡兔同笼”问题的解题方法
假设法:
①假如都是兔
②假如都是鸡
③古人“抬脚法”:
解答思路:
假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。
3、公式:
鸡兔总脚数÷2-鸡兔总数=兔的只数;
鸡兔总数-兔的只数=鸡的`只数。
四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、先乘除,后加减,有括号,提前算
关于“0”的运算
1、“0”不能做除数; 字母表示:a÷0错误
2、一个数加上0还得原数; 字母表示:a+0=a
3、一个数减去0还得原数; 字母表示:a-0=a
4、被减数等于减数,差是0; 字母表示:a-a=0
5、一个数和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(无意义)
篇6: 四年级数学下册知识点总结
(一)口算除法
1、整十数除整十数或几百几十的数的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。
2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。
(二)笔算除法
1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。
2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。
3、商一位数:
(1)两位数除以整十数,如:62÷30;
(2)三位数除以整十数,如:364÷70
(3)两位数除以两位数,如:90÷29(把29看做30来试商)
(4)三位数除以两位数,如:324÷81(把81看做80来试商)
(5)三位数除以两位数,如:104÷26(把26看做25来试商)
(6)同头无除商―,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)
(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)
4、商两位数:(三位数除以两位数)
(1)前两位有余数,如:576÷18
(2)前两位没有余数,如:930÷31
5、判断商的位数的方法:
被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。
(三)商的变化规律
1、商变化:
(1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。
(2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。
2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。
(四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13
篇7: 四年级数学下册知识点总结
1.直线、射线、角
直线:向两端无限延伸的线,直线无端点。
射线:能像一个方向延伸的线,射线有一个端点。
线段:不能延伸的线,线段有两个端点。
角:
具有公共端点的两条射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
2.直线、射线与线段的联系和区别
1)直线和射线都可以无限延伸,因此无法量出长短。
2)线段可以量出长度。
3)线段有两个端点,直线没有端点,射线只有一个端点。
3.角的特征
篇8:四年级下册数学知识点总结
对于四年级数学的学习,我们在抓好基础知识的同时,要全面培养自己的数学素养,培养自己总结与反思的态度和习惯,提高自己的学习能力。下面给大家带来关于数学四年级下册知识点,希望对你们有所帮助。
四年级下册数学知识点总结
1.整数加法
(1)把两个数合并成一个数的运算叫做加法。
(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
(3)加数+加数=和,一个加数=和-另一个加数
2.整数减法
(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
(3)加法和减法互为逆运算。
3.整数乘法
(1)求几个相同加数的和的简便运算叫做乘法。
(2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
(3)在乘法里,0和任何数相乘都得0。
(4)1和任何数相乘都的任何数。
(5)一个因数×一个因数=积;一个因数=积÷另一个因数
4.整数除法
(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
(3)乘法和除法互为逆运算。
(4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
(5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。
5.整数加法计算法则
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
6.整数减法计算法则
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
7.整数乘法计算法则
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
8.整数除法计算法则
先从被除数的'高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
9.运算顺序
(1)小数、分数、整数
小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。
(2)没有括号的混合运算
同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
(3)有括号的混合运算
先算小括号里面的,再算中括号里面的,最后算括号外面的。
(4)第一级运算
加法和减法叫做第一级运算。
(5)第二级运算
乘法和除法叫做第二级运算。
10.加法交换律
加法交换律的概念为:两个加数交换位置,和不变。
字母公式:a+b+c=(b+a)+c
11.加法结合律
加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c=a+(b+c)
12.乘法交换律
乘法交换律的概念为:两个因数交换位置,积不变。
字母公式:a×b=b×a
13.乘法结合律
乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。
字母公式:a×b×c=a×(b×c)
14.乘法分配律
乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(a+b)×c=a×c+b×c
15.小数
小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数,小数是十进制分数的一种特殊表现形式。
16.小数基本性质
小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。
17.小数的写法
整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。
18.小数的读法
一种是按照分数的读法来读。带小数的整数部分按整数读法读;小数部分按分数读法读。
例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。
另一种读法,整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0。
例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。
19.小数的比较
小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较。因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大;
20.小数的性质
(1)在小数的末尾添上零或去掉零,小数的大小数不变。
(2)小数点移动会引起小数大小发生变化。把小数点分别向右移动一位、二位、三位…位,则小数的值分别扩大10倍、100倍、1000倍……如果把小数点分别向左移动一位、二位、三位…则小数的值分别缩小到原来的十分之一、百分之一、千分之一…
21.小数的近似值
保留小数:按要求在舍去部分最高位进行四舍五入运算。
22.小数加法
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
23.小数减法
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
24.三角形
由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
25.生活中的三角形物品
雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。
26.三角形中的线段
(1)中线:顶点与对边中点的连线,平分三角形的面积。
(2)高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。
(3)角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。(注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴)
(4)中位线:任意两边中点的连线。
27.三角形为什么具有稳定性
任取三角形两条边,则两条边的非公共端点被第三条边连接
∵第三条边不可伸缩或弯折
∴两端点距离固定
∴这两条边的夹角固定
∵这两条边是任取的
∴三角形三个角都固定,进而将三角形固定
∴三角形有稳定性
四年级数学下册练习题及答案
一、填空我能行!(14%)
1、83.07扩大100倍是( ),再缩小到原数的( )是8.7 。
2、0.9、0.39、0.903、0.9四个数中,最大的是( ),最小的是( )。
3、一个数,十位、十分位和百分位上都是5,其它数位上都是0,这个数是( ),精确到十分位是( )。
4、三角形按角来分,分为( )三角形、( )三角形、( )三角形。
5、一个等腰三角形,顶角是120度,底角是( )度。
6、王刚在张婷的东偏北35°的方向上;张婷在王刚的 偏 的方向上。
7、一个两位小数四舍五入后是9.5,这个两位小数最大是( ),最小是( )。
二、是非我能辨!(对的打“√”,错的打“×”)(10%)
1、计算小数加、减法时,小数的末尾要对齐。 ( )
2、4.5和4.50的大小相等,计数单位也相同。 ( )
3、因为0和任何数相乘都得0,所以任何数除以0都得0。 ( )
4、折线统计图能较好地反映数据增减变化。 ( )
5、任意两个相同的三角形都可以拼成平行四边形。 ( )
三、选择我喜欢!(把正确答案的序号填入括号内)(14%)
1、下面各数中,要读出两个“零”的数是( )。
A.08 B.805.07 C.0.06 D.190.07
2、下面各数中把“0”去掉大小不变的是( )。
A.7055 B.7.05 C.70.55 D.7.550
3、从三角形的一个顶点到它的对边做一条( ),顶点和垂足之间的线段叫做三角形的高。
A.直线 B.射线 C.线段 D.垂线
4、下面可以用乘法结合律进行简便计算的算式是( )。
A. (52×25)×4 B.(125+90)×8 C. 258十45十55
5、小猴要给瓜地围上篱笆,( )的围法最牢固。
A. B. C.
6、大于0.2,小于0.4的`小数有( )个。
A.1 B.10 C.100 D.无数
7、从长分别是3厘米、6厘米、7厘米、9厘米的小棒中取三条小棒拼成三角形,最多有( )种不同的拼法。
A.1 B.2 C.3 D.4
四、计算我细心!(%)
1、直接写出得数。(6%)
4+1.7= 5.5-2.4= 2.5+0.9=
3-1.4= 0.6十0.49= 7.6-3.9=
2、列竖式计算,打☆要验算。(6%)
☆29.9+13.06= 7.01-4.5=
3、脱式计算,怎样简便就怎样算。(18%)
10÷25÷4 19×(14+48)÷38 23×25+75×23
99×13 61.3-6.83-3.17 3.8+2.523-3.8
五、操作我最棒!(6%)
1、学校在市政府的 偏 方向上,
距离是 米。(2分)
2、少年宫在市政府的 偏 方向上,
距离是 米。(2分)
3、张婷家在市政府的西偏北40°方向400米处,
请你在图上标出她家的位置。(2分)
六、问题我不怕!(20%,每题5分)
1、瑞安市城镇居民人均收入约为2.27万元,农村居民人均收入约为0.93万元。城镇居民人均收入比农村居民人均收入多多少万元?
2、张婷看一本280页的故事书,用了7天时间看完,前3天共看了120页,后4天平均每天看了多少页?
3、一堆货物,运走了28吨,剩下的比运走的5倍少15吨,这堆货物原来有多少吨?
4、总务处王老师到商场里买塑料桶,原价是18元/只,由于买的数量较多,现价是16元/只。这样原来买24只塑料桶的钱,现在可以买买几只?
七、小小统计家。(6%)
四(1)班王刚同学本学期各单元考试成绩统计如下:
单元 一 二 三 四 五 六 七
分数 95 90 95 85 80 70 50
成绩/分 100 90 80 70 60 50 40
0 1 2 3 4 5 6 7 单元
1、根据统计表完成上面的统计图。(2分)
2、从统计图中可以看出王刚第 单元分数最高,第 单元分数最低。(2分)
3、根据以上信息,你想对王刚说什么话?(2分)
【参考答案】
第一部分 知识技能
一、填空我能行!
1、50.55 50.6 2、87 1000 3、0.9 0.9
4、锐角 直角 钝角 5、6、西 南 35° 7、9.54 9.45
二、是非我能辨!
1、× 2、× 3、× 4、√ 5、√
三、选择我喜欢!
1、B 2、D 3、D 4、A 5、B 6、D 7、C
四、计算我细心!
1、直接写出得数。
5.7 3.1 3.4 1.6 1.09 3.7
2、列竖式计算,打☆要验算。
☆29.9+13.06=42.96 7.01-4.5=2.51 (竖式略)
3、脱式计算,怎样简便就怎样算。
10÷25÷4 19×(14+48)÷38 23×25+75×23
=10÷(25×4) =19×62÷38 =23×(25+75)
=10÷100 =1178÷38 =20
=13 =31
99×13 61.3-6.83-3.17 3.8+2.523-3.8
=(100-1)×13 =61.3-(6.83+3.17) =2.523+(3.8-3.8)
=100×13-1×13 =61.3-10 =2.523
=1287 =51.3
五、操作我最棒!
1、南 西 ° 600 2、东 北 ° 800 3、(略)
第二部分 实践应用
一、问题我不怕!
1、2.27-0.93=1.34(万元) 2、(280-120)÷4=40(页)
3、28+(28×5-15)=153(吨)
4、(24×18)÷16=27(只)或24×(18-16)÷16+24=27(只)
二、小小统计家。
1、(答案略) 2、一或三 七 3、(答案略)
篇9: 四年级数学下册鸡兔同笼教学反思
鸡兔同笼问题是我国民间广为流传的数学趣题,原先是小学奥数学习的内容之一。现作为数学教材内容《数学广角》,对于我班大多数学生来说有比较大的难度,原因一,它原先是奥数内容,奥数学习学生感觉很难,思想上存在一个怕字。二是班级学生整体基础不扎实,分析问题解决问题能力较弱。三是学生学习习惯不良,缺乏一种积极进取勇于探索的意志。针对上述学生现状,我在教材的处理和目标的制定上,主要是让学生通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发学生学习数学的兴趣,同时通过多角度地思考,让学生尝试用不同的方法去解决鸡兔同笼问题,体会代数方法的一般性,并且在解决问题中,让学生经历猜测列表假设或方程解的过程,培养学生的逻辑推理能力。
反思本节课,最突出的一个亮点是在解决问题中引导学生思考更具逻辑性和一般性的解法,即假设法和列方程的解法。教学中,当学生经过猜测,并列表进行验证后,提出:你还有不同的解法吗?在给学生约五分钟思考或同学互助后,再请学生汇报。用假设法解答,采用结合多媒体演示,让学生理解鸡兔同笼问题的解题思路,特别指出的是让学生弄清假设全部是鸡或兔时,实际总脚数与假设情况下的总脚数之差表示什么,进而推导出鸡、兔的只数。列方程解鸡兔同笼问题,由于数量关系非常明确,思路更清晰,便于学生理解,这种方法更具有一般性,教学中重点让学生明确设一个量为X,另一个量是总头数减X,然后根据只数与脚数之间的关系式列出方程并求出方程的解。
但本节课还存在较多不足。首先是教学时间调控欠合理。由于教学内容的限制,课堂上让学生经历猜测、列表、假设或方程解的过程,尝试用不同方法解决问题,最后找到合理解决问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中的实际问题。所以就只好把这个问题作为一个课后延伸,让学生收集生活中的类似鸡兔同笼问题,待到下一节课再研究。其次课堂预设对学生估计不足。用假设法解决问题时,实际脚数与假设情况下总脚数之差的交流讨论,用时过多,影响后面的进程,导致与生活中类似的鸡兔同笼问题草草过场。第三,多媒体课件的使用,虽然帮助了学生非常直观地理解了假设法的这种思维过程,让复杂问题简单化了,但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成了自己的一种解决这类知识的模型,多数学生并没有完全理解或理解得比较模糊。
篇10:四年级数学下册鸡兔同笼教学反思
《鸡兔同笼》问题有一定的难度,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。
《鸡兔同笼》本来就是很抽象的课程,估计学习《鸡兔同笼》可能会有一定的难度。所以也只能按照课本那样的列表法,再配合假设法,充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路:
出示例题:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,问鸡和兔各有几只?
师生共同经历了列表方法后,问:能用图形来表示鸡兔头和腿之间的关系吗?
引导学生画图的方法去试:先画8个圆圈表示8个头,再在每个鸡下面画两条腿,8只鸡有16条腿,还多出10条腿,把剩下的10条腿要给其中的几只鸡添上呢?(5只鸡分别添2条腿)。这5只就是兔子,另外的3只就是鸡。这时候有学生问能把动物都看成是兔吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。
虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。
师生共同经历了二种不同的方法:列表法、假设法,让学生自己选择喜欢的方法解决《孙子算经》中的问题。学生很自然地选择假设法,自觉进行方法最优化。因为毕竟鸡兔同笼问题比较难。但教学中也存在着很多问题,反思如下:
1、学生汇报时,可以多找学生汇报,其他学生可能会听得更明白。
2、培养学生质疑能力,听不明白的及时向别人提问,及时解决不懂的问题。
3、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的出现。
本节课,在整个课堂中,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等。
2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
篇11:四年级下册数学《鸡兔同笼》教学反思
在我校本学期组织的公开课教学中,我讲的是人教版的数学《鸡兔同笼》这课。由于我所教的班级学生整体基础较差,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。
师生共同经历了三种不同的方法,列表法,假设法和代数法。让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。从学生的学习效果来看,在本节的教学中,学生不容易理解或者说容易出错的就是第三步,实际上也就是对“差”的分析,因此,我和课件结合起来,让学生理解:假设全是鸡,就多出了10只脚,而每增加一只兔子,减少1只鸡,多出的只数就会减少2,10里面有5个2,所以应该有5只兔子,这里一定注意要和学生讲清楚2是什么,要学生不仅仅是看算式,更要看算式前面的文字。结合前面的文字来帮助学生理解算式中的10是什么,2是怎么来的,表示什么意思,这样学生才会对假设法有一个准确的认识。
反思整节课,我感觉基本实现了我预定的教学目标。但是还是存在着很多的不足,例如:
首先,我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型,大多数同学还是比较喜欢用代数法来解决。
然后,就是在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。在进行教学设计时,我也感觉到本节课的内容着实又点多,虽然问题没几个,但本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的开展探讨活动,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;这样一节课的时间就显得不够用了,导致最后没有时间来了解日本的龟鹤问题和解决生活中的实际问题。
对于这个问题我也认真的思考了一下解决的办法,因为这是一节公开课,所以要给所有听课教师呈现一节完整的课,那么就要有联系生活实际的练习或者说必须做几道练习题,那么在前面为了节省时间就可以说说解题的思路或者让学生说说列式就可以了,这样就可以解决龟鹤问题,也可以出示生活中的问题让学生用本节课学习的方法解决,这也就体现了数学和生活实际联系很大,让学生觉得学好数学有很大的用处。
篇12:关于四年级数学下册知识点
四则运算
1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)
2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)
3. 算式里有括号,先算括号里面的,在算括号外面的。
4. 加法、减法、乘法和除法统称四则运算。
5. 一个数加上0还得原数,一个数减去0也得原数。
6. 被减数等于减数,差是0。
7. 一个数和零相乘,仍得0。
8. 0除以一个非0的数,还得0。
9. 0不能作除数。
10. 在解决问题时,如果列综合算式,必须用脱式计算。
11. 任何数除以0都得0。(×)因为0不能做除数。
观察物体
1. 如何确定物体所在的位置?
(1)明确方向。
(2)明确距离。
2.根据方向和距离来确定物体的位置。
3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。
4.平面图形的一般画法:
(1)先确定某建筑物的方向。
(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)
(3)最后确定距离。
5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。
运算定律
1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。
用字母表示为:a+b=b+a
2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)
3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。
用字母表示为:a×b=b×a
4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。
用字母表示为:(a×b) ×c=a×(b×c)
5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c
6. 类似于乘法分配律的简便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)
8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c
括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-c a-(b-c)=a-b+c
9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)
10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12. 另两种简便方法:
(1) 把一个因数改写成两个一位数相乘的形式。
(2) 把一个因数改写成两个数相除的形式,然后变成乘除混和运算。
篇13:四年级数学下册知识点
四年级数学下册知识点
第一单元 对称、平移和旋转
1、画图形的另一半:(1)找对称轴。(2)找对应点。(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
3、对角线是一条线段,对称轴是一条直线。
4、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。
5、旋转三要素:旋转中心、旋转方向、旋转角度。
6、图形的旋转,先找中心点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。
7、平移和旋转不改变图形的形状和大小,只是改变图形的位置。
8、与时针旋转方向相同的是顺时针旋转,与时针旋转方向相反的是逆时针旋转。
9、把一个图形沿一条直线对折后,折痕两边完全重合的图形叫做轴对称图形,折痕所在的直线叫做对称轴。
10、所学图形中是轴对称图形:有1条对称轴有等腰三角形和等腰梯形;有2条对称轴是长方形;有3条对称轴是等边三角形;有4条对称轴是正方形;有无数条对称轴是圆。
第二单元 多位数的认识
1、数位顺序表
我国计数是从右起,每4个数位为一级;国际计数是每3个为一节。
2、数位、计数单位和数级
把计数单位按一定的顺序排列起来,它们所在的位置,叫作数位。
计数单位有:个、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿。
从个位起,每四个数位是一级,一共分为个级、万级、亿级。
3、每相邻两个计数单位之间的关系
10个一万是十万;10个十万是一百万;10个一百万是一千万;10个一千万是一亿。每相邻的两个计数单位之间的进率都是10,这种计数方法叫十进制计数法。
4、多位数的读法
从高位读起,一级一级地往下读。读亿级或万级的数,先按照个级的读法读,再在后面加上一个“亿”字或“万”字。每级中间有一个0或连续几个0,都只读一个零;每级末尾的零都不读。
5、多位数的写法
先写亿级,再万级,最后写个级,哪个数位上一个单位也没有,就在那一位上写0。
6、复习数的改写及省略。
改写:可以将万位、亿位后面的4个0、8个0省略,换成“万”或“亿”字,这样就将整万或整亿的数改写成用“万”或“亿”作单位的数。
省略:省略时一般用“四舍五入”的方法。是“舍”还是“入”,要看省略部分的尾数最高位是小于5、等于5还是大于5。
7、多位数比较大小
位数不同,位数多的数就大;
位数相同,左起第一位的数大的那个数就大;
如果左起第一位上的数相同,就比较左起第二位上的数。
第三单元 三位数乘两位数
1、三位数乘两位数,所得的积不是四位数就是五位数。
2、三位数乘两位数
先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。
3、末尾有0的乘法计算方法
先把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
第四单元 用计算器探索规律
1、积的变化规律
①一个因数缩小几倍,另一个因数扩大相同的倍数,积不变。
②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。
2、商的变化规律
①被除数和除数同时扩大(或缩小)相同的倍数,(0除外),商不变。(余数会变)
②被除数扩大(或缩小)几倍,除数不变,商也随之扩大(或缩小)几倍。
③被除数不变,除数缩小几倍(0除外),商反而扩大几倍
第五单元 解决问题的策略
1、已经两个数的和(即两个数一共是多少),两个数的差(即一个数比另一个数多多少),求这两个数。
解法:①(和-差)÷2=小的数 小的数+差=大的数
②(和+差)÷2=大的数 大的数-差=小的数
2、已经两个数的和(即两个数一共是多少),大数拿若干个给小数,这样两个数一样多,求这两个数。
思路:大数拿若干个给小数,大数应该比小数多拿走数量的2倍。(请注意和两个数的差区别开来)
3、一个数是另外一个数的几倍,把大数拿一些给小数,这样两个数一样多。
思路:应该先画出线段图,看大数应该拿多的倍数的一半,两个数一样多,再看一半倍数所对应的量是多少个,从而先求出一倍的量(一般情况下是小数),再求出大数。
4、已知长或宽增加了多少米,面积就增加了多少平方米,求现在或原来的面积。
思路:首先应该画出示意图。
可以先根据增加的面积和长或宽增加的米数,先求小长方形的长或宽(也就是原来图形的宽或长),然后再考虑求什么的面积,可以根据面积公式直接求或图形间的面积关系间接求,方法要灵活多变。
5、已知长或宽减少了多少米,面积就减少了多少平方米,求现在或原来的面积。
思路:首先应该画出示意图。
可以先根据减少的面积和长或宽减少的米数,先求小长方形的长或宽(也就是原来图形的宽或长),然后再考虑求什么的面积,可以根据面积公式直接求或图形间的面积关系间接求,方法要灵活多变。
第六单元 运算律
1、加法运算定律
①加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a
②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b) +c=a+(b+c)
③加法交换律与结合律往往结合起来一起使用。
2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)
3、乘法运算定律
①乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a
②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b) ×c=a×(b×c)
乘法交换律和乘法结合律往往结合起来一起使用。
③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c =a×c + b×c(合起来乘等于分别乘)
(a-b)×c =a×c - b×c
4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。(结合连减)
a÷b÷c=a÷(b×c)
第七单元 三角形、平行四边形和梯形
一、三角形
1、围成三角形的条件
较短两条边的长度之和一定大于第三条边,两边之差小于第三边。
2、三角形的底和高
从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形具有稳定性
当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变。
4、按角将三角形分类
三个角都是锐角的三角形是锐角三角形。
有一个角是直角的三角形是直角三角形。
有一个角是钝角的三角形是钝角三角形。
5、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。
6、等腰三角形
两条边相等的三角形是等腰三角形,相等的两条边叫做腰。
另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等。
等腰三角形是轴对称图形,有一条对称轴
7、等边三角形
三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60°,所有等边三角形的三个角都是60°。)
二、平行四边形和梯形
1、平行四边形
两组对边互相平行的四边形叫平行四边形。
(1)它的对边平行且相等,对角相等。
(2)从一个顶点向对边可以作两种不同的高。一个平行四边形有无数条高。
(3)平行四边形容易变形,具有不稳定性。
(4)把平行四边形拉成一个长方形,周长不变,面积变了。
2、梯形
只有一组对边平行的四边形叫梯形。
(1)平行的一组对边较短的叫做梯形的上底,较长的叫做梯形的下底,不平行的一组对边叫做梯形的腰,两条平行线之间的距离叫做梯形的高(无数条)。
(2)两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
第八单元 确定位置
1、通常把竖排叫作列,横排叫作行。一般情况下,从左向右数确定第几列,从前向后数确定第几行。
2、数对中的第一个数表示第几列,第二个数表示第几行,两个数之间要用逗号隔开,两个数要用小括号括起来。如:(4,3)表示第4列第3行或者说第3行第4列。
3、身份证从左往右第1——6位表示地区,第7——14位表示出生年月日,第15——17位表示编码,第18位是识别码。其中第17位上单数表示男性,双数表示女性。
抽象座位表,认识数对
对数称为数对。(注意先写列后写行)
如何教好四年级数学?
1.对教材的研究整合
教师在课堂教学开始之前应该认真备课,把握课程的重点和难点内容,只有在实现教材主题、实质的掌握的前提之下,才能进行相关学习策略的研究,设计新颖的教学方式,使学生在轻松的环境中进行学习。教师应该充分利用教材,根据教学实际来进行教材的整合和加工,让学生自主进行信息的发现和问题的解决。
2.教师角色的转换
新课标之下素质教育的开展,要求教师转变自身的角色,改变传统的只注重学生知识培养的教学模式,改变教师一言堂式的课堂教学方法。教师应该把课堂还给学生,让学生成为课堂的主人,而教师在课堂中只起到引导者的作用,运用多样化的教学模式,使学生通过自己讨论、合作学习、实际操作等方法尽享自主的学习。
3.有效的激励机制
对于学生数学课程学习的评价,教师不仅要对学生数学知识和技能的理解水平进行关注,更应该关注学生在学习过程中的发展变化。在课堂教学中,无论学生的答案正确与否,教师都应该根据实际的需要来对学生作出评价。教师应该善待学生的错误,在指出学生学习中的不足时,也应该对学生的创新精神和学习热情进行鼓励。
4.善于运用多媒体教学
在数学课堂中应用计算机多媒体技术,能够集文字、图像和声音、视频等为一体,创造动静结合的课堂氛围。通过计算机来进行数学问题的演示,能够在很大程度上增强课堂教学的直观性和趣味性,变抽象为具体,使学生感受到数学知识形成的过程,弥补了传统教学方式的局限性。
篇14:四年级数学知识点下册
小数的除法
①除数是整数。
②除数是小数。
③商中间有“0”。
④商末尾有“0”。
⑥商与被除数之间的关系。0.49÷0.9○0.49
⑦循环小数。
会判断循环小数、商用循环小数表示。
⑧余数问题。(把一段长3.6米的绳剪成长为0.6米的小段,最多可以剪几段,还剩几米?)
⑨近似数。四舍五入或者根据实际情况求近似数,如去尾、收尾法(进一法)。
混合运算。
要求:能简算要简算。
先判断运算顺序,再观察数据特点,看能否简算。
1.会用字母或者含有字母的式子表示数量关系。
2.会用字母表示所学过的公式及运算律。
3.知道什么是方程,会判断方程。
4.会解以下形式的方程:(a、b、c表示常数)
x+a=b x-a=b ax=b x÷a=b
ax+b=c ax-b=c ax+bx=c ax-bx=c
列方程解决问题。(要注意方程的格式)
会找等量关系,利用等量关系准确设未知数,列出方程。
篇15:四年级数学知识点下册
运算顺序
(1)小数、分数、整数
小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。
(2)没有括号的混合运算
同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。
(3)有括号的混合运算
先算小括号里面的,再算中括号里面的,最后算括号外面的。
(4)第一级运算
加法和减法叫做第一级运算。
(5)第二级运算
乘法和除法叫做第二级运算。
加法交换律
加法交换律的概念为:两个加数交换位置,和不变。
字母公式:a+b+c=(b+a)+c
加法结合律
加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c=a+(b+c)
乘法交换律
乘法交换律的概念为:两个因数交换位置,积不变。
字母公式:a×b=b×a
文档为doc格式