欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

数学函数的概念的教学反思

时间:2023-04-26 08:09:12 其他范文 收藏本文 下载本文

下面是小编整理的数学函数的概念的教学反思,本文共19篇,欢迎大家阅读分享借鉴,希望对大家有所帮助。

数学函数的概念的教学反思

篇1:数学函数的概念教学反思

对于教师来说,'反思教学'就是教师自觉地把自己的课堂教学实践,作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。进一步充实自己,优化教学,并使自己逐渐成长为一名称职的人类灵魂工程师。以下是我在上了函数的概念之后的一点反思:

这堂课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且还敢于质疑并且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。

这堂课是研究函数的概念。这节课主要采用了探索、发现、归纳、反馈的教学流程,达成了对函数的概念的教学。

函数性质的研究是高中阶段数学学习的一个重要组成部分,因此函数概念的学习是研究函数性质时应予以考查的一个重要方面,并且要在后续学习中体现这个性质的应用。它在计算函数值,讨论函数单调性,绘制函数图象均有用处,对学生来说这是一个新的概念。引进新概念的过程也是培养学生探索问题、发现规律、作出归纳的过程。因此在教学时没有生硬地提出问题,而是采用生活中的事例引入,继而引出数值在直角坐标系中的对应关系导出新概念,不仅顺乎自然而且为以后研究函数奇偶性的几何意义(图形对称的两条定理)埋下伏笔。

本堂课的一个亮点是反馈过程中给出几个例题后所引起学生的思考、发言、争执、讨论以至正确答案的达成一致的过程,其中教师起了很及时和恰当的提示。学生的勇于质疑使课堂上呈现一派生气勃勃的景象,学习积极性和主动性得到了充分调动,使学生对看似简单的函数的概念也产生了不容轻视感,同时也发展了能力。一般来说学生在学习一些简单的知识点时会觉得乏味,在组织教学时充分考虑了这些浅显、平淡的知识还有一些值得思索和注意的地方。真正体现出“浅显中有新意,平淡中有隽永”。

我上课的最大风格是注重将新概念讲清讲透,能在师生互动的过程中培养学生的探索能力和高度概括能力,并使学生举一反三。难能可贵有同学能概括出的结论,因此可以以它作为下节课研究函数奇偶性的引入语。

总体来说,这堂课较好地使学生在学习中完成了“引起关注————激发热情————参与体验”的过程,是一堂比较成功的课。

遗憾之处是发言的学生由于受时间的约束,发言的人数和长度不够理想。

(1)函数的概念,看起来比较简单,学生学习时也往往感觉的乏味。因此,在组织教学时必须考虑到如何使学生感到这些浅显、平淡的知识还有一些值得思索与注意的地方。

(2)根据学生的接受能力可将内容安排两节课的教学。

篇2:函数的概念教学反思

学习培训提供的视频,结合本节课的上课经历,我反思如下:

一、备课要完备,上课按照备课来走

备课要多研究课本,研究课本的题目设置,备课前还要翻看海南省五年来高考题,以做到和编书者出题者步调一致。比如新课改后课本多是举例引入或得出概念、公式、定理,淡化逻辑证明,而高考更多是考基础性常规题,那么老实备课的时候就要注意重视应用,淡化理论。

我个人的问题是上课思路容易混乱,喜欢用口头禅,爱重复啰嗦生怕学生不懂,随口加一些不严格的内容。那么解决方法就是(1)备课的时候,通过举例和好玩的生活实例直接引入核心内容,从直观上接受重点“任意x唯一y”,尽可能简化解释,多做具体示例;(2)上课时铺开课本和备课本,是不是扫两眼,禁止临时加话。(3)在备课基础上,上课讲完备课的内容即可,在各内容之间加一句简单的承上启下的连接就行了。

二、对学生睡觉者记名上报德育处,没有观众的表演没有激情

我认为学习是学生的权利,而不是我强迫学,所以之前我从不管学生讲话玩手机睡觉。但是后面发现居然有一大片睡觉,而且我明明很有激情,讲着讲着我就困了。于是我采用了请班长科代表记名,每堂课交名单给我,期末汇总上交德育处的方法,正好12月12日学校在升旗时,发布了一个自动退学处分,学生都是害怕开除的,所以后面每节课,只有个别自我放弃的学生睡觉了。上课一眼扫下去,都坐得端端正正,我就有更多表演的欲望和随机应变的串场内容。

三、上课多一些夸张的表情和声调,以抵抗数学高难度带来的乏味

数学对海南学生来说,难是肯定的,所以极易疲惫。老师要充满爱的去搞笑,娇嗔耍宝装萌讲笑话,或者夸张发音,故意带口音,跟学生一唱一和瞎说,都可以带来学生一笑。长期还会融洽师生关系,得到学生的喜爱。

四、核心还是重点反复强调,难点要技巧性突破

对一个老师来说,不管你的课堂多么生动活泼,这只是形式,核心还是在知识点够不够精简好记,重点难点学生是很轻松地懂了,还是说模模糊糊脑袋都懵了,这全在于老师在备课和上课上下的功夫,在于老师自己想透了没,找到合适的讲授或类比方法没。突破完全在一瞬间一个简单的道理,千万不要把师生都绕进去。

每章结束后,我会和学生一起在书皮上把本章核心知识点简洁总结,方便翻看。不重要的不需要记忆,我会直接告诉学生。

最后,把一本课本和高考强调的核心知识点总结成好记的数字:比如必修1是7。比如必修2是71221k。

篇3:函数的概念教学反思

函数是高中数学中一个非常重要的'内容之一,它贯穿整个高中阶段的数学学习,乃到一生的数学学习过程。其重要性主要体现在:1、函数本身源于在现实生活,例如自然科学乃至于社会科学中,具有广泛的应用。2、函数本身是数学的重要内容,是沟通代数、几何、三角等内容的桥梁。亦是今后进一步学习高等数学的基础和方法。3、函数部分内容蕴涵大量的重要数学方法,如函数的思索,方程的思想,分类讨论的思想,数形结合的思想,化归的思想,换元法,侍定系数法、配方法等。这些思想方法是进一步学习数学和解决数学问题的基础,是我们教学过程中应注意重点讲解学生重点掌握的部分。

然而函数这部份知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来相当不容易,接受起来就更难这又是由于函数这部份知识的主要思想特点体现于一个“变”字。即研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的关点去看侍和接触相关问题,这与初中学习知识的以静态观点为中习的思维特点有较大差异,所以函数成了高一新生进入高中首先到的一条拦路虎,有些学生高中毕业了,对函数这个概念也没有理解透澈。

实际上,在学习函数这部份知识中,函数概念是最重要的,也就是最难的地方,突破了它后面的学习就容易了。现行的数学教材,其主要内容表现的都是数学知识的技术形式。函数的概念亦是如此,不管是传统定义也好,还是近代定义也好,表现出来的都是抽象数学形式,在数学的教学中,学习形式化的表达是一项基本要求,但是不能只限于形式表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。对数学知识的教学要返璞归真,努力揭示数学概念、法则,结论发展过程和本质。对越是抽象的数学概念,越是如此。所以函数概念的教学更忌照本宣科,要注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。

篇4:函数的概念教学反思

函数概念的引入一般有两种方法,一种方法是先学习映射,再学习函数;另一种方法是通过具体的实例,体会数集之间的一种特殊的对应关系,即函数。为了充分运用学生已有的认知基础,为了给抽象概念以足够的实例背景,以有助于学生理解函数概念的本质,我采用后一种方式,即从三个背景实例入手,在体会两个变量之间依赖关系的基础上,引导学生运用集合与对应的语言刻画函数概念。继而,通过例题,思考、探究、练习中的问题从三个层次理解函数概念:函数定义、函数符号、函数三要素,并与初中定义进行对比。

在学习用集合与对应的语言刻画函数之前,还可以让学生先复习初中学习过的函数概念,并用课件进行模拟实验,画出某一具体函数的图像,在函数的图像上任取一点P,测出点P的坐标,观察点P的坐标横坐标与纵坐标的变化规律。使学生看到函数描述了变量之间的依赖关系,即无论点P在哪个位置,点P的横坐标总对应唯一的纵坐标。由此,使学生体会到,函数中的函数值的变化总是依赖于自变量的变化,而且由自变量唯一确定。

篇5:函数的概念教学反思

函数,作为高中数学的一个重要组成部分,是学生学习的重点和难点。在经过集体备课,小组讨论,心中还是没有想好教学过程。在听过卢老师的课后,心中有了一点点儿底气。从而,我设计了这样的教学计划。首先,师生共同阅读教材上的三个实例。

这三个例子刚好对应了他们初中所学函数的三种表示方法(解析式法、图像法、表格),学生熟悉更容易接受,再把每个例子中的自变量和因变量的取值分别组成两个数集A和B,共同探讨总结出三个例子的共同点,从而引出函数的概念。强调构成函数的四个条件,重点是对这个符号的理解,说明它只是一个数。其次,根据函数的概念,给出六个小例子,让学生根据函数的概念判断所给例子是否能构成函数。

有四个分别是违反函数概念中的四个条件,让学生知道函数的条件缺一不可。另外两个例子说明函数可以一对一,可以多对一,但绝不允许多对一。讲完之后,发现学生的问题出现在两个集合的先后顺序,这就说明必须结合实际例子强调知识点。最后,给出函数定义域和值域的概念,并明确定义域和值域都是集合。之后让学生说出常见的三种函数:一次函数,一元二次函数,以及反比例函数的定义域以及值域。(在此之前,已经让学生在练习本上划过几个具体的一次函数,一元二次函数以及反比例函数的图像。)

篇6:函数的概念教学反思

在高中数学中,函数概念的教学是我们教师的一个难题。听了老师的讲座,给我带来了新的思路,也为解决这个难题提供了很好的指导。

虽然对函数概念本质理解并非一次就能实现,它有一个循序渐进、逐步完善,通过多角度多章节的学习,学生才能有一个较完整的深刻理解。但我们在学生刚接触函数概念时就应让学成从多角度去思考,去理解。

第一,从初高中数学中对函数定义的比较中,让学生能从初中的描述性概念把函数看成变量之间的依赖关系到高中用集合与对应的语言定义函数,从而达到函数概念的提升,从而更好地解决如y=3这样的常数函数概念的解释。

第二要用好课本,用课本教,而非教课本。充分利用好课本中函数概念的背景教学,通过三个实例:炮弹发射;大气层臭氧问题,恩格尔系数问题培养学生观察问题提出问题的探究能力,培养学生抽象概括逐步学会数学表达和交流。

第三充分发挥函数图像的集合直观作用,加强数形结合思想。数形结合,几何直观的数学思想方法对学生理解函数概念以及性质十分重要。通过让学生作图观察图像充分认识函数概念的整体性。我觉得这种方法在高中阶段是贯彻始终的。只有让学生充分学好图像认识好图像,能看懂图像,能解释图像,那么对解决花束问题将起着十分重要的作用。

篇7:函数的概念教学反思

对于必修1函数概念的教学活动中,我有以下反思:

函数是高中数学的重要研究问题,贯穿整个高中数学的学习。然而同学们对初中的函数概念的理解根深蒂固。要使他们接受从集合角度所定义的函数概念很难。本身这个概念很抽象,叙述起来很冗长,同学们读了一遍又一遍始终不解其意,我便采用启发式教学,就像学习语文一样,让大家总结函数的本质为:“函数是一种对应关系”再启发得到:“函数是两个非空数集之间的对应关系”,又得到“函数是两个非空数集之间满足一对一或多对一的对应关系”,再加上细节性的定语。大多数同学顿时觉得茅塞顿开,明白清楚。我又加之几个实例判断是否为函数并分解其理由,同学们更加清楚明了。

通过这个概念的学习,我从中得到启示:要使学生数学思维生动活泼对抽象概念的学习不能照本宣科,必须对知识重组,揭示概念的本质,使学生乐于学习它,并运用它。

这是我这节课后的一点小反思,也算是以后授课的一点小启示。

篇8:函数的概念教学反思

堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

1、某些记忆性的知识没记住。

2、学生稍遇到点难题就失去做下去的信心。题目较长时就不愿意仔细读,从而失去读下去的勇气

3、学生的识图能力、读题能力与分析问题、解决问题的能力较弱。

4、解题过程写得不全面,丢三落四的现象严重。

针对上述问题,需要采取的措施与方法是:

1、根据实际情况,对于中考升学有希望的学生利用课余时间做好他们的思想工作。并对他们进行面对面的单独辅导,增强他们的自信心,以此来提高他们的数学成绩。

2、结合自己的学习经验对他们进行学法指导和解题技巧的指导。

3、根据不同的学生情况,搜集典型题让他们单独做,并给予及时的辅导与矫正。

4、与其它任课教师联手一起想对策,指导学生读题的方法与分析问题,解决问题的方法。

5、无论是做练习还是考试之前,都告诉学生要认真仔细的读题,从图形中获取信息。

篇9:函数的概念教学反思

本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2、y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的图像经过一定的平移变换,而得到二次函数y=a(x-h)2+k (h≠0,k≠0)的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意 “类比”前几节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。

通过本节课教学,得出几点体会:

1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。

2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。

3、要使课堂真正成为学生展示自我的舞台

还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课

篇10:函数的概念的教师教学反思

函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。

函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图像》奠定基础,并形成用函数观点认识现实世界的能力与意识.

学生第一次利用数形结合的思想去研究一次函数的图像,感到陌生是正常的.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图像是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.

根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容 易让学生关注与代数表达式的寻求,甚至队部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识.在师生互动、生生互动的探索实践活动中,促成学生对一次函数知识结构的构建和完善;在巩固议练活动中,提高学生解决问题的能—本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.

探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛.教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法.教学中还注意到尊重学生的个体差异,使每个学生都学有所获. 根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展,也可留作课后作业.本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.

篇11:函数概念教学论文

[摘要]函数是中学数学教学中的一个重要内容,它与生活和学习联系紧密。

教师在组织高中学生学习函数内容时,一要帮助学生梳理函数概念,二要进行目标解析,三要帮学生诊断学习中遇到的问题。

[关键词]

初中阶段,学生已经学习过函数概念,但到了高中,函数概念发生了变化。

此时,数学教师要帮学生理清概念,解析问题。

一、对“函数”概念的理解

在初中,学生已经学习过函数概念,建立的函数概念是:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说y是x的函数。

其中x称为自变量。

这个定义从运动变化的观点出发,把函数看成是变量之间的依赖关系。

从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式。

进入高中,学生需要建立的函数概念是:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合 f(x)|x∈A叫做函数的值域。

这个概念与初中概念相比更具有一般性。

其实,高中的函数概念与初中的函数概念本质上是一致的。

不同点是表述方式不同──高中明确了集合、对应的方法;初中虽然没有明确定义域、值域这些集合,但这是客观存在的,也已经渗透了集合与对应的观点。

且高中引入了抽象的符号f(x),f(x)指集合B中与x对应的那个数,当x确定时,f(x)也唯一确定。

另外,初中并没有明确函数值域这个概念。

函数概念的核心是“对应”,理解函数概念要注意:1.两个数集间有一种确定的对应关系f,即对于数集A中每一个x,数集B中都有唯一确定的y和它对应。

2.涉及两个数集A、B,而且这两个数集都非空;这里的关键词是“每一个”“唯一确定”。

也就是,对于集合A中的数,不能有的在集合B中有数与之对应,有的没有。

而且,在集合B中只能有一个与之对应,不存在两个或者两个。

3.函数概念中涉及的集合A、B,对应关系f是一个整体,是集合A与集合B之间的一种对应关系,应该从整体的角度来认识函数。

二、目标解析

1.通过丰富实例,建立函数概念的背景,使学生体会函数是描述变量之间的依赖关系的重要数学模型。

能用集合与对应的语言来刻画函数,了解构成函数的三个要素。

2.会判断两个函数是否为同一函数,会求一些简单函数的定义域和值域。

3.通过从实例中抽象概括函数概念的活动,培养学生的抽象概括能力。

教学的重点是,在研究已有函数实例(学生举出的例子)的过程中,感受在两个数集A、B之间所存在的对应关系f,进而用集合、对应的语言刻画这一关系,获得函数概念。

然后再进一步理解它。

三、教学问题诊断分析

1.学生对函数概念中的“每一个”“唯一确定”等关键词关注不够,领会不深。

教学中,可以通过反例让学生加以认识。

如有学生的考试情况是这样的:集合A={1,2,3,4,5,6},B={90,93,98,92},f:每次考试成绩。

这里就不能表示一个函数。

因为对于集合A中的元素“4”,在集合B中就没有元素与它对应。

2.忽视“数集”二字,把一般的映射关系理解为函数。

如:高一(2)班的同学组成集合A,教室里的座椅组成集合B,每个学生都有唯一的一个座椅,班上还有空椅子。

这能否算作一个函数的例子,为什么?

3.对为什么集合B不是函数的值域不理解.让学生感受到,有时,为了研究方便或者确定一个函数的值域暂时有困难,使得B={f(x)|x∈A} 更加合理。

4.当函数关系具有解析式表示时,f(x)当然可以用x的解析式表示出来。

学生会因此而误以为对应关系f都可以用解析式表示。

可以通过所举实例的类型,引导学生,明确表示对应关系f并非解析表达式不可。

但这不是本节课的重点,应该放在下一节课“函数的表示”中解决。

只要注意所列举的例子不光是有解析式的即可。

5.本课的难点是:对抽象符号y= f(x)的理解。

可以通过具体函数让学生理解抽象的f(x)。

比如函数f(x)=x2,A=x|-2≤x<2 .f(-1)=1,f(1.5)=2.25,f(-2)=4,

f(2)无定义。

f(x)=x2,x∈A。

最终,让学生明白,f(x)是集合B中的一个数,是与集合A中的x对应的那个数.当x取具体数字时,f(x)也是一个具体的数。

篇12:函数概念教学论文

摘要:函数的概念及相关内容是高中和职业类教材中非常重要的'部分,许多学生认为这些内容比较抽象、难懂、图像多,方法灵活多样。

以致部分学生对函数知识产生恐惧感。

就教学过程中学生的反应和自己的反思,浅淡几点自己的看法。

关键词:函数;对应;映射;数形结合

1要把握函数的实质

篇13:《二次函数》数学教学反思

《二次函数》数学教学反思

9月23日,我在九年级三班讲授了二次函数y=ax2+k、y=a(x-h)2的图象和性质。

先从复习二次函数y=ax2入手,通过检测学生对于二次函数y=ax2的性质掌握较好。然后结合图象让学生理解二次函数y=ax2+k的图象与二次函数y=ax2的图象的关系,通过观察图象学生很容易地理解了二者之间的关系,在做对应练习时效果也较好。

在学习二次函数y=a(x-h)2的图象和二次函数y=ax2的图象的关系时,由于涉及向左或向右平移引出了加减问题,学生在此容易混淆,尽管让学生结合图象明确地看到在x后面如果是加就是向左平移的,反之就是向右平移,再就是在看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点从标,再看平移的问题。但是还是有一部分同学混淆了。这一部分内容学习得不够理想。反思这一节课整个过程中的成功和不足之处,我觉得需要改进的有如下几点:

1、灵活处理教材。教材上是一节课学习两种类型的函数,但是根据学生作图的速度和理解能力,一节课完成两种类型的函数有一定的困难。虽然也想过适当处理,但是想到教材是一节课完成两种函数,所以还是决定两种函数在一节课完成,事实证明一节课完成两种函数效果不是很好。由此可见有时教材上的安排不一定是科学的,所以要根据学生的实际情况进行灵活处理。

2、认真考虑每一个细节。考虑到一节课上学习两种类型的函数时间有些紧张,所以我让学生提前画好了图象,这样在课堂上可以节省时间,由于默认学生已经画好了图象,所以我也没有在黑板上再画出图象,这样让学生在看图象时,有的学生没有画出,有的'同学画错了,这样就给学习新知识带来了困难,这是我没有想到的。所以以后要充分考虑到每一个细节,要想到学生可能会出现什么情况。

3、小组评价要掌握好度。在课堂上我运用了小组评价,学生回答问题非常积极,可是我感到小组评价还有需要改进的地方。学生回答问题后加分比较耽误时间,在以后的教学中我觉得应该更灵活把握好度,使评价为教学服务而不能因评价而耽误教学。

我觉得要想提高自己的教学水平,就要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。

篇14:小学数学概念教学反思

数学概念课的“情境——归纳”教学模式是指学生在老师引导下,从熟悉感兴趣的教学情境出发,能过比较、分析、判断、综合、概括等教学过程帮助学生获得某一概念和界定概念的一种教学程序及方法。

1、以感性材料为基础归纳新概念。

用学生在日常生活中所接触到的事物或教材中的实际问题以及模型、图形、图表等作为感性材料,引导学生通过观察、分析、比较、归纳和概括去获取概念。

例如,要学习“平行线”的概念,可以让学生辨认一些熟悉的实例,像铁轨、门框的上下两条边、黑板的上下边缘等,从中找出共同的本质属性。铁轨可以看成是两条直线、在同一个平面内、两条边可以无限延长、永不相交等。同样可分析出门框和黑板上下边的属性。通过比较可以发现,它们的共同属性是:可以抽象地看成两条直线;两条直线在同一平面内;彼此间距离处处相等;两条直线没有公共点等,最后抽象出本质属性,得到平行线的定义。

以感性材料为基础归纳新概念,是在学生已有的生活经验和基础上进行教学的,要正确引导学生去进行观察和分析,这样才能使学生从事例中归纳和概括出共同的本质属性,形成概念。

2、以新、旧概念之间的关系归纳新概念。

如果新、旧概念之间存在某种关系,如区别与相同之处等,那么新概念的归纳就可以充分地利用这种关系去进行

例如,学习“乘法意义”时,可以在“加法意义”上来归纳。又如,学习“整除”概念时,可以从“除法”中的“除尽”这一知识来归纳。又如,学习“质因数”可以从“因数”和“质数”这两个概念的基础上进行归纳。再如,在学习质数、合数概念时,可用约数概念来归纳:“请同学们写出数1,2,6,7,8,12,11,15的所有约数。它们各有几个约数?你能给出一个分类标准,把这些数进行分类吗?你能找出多种分类方法吗?你找出的所有分类方法中,哪一种分类方法是最新的分类方法?”

3、以“问题”的形式归纳新概念。

以“问题”的形式引出问题,从而归纳新概念,这也是概念教学中常用的方法。一般来说,用“问题”归纳概念的途径有两条:①从现实生活中的问题引出数学概念;②从数学问题或理论本身的发展需要引出概念。

例如,在学习“平均数”时,教师可以先向学生呈现一个“幼儿园小朋友争拿糖果”的生活情境,让学生思考,为什么有的小朋友很高兴,有的小朋友很不高兴?应该怎样做才能使大家都高兴?接下来应该怎么做?这个幼儿园的老师可能会怎么做?

4、从概念的发生过程归纳新概念。

数学中有些概念是用发生式定义的,在进行这类概念的教学时,可以采用演示活动的直观教具或演示画图说明的方法去揭示事物的发生过程。例如,小数、分数等概念都可以这样归纳。这种方法生动直观,体现了运动变化的观点和思想。

篇15:小学数学概念教学反思

怎样让这些枯燥、抽象的概念变得生动有趣,使课堂教学更有效,减轻孩子们的学习负担,让概念在孩子们心中得到完美内化呢?或许我们可以从以下几方面入手。

一、概念的引入讲述宜直观形象

针对第一学段孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。

夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。在让一年级的孩子认识加减法的时候,我举起双手像音乐指挥家一样,左边一部分,右边一部分,两部分合在一起就用加号,加号就是横一部分,竖一部分组起来的,减法则反过来展示。孩子们看得有趣,记得形象,不但记住了加减号还明白了加减号的用法。在教二年级孩子感受厘米和米时,我让孩子们学会用手势来表示1厘米和1米,使得孩子们在估计具体物体的长度时

有据可依。形象生动的讲解,让孩子们自然接受数学符号。教师的语言讲解也要力求符合学生实际,特别是第一次描述时,教师一定要斟字酌句地用孩子能理解的语言尽可能用数学语言简洁地描述。因为对于第一次接触新概念的孩子们来说,第一印象是最为深刻的。当然在适当的时候我们也可以选择让孩子们根据自己的理解来说一说来试着对概念进行解释,一方面同龄人的解释会让孩子们概念的理解更为容易;另一方面也可以锻炼一下孩子的数学语言表达能力。我们要记住:孩子们的数学概念应该是逐级递进、螺旋上升的(当然要避免不必要的重复),以符合学生的数学认知规律。很多时候第一学段的孩子对于部分数学概念,只要能意会不必强求定要学会言传。

二、概念的学习宜多感官参与

心理学家皮亚杰指出:“活动是认识的基础,智慧从动作开始。”书上的数学概念是平面的,现实却是丰富多彩的,照本宣科,简单学习自然无法让这些数学概念成为孩子们数学知识的坚固基石。如果我们能够让孩子们的多种感官参与学习,让平面的书本知识变得多维、立体,让孩子们的感觉和思维同步,相信能取得很好的教学效果。

教学《认识钟表》时,鉴于时间是一个非常抽象的概念,时间单位具有抽象性,时间进率具有复杂性,所以在教学时我以学生已有生活经验为基础,帮助学生通过具体感知,调动孩子的多种感官参与学习,在积累感性认识的基础上,建立时间观念,安排了以下一些教学环节。1.动耳听故事,调动情感引入。讲了一个发生在孩子们身边的故事:豆豆由于不会看时间,结果错过了最爱看的动画片。2.动眼看钟面,听介绍,初步了解钟面,形成“时、分”概念。动画是孩子们的最爱,让钟表爷爷来介绍钟面、时针、分针,生动有趣的讲解,让孩子们的心立刻专注地进行于课堂上。3.动嘴说时间,喜好分明。4.动手拨时间。5.动脑画时间(此时在前几项练习的基础上增加了一定难度,如出示一些没有数字的钟面,只有12、3、6、9四点的钟面,让孩子们对时针、分针的位置进行估计)。

通过这些活动,使孩子们口、手、耳、脑并用,自主地钻入到数学知识的探究中去,让时间从孩子们的生活中伶伶俐俐地变成数学知识,形成了数学概念。同时也让学生充分展示自己的思维过程,展现自己的认识个性,从而使课堂始终处于一种轻松、活跃的状态。

另外,教师在教学的过程中也应该对所教概念的知识生长点,今后的发展(落脚点)有一个全面、系统的认识,才能使得所教概念不再那么单薄,变得厚重起来。孩子对概念的来龙去脉有一个更清晰完整的了解,理解起来也就变得轻松。

如果我们能让一个概念变得丰满,变得多彩,让它能从书的平面描述中凸现出来,那么孩子们掌握概念的过程便也会变得立体、多维,他们的学习过程也就变得积极、主动,而这不正是我们数学学习所需要的吗?

三、概念的练习宜生动有趣

第一学段初期的孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。

游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。

四、概念的拓展宜实在有效

美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。

孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。

概念是枯燥的、乏味的,但却是重要的。对于第一学段的孩子们我们不能假定他们都非常清楚学习数学概念的重要性,指望他们能投入足够的时间和精力去学习数学概念,也不能单纯地依赖教师或家长的“权威”去迫使孩子们这样做。那么就需要我们积极地引领他们,使之学得轻松,学得扎实,让他们体会到数学所散发出的无穷魅力,让概念深入心中,为数学学习服务。

篇16:小学数学概念教学反思

对小学生来说,数学教学过程就是“概念的教学”。小学生由于年龄小、知识不多、生活经验不足、抽象思维能力差,理解起来有一定的困难,因此,在教学中如何使学生形成概念,正确地掌握和运用概念是极为重要的。

一、直观形象地引入概念

数学概念比较抽象,而小学生特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如:在教学比较大小时,“2和3”的大小,可以把“2颗糖”和“3颗糖”放在学生面前,让学生选择,当学生选择3颗糖时,可以问为什么会选择“3”,这样让他们在实际生活中真正体会到比较大小的概念。又如:在引入平行四边形的概念时,先出示两组不同长度的四根小木棒,教师进行演示,让学生观察后,然后把这四根小棒钉成一个长方形。又让学生观察这个长方形,然后教师再进行演示,把它向其中一头拉斜,让学生观察教师演示后的形状,引导学生说说这时的长方形变形后有什么特点。这时学生可以说出:两组对边的木条长度相等,但四个角又不是直角,这样就在小学生思维中形成了平行四边形的概念。

二、运用旧知识引出新概念

数学中的有些概念,往往难以直观表述。如:教学素数、合数的概念时,考虑到它们与旧知识都有内在联系。教学时就充分运用旧知识来引出新概念。在备课时就要分析这个新概念有哪些旧知识与它有内在的联系。再利用学生已掌握的旧知识讲授新概念,学生就容易接受。因此,教学时,可以先从复习约数的概念入手,然后让学生找出1、5、8、13、15各数中的约数,再引导学生观察、比较,进行分类。通过分析,就能得出三类:

第一类5的约数有:1,5;13的约数有:1,13。只有约数1和它本身,所以,5和13是素数。

第二类8的约数有:1,2,4,8;15的约数有:1,3,5,15。除了约数1和它本身外,还有其他的约数,所以,8和15是合数。

篇17:《函数的概念》教学设计

《函数的概念》教学设计

教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

教学目的.:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学过程:

一、引入课题

1. 复习初中所学函数的概念,强调函数的模型化思想;

2. 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

备用实例:

我国20xx年4月份非典疫情统计:

篇18:高中函数概念教学设计

一、内容和内容解析

1.内容

函数的概念.

2.内容解析

函数是现代数学最基本的概念,是描述客观世界中变量关系和规律的最为基本的数学语言和工具.在高中阶段,函数不仅贯穿数学课程的始终,而且也是学习方程、不等式、数列、导数等内容的工具和基础,在物理、化学、生物等其它学科中也有广泛应用;在高等数学中,函数是基本数学对象;在实际应用中,函数是数学建模的重要基础.

学生在初中学习了函数概念.函数定义采用“变量说”.高中阶段要建立函数的“对应关系说”,它比“变量说”更具一般性.与初中的“变量说”相比,高中用集合语言与对应关系表述函数概念;明确了定义域、值域;引入抽象符号f(x).

函数概念的核心是“对应关系”:两个非空数集A,B间有一种确定的对应关系f.即对于数集A中每一个x,数集B中都有唯一确定的y和它对应.这里的关键词是“每一个”,“唯一确定”.集合A,B及对应关系f是一个整体,是两个集合的元素间的一种对应关系,这种“整体观”很重要.

基于以上分析,确定本节课的教学重点:用集合语言与对应关系建立函数概念.

二、目标和目标解析

1.目标

(1)建立“对应关系说”观点下用集合语言表述的函数概念.

(2)理解 的含义,能用函数的定义刻画简单具体的函数.

(3)在具体函数实例到一般函数概念的概括过程中,培养学生的数学抽象素养.

2.目标解析

达成上述目标的标志是:

(1)学生从具体实例出发,能在初中“变量说”的基础上,进一步抽象对应关系、定义域与值域等三个要素,构建函数的一般概念.

(2)学生能在确定变量变化范围的基础上,通过解析式、图象、表格等形式表示对应关系,理解函数对应关系的本质,体会引入符号f表示对应关系的必要性.

(3)学生能在不同实例的比较、分析基础上,归纳共性进而抽象出函数概念,体验用数学的眼光看待事物,发展数学抽象素养.

三、教学问题诊断分析

学生在初中学习函数概念时,没有涉及自变量与函数值的取值范围,也不知道为何要研究变量的取值范围,这是教学中首先遇到的问题.教学中应结合教科书实例1与实例2的分析、比较,让学生认识到研究自变量、函数值取值范围的必要性.

如何认识函数的对应关系,就成为了第二个教学问题.教学中,要让学生通过四个实例建立解析式、图象、表格与函数对应关系的联系,通过具体的解析式、图象与表格去体会变量之间如何对应,由此抽象出函数的对应关系f的本质.

在对四个实例分析的基础上,学生认识到了函数自变量的取值范围、函数值的取值范围及对应关系对于函数的重要性,但如何在此基础上让学生进行归纳,抽象出函数概念,并以此培养学生数学抽象素养,成为第三个教学问题,也是本节课的教学难点.教学中可以将四个实例各自得到的三个要素表格化,让学生从表格中抽象出函数要素及其表示,并在此基础上给出一般的函数概念.

在得出函数概念后,如何用新的函数概念重新认识已经学习过的函数,建立知识之间的联系,是第四个教学问题.教学中,除让学生按函数定义,仿照四个实例的分析去具体表述一次函数、二次函数、反比例函数外,还必须重视让学生采用教科书中的练习题与习题进行练习,也可以根据学生的学习状态适当增加一些问题供他们练习.

四、教学支持条件分析

本节课的教学重点是认识函数要素并建立函数概念,会涉及函数值的计算、图象的运用及分析所得信息的综合,因此可以借助于信息技术解决以上问题,以让学生有更多的时间用于观察与思考函数的基本要素和概念的抽象上.

五、教学过程设计

引导语:在初中我们已经接触过函数的概念,知道函数是刻画变量之间对应关系的数学模型和工具. 例如,正方形的周长l与边长x的对应关系是l=4x,而且对于每一个确定的x都有唯一的l与之对应,所以l是x的函数.这个函数与正比例函数y=4x相同吗?又如,你能用已有的函数知识判断y=x与

是否相同吗?要解决这些问题,就需要进一步学习函数概念.

(一)函数概念的抽象

问题1:请同学们根据如下情境回答问题:

某“复兴号”高速列车加速到350 kmMh后保持匀速运行半小时.

(1)这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系如何表示?这是一个函数吗?为什么?

(2)如果有人说:“根据对应关系S=350 t,这趟列车加速到350 kmMh后,运行1 h就前进了350 km.”你认为这个说法正确吗?

(3)你认为如何表述S与t的对应关系才是精确的?

师生活动:教师给出问题后让学生先独立思考并写出回答要点,再小组交流,并提醒学生先不要看教科书.

让学生分组收集并归纳问题的回答要点,并将要点反馈给教师(有条件的学校可以利用信息技术平台收集与呈现学生的回答要点),教师在全班交流的基础上进行适当点评.

学生对问题(3)可能会有困难,教师可以在学生回答的基础上给出精确表述的示范.

设计意图:问题(1)是为了让学生回顾初中所学函数概念,用“是否满足定义要求”来回答问题;问题(2)是要激发认知冲突,发现其中的不严谨;问题(3)是为了让学生关注到t的变化范围,并尝试用精确的语言表述.

问题2:某电气维修公司要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么:

(1)你认为该怎样确定一个工人每周的工资?

(2)一个工人的工资w(单位:元)是他工作天数d的函数吗?

(3)你能仿照问题1中对S与t的.对应关系的精确表示,给出这个问题中w与d的对应关系的精确表示吗?

追问:问题1和2中的函数对应关系相同,你认为它们是同一个函数吗?为什么?

师生活动:学生阅读题目后,自主回答.

设计意图:问题(1)是引导学生使用不同方法,例如表格的形式:

解析式w=350d;等等.

问题(3)是让学生模仿问题1的方法给出描述,既让他们熟悉表述方法,同时训练抽象概括能力.

通过追问,使学生进一步关注到定义域、值域问题.

问题3:如图所示是北京市11月23日的空气质量指数(Air Quality Index,简称AQI)变化图.

(1)如何根据该图确定这一天内任一时刻t的空气质量指数(AQI)的值I?

(2)你认为这里的I是t的函数吗?如果是,你能仿照前面的方法描述I与t的对应关系吗?

师生活动:教师用PPT或其他方式呈现问题3,给学生适当时间阅读思考.

有些学生可能认为I不是时间t的函数,对此可进行如下追问.

追问:(1)你能根据图3.1-1找到中午12时的AQI的值吗?这个值是否唯一存在?

(2)对于数集A3={t|0≤t≤24}中的任意一个值t,你会用什么方法寻找此时对应的I值?

在追问的基础上,教师阐释:因为对于数集A3={t|0≤t≤24}中的任意一个值t,都有唯一确定的AQI的值与之对应,所以我们可以根据初中所学的函数定义,得出I是t的函数,而且还可以断定I的取值范围也是确定的,不过从图中我们不能确定这个范围.如果我们设I的取值范围为C,那么从图中可以确定,

对于数集A3中的任一时刻t,按照图3.1-1中曲线所给定的对应关系,在数集B3中都有唯一确定的AQI的值I与之对应,因此I是t的函数.

设计意图:学生根据图象描述对应关系有困难,特别是在值域不能完全确定时,通过引入一个较大范围的集合,使函数值“落入其中”,这是学生经验中不具备的.实际上,如果用映射的观点看,这时的映射就是非满射.为此,在问题(1)之后,先让学生认可图象表示一个函数,然后再通过教师讲解,给出对应关系的描述方法,从而化解难点.这里,只要学生能够理解I是t的函数,并能够接受这种描述方式就可以了.

(1)你认为按表3.1-1给出的对应关系,恩格尔系数r是年份y的函数吗?为什么?

(2)如果是,你能仿照前面的说法给出精确的语言刻画吗?

(3)如果我们引入B4={ r|0≤r≤1},将对应关系表述为“对于任意一个年份y,都有B4中唯一确定的r与之对应”,你认为有道理吗?

师生活动:教师用PPT呈现上述内容和问题,学生思考后,通过信息技术平台或其它方式对“恩格尔系数r是年份y的函数吗?”进行“是”与“不是”的选择性投票,教师根据投票情况进行点评,从而解决问题(1).

让学生不看教科书,分组练习用集合与对应的语言刻画函数,并让学生代表发言,教师给予点评,从而解决问题(2).

学生给出的函数值取值范围可能是表中r的10个值,教师在肯定的基础上进行引导:根据恩格尔系数的定义,r的取值范围是B4={ r|0≤r≤1},以B4为年份与所对应的r值所在的集合更具有一般性.

设计意图:与问题3的情况类似,学生对用表格表示的对应关系是否为函数关系的判断存在疑惑,通过问题引导学生思考,教师再作适当讲解,从而使学生接受之.另外,对于函数值所在的集合B4的合理性,以教师从恩格尔系数的定义的角度进行解释即可.

问题5:上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数的本质特征吗?

师生活动:给学生充分思考的时间,引导学生重新回顾用集合语言与对应关系刻画函数的过程.如果学生归纳、概括有困难,可以给出下表帮助学生思考:

教师引导学生得出:

(Ⅰ)都包含两个非空数集,用A,B来表示;

(Ⅱ)都有一个对应关系;

(Ⅲ)尽管对应关系的表示方法不同,但它们都有如下特性:对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确定的数y和它对应.

在上述归纳的基础上,教师讲解:事实上,除解析式、图象、表格外,还有其他表示对应关系的方法.为了表示方便,我们引进符号f统一表示对应关系.然后给出函数的一般性定义,并解释函数的记号y=f(x),x∈A.

设计意图:让学生通过归纳四个实例中函数的共同特征,体会数学抽象过程,概括出用集合与对应语言刻画的一般性函数概念.在此过程中,要突破“如何在四个实例基础上让学生进行归纳、概括、抽象出函数概念,并以此培养学生数学抽象素养”这一难点,突出“在学生初中已有函数认识基础上,通过实例归纳概括出函数的基本特征(要素),用集合与对应的语言建立函数的概念”这一教学重点.

(二)函数概念的初步应用

问题6:如果让你用函数的定义重新认识一次函数、二次函数与反比例函数,那么你会怎样表述这些函数?

师生活动:在学生思考后,教师用一次函数与二次函数进行示范,学生用反比例函数进行练习.

学生完成教科书中的练习第1题~第3题,教师对学生的练习进行点评.

设计意图:用函数定义重新认识已学函数,加深对函数定义的理解,进一步体会定义域、对应关系与值域是函数的三个要素.

问题7:你能构建一个问题情境,使其中函数的对应关系为y=x(10-x)吗?

师生活动:在学生思考后,教师以例1进行示范.

如果学生学习基础好,可以让他们完成教科书例1后的探究:“构建其它问题情景,并用解析式y=x(10-x)描述其中的变量关系”;对学习基础一般的同学,要求他们完成教科书练习第4题.

设计意图:让学生在完成例1的过程中,进一步体会函数模型应用的广泛性,加深对函数概念的理解.

(三)课堂小结、布置作业

教师引导学生回顾本节课的学习内容,并引导学生回答下列问题:

(1)什么是函数?其三要素是什么?

(2)对于对应关系f,你有哪些认识?

(3)与初中学习过的函数概念相比,你对函数又有什么新的认识?

(4)本节课我们是怎样得到函数概念的?结合本节课的学习,你对如何学习数学又有什么体会?

师生活动:教师出示问题后,先由学生思考后再进行全班交流,最后教师再进行总结.要强调如下几点:

(1)函数的定义是判断一个对应关系是不是函数的标准;

(2)要通过具体例子理解函数的对应关系f的特征,特别是对于“A中任意一个数”“B中都有唯一确定的数”等关键词的含义要认真体会;

(3)对应关系f的表示形式可以是解析式、图象、表格等多种形式,但它们的实质相同,在后续的学习中要注意积累用适当的方式表示函数的经验;等等.

设计意图:引导学生从函数概念的内涵、要素的归纳过程、关键词的理解等角度进行小结,进一步加深对函数概念的理解.

布置作业:教科书习题3.1第1,11,14题.

六、目标检测设计

1.近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图中的曲线显示了南极上空臭氧层空洞的面积从1979~的变化情况.

(1)臭氧层空洞的面积是时间的函数,这个函数的对应关系是

(2)上述函数的定义域是______________

值域是__________

设计意图:考查学生对函数三个要素的认识,巩固函数概念.

2.习题3.1第8题:如图,矩形的面积为10.如果矩形的长为x,宽为y,对角线为d,周长为l,那么你能获得关于这些量的哪些函数?

设计意图:考查学生运用函数概念刻画实际问题.

篇19:函数概念3

函数概念300年

函数概念是全部数学最重要的概念之一.本文论述了自17世纪下半叶到现在300多年来函数概念的历史变迁,说明了严密化的`企图始终刺激着函数概念的发展.就严密化是一个渐进的、不可躲避的历史过程而言,函数概念的历史映射了整个数学的发展史.

作 者:李鹏奇  作者单位:南开大学,马克思主义教育学院,天津,300071 刊 名:自然辩证法研究  PKU CSSCI英文刊名:STUDIES IN DIALECTICS OF NATURE 年,卷(期):2001 17(3) 分类号:N09 关键词:函数   严密化  

数学函数的概念教学反思

函数的概念教学反思

高中数学《函数的概念》教学反思

《函数概念》说课稿

教学反思概念

《函数的概念》说课稿函数的概念的说课稿

函数的概念 说课稿

《函数的单调性》数学教学反思

二次函数教学反思

与函数的概念测试卷

《数学函数的概念的教学反思(推荐19篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档