欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

人教《正比例》的教学设计

时间:2023-05-30 08:01:39 其他范文 收藏本文 下载本文

下面小编给大家整理的人教《正比例》的教学设计,本文共19篇,欢迎阅读!

人教《正比例》的教学设计

篇1:《比例》教学设计

教案背景:

本课是北师大版小学数学第十二册“正比例和反比例”这一单元的内容。它是在学生对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。

教学课题:《反比例》

教材分析:

教材通过解决实际问题知识引出图上距离和实际距离的比就是比例尺。再通过练习巩固比例尺的相关知识,使学生能根据比例尺求出图上距离和实际距离。这部分内容有较强的实际应用价值,为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。

教学目标:

知识与技能:

1.让学生在实践活动中体验生活中需要比例尺。

2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。 过程与方法:

3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

情感、态度与价值观:

4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,体会比例尺的实际意义,学会解决生活中的一些实际问题。 教学法

教法:情境导入,激发求知欲望。对于意义理解部分主要采用实例讲

解法。对于运用比例尺进行相关计算时,主要用引导发现、提示理解法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法

进行学习,必要时进行合作交流。

教学课时:一课时

教学过程:

一、创设情境,提出问题:

老师为了考考大家,给同学们出个脑筋急转弯:一只蚂蚁不到20秒钟从西安爬到了北京,你知道为什么吗?

生思考回答:在地图上。

师:那么大的地方可以用一幅地图来体现出来,这里运用了什么知识? 生:图形的放缩。

师:同学们说得真好,如果要给我们的教室画一张平面图,它应该是

什么形状的?你会画吗?

生:长方形。

师:那我们来估一估它的长和宽吧

(生:长大约9米,宽大约6米 。 )

师:请大家在练习本上画出教室的平面图。(生画师巡视)

学生动手操作,反馈。

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故

意)?为什么?

生:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩

小一定的倍数在纸上表示出来。

师:你的想法很对,跟笑笑同学的想法一样。

师板书学生结果:逐步引出1:100

1学生汇报。

2学生讨论:

学生:图上1厘米长的线段表示实际100厘米。

3引出课题。

教师:这就是今天要学习的新知识——比例尺(板书课题)

二、合作探究,解决问题:

1.介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文

字比例尺、线段比例尺。

2.认识比例尺的意义。

师:比例尺1:500是什么意思?

生1:就是图上1厘米的长度代表现实中的500厘米。

生2:实际距离是图上距离的500倍。

1生3:图上距离是实际距离的。 500

师:比例尺1:200是什么意思?

生1:就是地图上1厘米的距离相当于现实中的2200000厘米的距离。 生2:?

师:同学们讲得都对,那到底什么是比例尺?

学生回答,师评价并规范学生语言:对,比例尺就是图上距离与实际

距离的比。

小结比例尺的特点及应注意的问题.

三、练习巩固,检测反馈。

1、练习1、求比例尺在一幅地图上,用20cm的线段表示实际距离10

千米。求图上距离和实际距离的比?

学生独立做,集体反馈。

练习2:甲、乙两地相距320千米,画在比例尺是的地图上,应画多少厘米? 02040 60千米

练习3、4略

2、师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上“比例尺1:100”。 在画的长是3厘米、宽是2厘米的图上加上“比例尺1:300”。

3、再次认识比例尺

<1>出示一个手表的零件,这些零件如果要你画出来,你觉得有什么困难。你有什么办法吗?

<2>电脑课件演示。

<3>求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。

<4>讨论板书:

比例尺把实际距离缩小一定的倍数如1:30000000

把实际距离扩大一定的倍数如200:1

<5>引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1

四、合作总结,整理内化。

通过本节课的学习,你有哪些收获?

五、布置作业。

1、请大家把书翻到30页,量一量平面图中笑笑卧室的长是厘米,宽是()厘米。

算一算笑笑卧室

实际的长是()米,宽是()米,面积是()平方米。

学生独立完成。

2.同学们,你们能自己确定比例尺,把自己家的平面图画下来吗? 板书设计

篇2:《比例》教学设计

教学目标:

1、理解比例尺的概念,能正确、熟练地进行求比例尺计算。

2、掌握根据比例尺求图上的距离或实际距离的方法。

3、培养学生对知识的灵活运用能力,从中感悟到比例尺在实际生活中的重要性。

教学重点:根据比例尺的意义求图上距离或实际距离

教学难点:设未知数时单位的正确使用教学准备:多媒体课件1套,学具图若干张。

教学过程:

一、创设情境,揭示课题

1、创设情境:播放歌曲《春天在哪里》,教师在音乐中朗诵描写奏的诗歌,音乐停,师问:你感受到了什么?有什么想法?(感受到春的气息,想去旅游)

2、揭示课题:我们到一个陌生的地方旅游,首先要做什么呢?(找地图,了解城市情况)从地图上可以获取哪些信息(比例尺、图距、实距、方向)师:比例尺的计算方法我们已经学过了,今天我们就来学习比例尺在生活中的运用(板书课题:比例尺的应用)

二、自主探索

1、谈话:刚才同学们说了那么多想去的地方,老师想带你们到南京玩一玩,你想吗?(想)

2、出示下面地图,思考从图上你能获得哪些信息。

3、学生汇报:从图上可以看到想去的地方的方位,比例尺是多少,可以看出居住地及旅游的线路

4、学习求实际距离的方法。假设我们到南京旅游,住在金陵饭店,想去南京博物馆参观,你能计算出从金陵饭店到南京博物馆的距离吗?试试看。

(1)学生讨论计算方法,然后小组代表发言、集体交流。(要求实际距离可以根据比例尺的意义用解比例尺的方法做,也可以用其它公式做)

(2)学生试做,并指名板演。

(3)集体订正,(采用不同方法解答,说一说每一种方法思路及注意点)

5、学习求图上距离的方法

(1)出示:已知南京博物馆长600米、宽300米,现在做成比例尺是1:10000的平面图,你能求出南京博物馆在图上的长和宽各是多少厘米吗?

(2)学生讨论解决方法,然后小组代表发言,集体交流。(可以根据比例尺的意义用比例的方法解答,也可以用公式图上距离=实际距离比例尺解答)

(3)学生试做并板演。

(4)集体订正,说一说,每种方法的思路及注意点。

6、学生看书3738页,提出不懂的问题,集体解决。

三、反馈提高

1、学校的操场长300米、宽100米,要把平面图给制在作业本上,你认为选用哪个比例尺比较合适?(1)1:1000 (2)1:20xx(3)1:5000 (4)1:10000

选第(3)个最合适,让学生说明原因

2、量一量下图中小明家到学校公园、商场的距离各是多少厘米,然后算一算小明家到学校、公园、商场的实际距离各是多少米?指名板演,并说一说列式的依据及解题思路。

3、根据条件绘制金山镇镇区平面图(1)金石路在繁荣路和开发路之间并与两条路平行,距繁荣路300米(在图上画出金石路)(2)金山小学在金中路东侧,在开发路北100米处,(标出金山小学位置)

四、小结:今天你学习了什么内容?有哪些收获?

五、作业:测量出学校的实际长和宽,然后选用适当的比例尺一出学校平面图。

篇3:《比例》教学设计

本周教学内容为正反比例以及比例的运用。这部分内容是本册教学的重点和难点。

一、教学内容以及讲义的设计调整。

在前几周教学基础上,本周课堂讨论环节有所调整。之前,每次的题单设计取消,一是为了节省课堂时间,提升课堂效率;二是同步练习中的探究交流习题设计难度适中,便于学生自学指导。

实际进行了几次教学尝试,课堂时间缩短了。

二、紧扣概念,理解正反比例的含义。

除了结合现实的实例外,教学中注意强化概念的理解和运用。课堂上在理解的基础上,增加记忆环节。让学生人人熟识概念,逐个讲解概念。通过讲述再次巩固概念,扎实掌握。

三、抓关键点,理清解题思路。

比例的应用,利用正反比例解决实际问题,关键点是:先找不变量。找准不变量,再确定属于什么比例。根据比例来确定解题方法。在教学中和练习中不断强调,怎样找不变量,学生做题准确率较高。

四、尝试组建一对一辅导模式。

数学学困生占二成,之前的辅导难度较大,一时间不能保证;二精力顾不过来;三师生比较疲惫,效果难以保证。从上周末开始让学生自己挑选师傅和辅导徒弟,从本周开始启动结对辅导。运行一周,目前效果良好。学困生的作业上交率明显提升,辅导师傅积极性高,辅导跟进到位,今后继续坚持,不断调整。

以上反思,将继续扬长避短,不断完善。

篇4:《比例》教学设计

教学过程:

一、导人新课

教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。这节课我们要学习解比例。(板书课题)

二、新课

1、自学解比例。

(1)学生自学教材35页的解比例。

(2)学生交流解比例的意义。

(3)教师归纳:(出示课件)

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、教学例2。

出示例2。

(1) 学生读题,理解题目里的条件和问题。

(2) 学生试着解答此题,一名学生演板。

(3) 师生共评。

(4) 归纳用比例解应用题的方法:

A. 设出题目中要求的未知量为x;

B. 根据比例的意义列出比例;

C. 运用比例的基本性质解比例;

D. 检查、写答语。

(5)试一试:完成练习六第8题。

3、自学例3。

(1)学生独立把例3补充完整。

(2)学生口述解答过程和解答依据。(根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程,再解方程。)

教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解。

从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

4、总结解比例的过程。

提问:

(1)刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

(2)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

(3)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

5、完成第35页的做一做。

学生独立解答,订正时,让学生说说是怎么做的。

三、巩固练习

做练习六的第7、9、10题。

四、学有余力的学生做第12*、13*题。

傲第12*题的第(1)题。教师可以这样引导学生:这道题需要逆用比例的基本性质。比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:

3:8=15:40 40:15=8:3

3:15=8:40 40:8=15:3

如果把3、40作为内项,有下面这些比例式:

15:3=40:8 8:40=3:15

15:40=3:8 8:3=40:15

可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。 学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。

篇5:《比例》教学设计

教学内容:

教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

教学目标:

1、理解比例的意义。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

教学重点:

理解比例的意义,能正确判断两个比能否组成比例。

教学难点:

在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。

教学准备:

两张照片。

预习作业:

1、预习课本第40页例3,

2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。

3、在课本上完成第40页练一练。

教学过程:

一、预习效果检测

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

还记得怎样求比值吗?希望这些知识能对你们今天学习的'新知识有帮助。

3、什么叫做比例?

二、合作探究

1、认识比例

(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。

(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)

(3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6

数学中规定,像这样的式子就叫做比例。(板书:比例)

(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

2、学以致用

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、交流“练一练”的完成情况。

三、当堂达标检测

1、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

2、做练习九第4题

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

3、做练习九第7题

(1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

(2)分组完成,同时四人板书,再讲评。

完成后反馈、引导学生进行汇报交流,及时修正自己的答案。

提出疑问,总结全课。

篇6:比例解决问题教学设计

教学内容:

教科书第59页例5以及相关练习题。

教学目标:

1、使学生能正确判断题中涉及的量是否成正比例关系。

2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

4、在成功解决生活中的实际问题中体会数学的价值。

教学重点:

利用已学的`正比例的意义,通过自己探索掌握解答正比例应用题的方法。

教学难点:

正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

教具准备:

小黑板

教学过程:

一、复习铺垫,激发兴趣。

1、填空并说明理由。

(1)速度一定,路程和时间成( )比例。

(2)单价一定,总价与数量成( )比例。

(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

生1:把旗杆放下量。

生2:爬上去量。

生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

师:相信通过这一节课的学习,你一定会找到解决的方法的。

【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

二、揭示课题、探索新知。

1、小黑板出示例5

张大妈:我们家上个月用了8吨水,水费是12.8元。

李奶奶:我们家用了10吨水,上个月的水费是多少钱?

思考:题中告诉了我们哪些信息?要解决什么问题?

师:你能利用数学知识帮李奶奶算出上个月的水费吗?

(1) 学生自己解答。

(2) 交流解答方法,并说说自己想法。

算式是:12.8÷8×10

=1.6×10

=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

(也可以先求出用水量的倍数关系再求总价。)

10÷8×12.8

=1.25×12.8

=16(元)

篇7:正反比例教学设计

教学内容:义务教育课程标准实验教科书第12册94页“正反比例”和94-95页“练习与实践”1-6题.

教学目标:

1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

2.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。教学重点、难点:能运用比和比例的知识解决一些简单实际问题

教学设计:

一、比的知识:

举例说说什么是比?什么是比的基本性质?

说一说用比的知识可以解决哪些实际问题。

3.完成教科书p94“练习与实践”

(1)完成第一题:学生独立数出班上男女生人数,再完成此题。

(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

二、比和分数、除法的联系出示:a∶b==÷()(b≠0)

先填空,再说说这样填的根据是什么?

说说比的基本性质与分数的基本性质、商不变的规律的联系。

练一练:

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

(2)填空:=()÷()=()∶()(填好后展示学生不同的结果。)

三、比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例的基本性质是什么?

4.比例的基本性质有什么作用?怎样解比例?

5.练一练:完成教科书p94“练习与实践”

(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。估计后再算一算,来验证估计。

(2)完成第4题:解比例,做好后选两题验算一下。

(3)完成第5题:先学生独立做最后交流第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

(4)完成第6题:第一小题让学生独立得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

四、补充

(一)填空

1.()÷10=0.6=%=():()=9/()

2.把15/8:3/4化成最简单的比是();3/4千克:400克的比值是()。

3.甲乙两数的比是3:5,甲数是乙数的()%,乙数是甲数的()%,甲数与两数和的比是()。

4.一杯400克的糖水,含糖率是20%,糖与糖水的比是(),再加入20克糖,糖与糖水的比是()。

5.把3:8的前项加上6,要使比值不变,后项可以乘()或加()

6.如果A×3/4=B×2/5,那么A:B=():(),当A=0.8时,B=()

7.从36的因数中选4个数,组成一个比例:(),用比例的性质检验()。

8.在一个比例里,两个内项互为倒数,其中一个外项是2/5,另一个外项是()。

(二)选择。

如果减数相当于被减数的.3/5,那么差与减数的比是()。A2:3B2:5C3:5D3:2

2.同一段路程,甲车行完要4小时,乙车行完要6小时,甲、乙两车速度的最简比是()A4:6B6:4C2:3D3:2

3.甲乙两个正方体棱长的比是1:2。它们的表面积的比是(),体积比是();A1:2B1:4C1:6D1:8

4.一个三角形三个内角的度数比是2:3:5,这是()三角形。A锐角B钝角C直角D无法确定

(三)解决问题。

1.一种药水是把药粉和水按照1∶100的比例配成的.要配成这种药水4040千克,需要药粉多少千克?

2.一个长方形周长50米,长与宽的比是3∶2,这个长方形的面积是多少?3.建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?4.加工一批零件,已完成个数与零件总个数的比是1:3。如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?5.画一个长3厘米,宽2厘米的长方形,把这个长方形按2:1放大后,画下来。想一想:这两个长方形的面积的比是多少?

课后反思:从学生完成的情况来看,大部分学生掌握得不错。但是有个别题目,学生普遍还是存在错误的,很多学生为了赶速度,做题很不认真。例如:一杯400克的糖水,含糖率是20%,糖与糖水的比是(),再加入20克糖,糖与糖水的比是()。很多学生后半个空都填错了,其实这题并不难,只是学生懒于思考,这也是目前很多学生的学习状态。

选择题中已知时间比,要求速度比可以和已知工作时间,要求工作效率这类题目结合起来讲解。解决问题第2小题有一部分学生用比例的知识解决时,直接拿50乘3/5和2/5。

关键是要让学生理解长与宽的比3:2是一条长比一条宽,而50米是包括了两条长和两条宽。必须先求出来一条长与一条宽的和。这和长方体中已知棱长总和以及长、宽、高之间的比道理是相同的。第4题,学生错的比较多,关键是让学生理解“完成个数与剩下的个数同样多”这话其实就告诉我们完成的个数和剩下的个数各占了总数的1/2。这样学生就容易列方程解决了。

篇8:《解比例》教学设计

教学内容:

教材第35页例2、例3。

教学目标:

1、知道什么叫做解比例。

2、会根据比例的性质或比例的意义正确地解比例。

3、培养学生认真书写和计算的习惯。

过程与方法:

1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。

2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

教学重点:

解比例。

教学难点:

解比例的方法。

突破方法:

引导学生小组合作探究、交流,掌握解比例的根据。

教法与学法:

教法:创设问题情境,引导发现。

学法:独立思考,自主探究。

教学准备:ppt课件。

教学过程:

一、复习准备

1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)

2、出示:应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

6:10和9:15 2:80和5:200

3、利用比例的一些知识,还可以帮助我们解决一些实际问题。出示比例:3:9=():15

师:这个比例中的两个外项和两个内项分别是多少?

(外项是3和15,一个内项是9,另一个内项未知的。)

师:你能利用比例的知识求出这个未知的.内项吗?可以根据比例的意义:比值相等的两个比可以组成比例。

因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。

师:像这样,求比例中未知的项,叫做解比例。(课件出示)。今天这节课就利用比例的有关知识解比例。(板书课题)

二、探索新知

1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道。你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题,教学例2。学生读题。

师:1:10是谁与谁的比?教师随学生的回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10。

师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)

师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)

师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)

师:像这样知道比例中的任何三项,我们就可以求出这个比例中的另外一个未知项。怎样根据这个比例中的三项来求另外一个未知项呢?这就要用到我们前面学习的比例的基本性质。我们把埃菲尔铁塔模型的高度设为x米。可以写成一个比例,谁来说说看?板书:

解:设这座埃菲尔铁塔模型的高度是x米。

X:320=1:10

师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?谁上来做做?为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。

师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)

师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。在全班学生独立解答的同时,抽一个学生在黑板上解答。

师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例。)或比例的基本性质来检验。

解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)现在同学们会用解比例的方法来解决问题了吗?

3、巩固例2练习。

(1)出示练习题p37第8题。

(2)学生独立完成,二名学生板演讲解分析。

(3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数X)

4、这个比例你能解答吗?出示例3:1.5/2.5=6/X

(1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)

(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项),让学生指出这个比例的外项、内项。

(3)学生独立练习,求出未知项。

(4)同学间互相交流,发现问题及时解决。

(5)请一位学生上台板演完成例3。

5、指导学生梳理教材的知识点,完成p35“做一做”。

三、巩固练习。

1、课件出示基本练习和提高练习,学生独立完成,指名板演。

2、解决问题:练习六第9、11题(学生独立完成,集体订正)

四、本课小结。

这节课主要学习了什么内容?什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)

五、布置作业。

p37第7题、p38第10题 。

篇9:《解比例》教学设计

【教学内容】

教科书第50页例3,练习十一3~6题。

【教学目标】

1、使学生理解解比例的意义。

2、使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。

3、让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的兴趣和自信。

【教学重点】

使学生掌握解比例的方法,学会解比例。

【教学难点】

建立解比例和解方程之间的联系。

【教学准备】

课件。

【教学过程】

一、复习准备

(1)什么叫比例?什么叫做比例的基本性质?

(2)下面哪一组中的两个比可以组成比例?用比例的基本性质判断。

18∶20和7.2∶8 100∶0.2和10∶0.002

学生独立完成后,抽取个别学生的答案在视频展示台上展示。

(3)填空。

3.6∶9=2.4∶6 ( )×( )=( )×( )

二、导入新课

教师:谁能很快说出下面比例中缺少的项各是几?(学生试说)

14∶21=2∶( ) 1.25∶( )=2.5∶4

教师:在一个比例式中,共有四项,如果已知其中的任何三项,要能很快求出这个比例中的另外一个未知项,就要用我们今天学的知识——解比例。

板书课题:解比例。

三、探究新知

1.教学例3

教师:像这样知道比例中的任意三项,求另外一个未知项叫做解比例。同学们能用以前学过的知识求出34∶12=x∶49中x的值吗?

引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。例如,把比看做除法,那么34∶12=x∶49就可以转化成34÷12=x÷49,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把34∶12=x∶49转化成12x=34×49来解。

教师:同学们真聪明,想出了这么多解决问题的方法。下面请一个同学回答,你把34∶12=x∶49转化成12x=34×49来解,根据是什么?(根据比例的基本性质。)

2.巩固练习

教师:你能根据比例的基本性质,把下面的比例改写成含有未知数的乘法等式来解吗?在黑板上出示:

3∶4=x∶21 4∶13=9∶x x∶8=12∶32

学生解答,抽取几个学生的作业在视频展示台上展示,并集体订正。

3.教学“试一试”

出示 教师:这个比例和前面几个比例有什么不同?(这个比例是分数形式。)

指出它的内项和外项。像这样的.分数形式的比例,同学们会用比例的基本性质来解吗?想一想,怎样解?

学生讨论并解答,完成后,请学生说一说是怎样求出x的值。

教师:解分数形式的比例时要注意什么?

引导学生说出要注意用交叉法找出比例中的两个内项和两个外项。

教师指导学生进行验算,注意书写格式的规范性。

四、巩固练习

(1)学生独立完成练习十一的第3题和第5题。

(2)讨论完成练习十一的第4题。

教师先引导学生做:这道题需要逆用比例的基本性质。在比例里,两个内项的积等于两个外项的积。这道题是知道两个积相等,如果我们把左边的两个数当作比例的内项,那么右边两个数就应当作为比例的外项,这样就可以写出比例式了。如果我们把左边的两个数当作比例的外项,那么右边两个数就应当作为比例的内项,也可以写出比例式。

学生自己写出比例式,课件显示:

如果把6,1.2作为外项,有下面这些比例式:

6∶x=3.6∶1.26∶3.6=x∶1.2

1.2∶x=3.6∶61.2∶3.6=x∶6

如果把6,1.2作为内项,有下面这些比例式:

x∶6=1.2∶3.6x∶1.2=6∶3.6

3.6∶6=1.2∶x3.6∶1.2=6∶x

教师:写比例时,我们要按照一定的顺序来写才能写出所有的比例式,即不重复又不遗漏。

(3)学生独立完成练习十一的第6题,然后教师讲评。

五、全课总结

(1)什么叫解比例?

(2)用比例的基本性质解比例的一般方法。

①根据比例的基本性质把比例改写成方程。

②根据以前学过的解方程的方法求解。

(3)这节课你运用了哪些学习的方法?还有哪些问题?

教学反思:本课时新内容不多,主要把新知识融入学生原有认知结构中,依靠学生已掌握的知识自己探索解决问题的'方法,所以在本课设计时重点展示如何将新知识(解比例)转化成学生原有知识(解方程)的过程,并且这个转化过程完全建立在学生的自主探索上,教学中运用“同学们能运用原来学习的知识求出34∶12=x∶49中x的值吗?”的提问,密切新旧知识之间的联系,建立用原有知识推动新知识学习的策略,然后运用“独立思考—相互交流—归纳总结”的学习方式,把学生推上学习的主体地位,使学生参与学习的全过程,帮助学生获得成功体验。

篇10:《解比例》教学设计

教学内容:

解比例

教学目标:

1、使学生掌握解比例的方法,能正确解比例。

2、体现数学服务于生活的思想。

教学重点:

掌握解比例的方法

教具:

实物投影

教学过程:

一、复习

1、口答,说出下列方程的解答过程:

2X=8x91/2=1/5x1/4。

2什么是比例?比例的基本性质是什么?

3把下面比例改写成两个数相乘的形式

3:8=15:40,9/1、6=4、5/0、8

二、新课

1、出示图片,介绍这是法国著名上午埃菲尔铁塔,塔高320米,在北京世界公园里有一座塔的模型,高度32米,问模型与原来塔高度的比是多少?并化简成最简整数比。

2、出事例题,读题并观察,两道题有什么相同点和不同点

3、讨论,研究解题办法

4、汇报分析不同的解法(此时揭示课题并说明什么是解比例)

5、注意强调列式是两个比前后的一致性

6、出示例31、5/2、5=6/X比较与例2的不同,明确解题思路

7、小结:说明解比例的方法,解比例也就是解方程

三练习

1、求X的值1/2X=1/4x1/57、8:X=8、2:10

2、书上练习第8题

3、团结路图上距离与实际距离的`比是1:30000,它的图上距离是六厘米,它的实际距离是多少米?

4、小兰说她只用一把尺子,一根竹竿就能量出操场上旗杆的高度,你信吗?为什么?下课后尝试去测量。

总结:这节课你收获了什么?怎样解比例?

篇11:《解比例》教学设计

【教学内容】

义务教育课程标准实验教科书《数学》(人教版六年级 下册)教材P59―60内容。

【教学目标】

1、理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

2、通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

3、发展学生的应用意识和实践能力。

【教学重点】运用正反比例解决实际问题。

【教学难点】正确判断两种量成什么比例。

【教材分析】

解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用、教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数 列比例解答、判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视、同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力、

【学情分析】

解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。所以本节课可以重点体现“学生是数学学习的主人”, “以学生为中心”,“一切为了学生的发展”的教学理念。学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

【设计理念】

利用比例的知识解答应用题,首先要判断两种相关联的量的关系,判断的过程就是正、反比例意义实际应用的过程,所以是比例应用题的重点,也是难点、正、反比例的应用题,学生在已学过的四则应用题中,实际上已经接触过,只是用归一、归总的方法来解答,因此在教学中可以运用迁移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣、首先让学生用以前的方法解答,然后提问:“这道题里有怎样的的比例关系?为什么?”引导学生判断两种量的比例关系,最后根据比例的意义列出等式解答、这样加深了对比例的理解,又揭示了与旧知识的联系,既分散了难点,又教给了思维方法。

通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题、

【教学过程】

一、铺垫孕伏(课件演示:比例的应用)

判断下面每题中的两种量成什么比例关系?

1、速度一定,路程和时间、

2、路程一定,速度和时间、

3、单价一定,总价和数量、

4、每小时耕地的公顷数一定,耕地的总公顷数和时间、

5、全校学生做操,每行站的人数和站的行数、

【设计意图:通过基本数量关系式的分析让学生进一步熟练掌握正反比例的意义,为后面分析应用题做好铺垫。】

二、探究新知

(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题、这节课我们就来学习比例的应用、(板书:解比例应用题)

(二)教学例5(课件演示:教材对话主题图)

例5、张大妈上个月用了8吨水,水费是12、8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?

学生利用以前的方法独立解答:

先算出每吨水的价钱,再算10吨水的多少钱?

12、8÷8×10

=1、6×10

=16(元)

【设计意图:通过学生用原来学习的解答归一应用题的方法,能使学生进一步理解:单价一定的意义,为正确列出比例式打好基础了。】

2、利用比例的知识解答、

思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)

哪种量是一定的?你是怎样知道的?(水的单价一定、)

用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系、)

教师板书:单价一定,水的数量和总价成正比例

教师追问:两家水的总价和用水量的什么相等?(比值相等,也就是水的单价相等)

怎么列出等式?

解:设李奶奶家上个月水费x元、

8x=12、8×10

x=16

答:李奶奶家上个月水费16元、

3、怎样检验这道题做得是否正确?(学生自主完成)

4、变式练习:张大妈上个月用了8吨水,水费是12、8元,王大爷上个月水费是19、2元,他们家上个月用了多少吨水?

【设计意图:通过变式训练的订正和交流,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没有改变,只是未知量变了,这样可以让学生更加灵活地理解和解答这样的应用题。】

(三)教学例6(课件演示例6主题图)

例6: 一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?

1、学生利用以前的算术方法独立解答、

20×18÷30

=360÷30

=12(包)

2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的——————是一定的,__________和__________成__________比例、所以两次捆书的__________和__________的__________是相等的、

3、如果设要捆x包,根据反比例的意义,谁能列出方程?

30x=20×18

x=360÷30

x=12

答:每捆12包、

4、变式练习

一批书如果每包20本,要捆18包,如果每捆15包,每包多少本?

【设计意图:例6教学沿用了例5的教学形式,但放开了学生,让学生自主探究,明白正、反比例应用题的区别和联系,学生在解答过程中不但学会了分析正、反比例应用题的技巧,同时也能够区分两种应用题的解答方法】

三、全课小结

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程、

四、随堂练习

1、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答、

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?

(2)王师傅4小时生产了200个零件,照这样计算,__________?

2、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

3、同学们做广播操,每行站20人,正好站18行、如果每行站24人,可以站多少行?

【设计意图:通过由易到难,梯级训练,让学生对用比例解决问题有一个初步的巩固和训练,加深知识印象,同时也对本节课起到系统知识的目的,让学生形成一个完整的知识整体,为后面完成课堂作业做好准备】

五、布置作业

1、一台拖拉机2小时耕地1、25公顷,照这样计算,8小时可以耕地多少公顷?

2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本、如果每本16张,可以装订多少本?

3、P60---做一做

【设计意图:通过独立作业,让学生理解用比例解决问题的一般方法和技巧,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力,发展学生的应用意识和实践能力,完成本节课的教学目标。】

【板书设计】

解比例应用题

例5: 例6:

单价一定,总价和数量成正比例。 总数量一定,每包本书和包数成反比例。

解:设李奶奶家上个月水费x元、解:设要捆x包

30x=20×18

8 x=12、8×10 x=360÷30

x=16 x=12

答:(略) 答:(略)

【教学后记】:

正反比例应用题是小学阶段应该掌握的重点内容,这节课通过新旧知识之间的联系和以旧促新教学理念,设计了简单易学的教学过程,学生在学习的过程中,没有感到学习新知识的压力,能够轻松完成学习任务。同时通过变式训练和拓展训练,让学生掌握了正反比例应用题的相同点和不同点,为后面解答比例问题打好了坚实的基础。

篇12:《解比例》教学设计

教学目标

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。

3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。

教学重点

使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。

教学难点

用比例解决生产生活中的问题。

教学过程

【问题导学】

畅所欲言:关于比例,你已经知道了什么?赶紧把你的收获和同桌交流一下吧!

1、交流汇报。

2、运用收获的知识解决问题:将2:80 80:2 5:200 200:5放在天平的两端,使它保持平衡,并说出理由。

3、将比例式子运用比例的基本性质改写成等积式。

0、5:5=0、2:2 0、5×2 =( )×( )

2/5:1/2=3/5:3/4 2/5×3/4=( )×( )

8:25=40:x ( )×( )=( )×( )

观察上面的三个式子,有什么不同?

引导学生解第三个方程,追问方程是怎样来的?

揭题,导入新知。

【自主探究】

1、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)

那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)

依据是什么呢?

同学们真聪明,不用老师讲,用以前学过的知识就解决了今天的难题,继续开动你聪明的大脑前行吧!

2、试做:1、25:0、25=x:1、6 1、5/2、5=x/6

与大屏幕比较,提出质疑。

怎样知道解是否正确呢?检验。

小结解比例的方法。

3、即时练习:32页做一做。

4、比例在生活中的应用示范广泛,你看,老师给大家带来了谁?

侦探柯南之神秘脚印: 一个月黑风高的夜晚,一家珠宝店失窃了。第二天早上,小侦探柯南经过仔细勘察,在案发现场发现了一枚犯罪嫌疑人留下的脚印,根据这枚脚印,柯南很快判断出了犯罪嫌疑人的身高,你们知道,他是怎样判断的吗?科学研究表明:人体身高与脚长的比大约是7 :1,柯南在案发现场测得犯罪嫌疑人的脚印长 25 厘米,请你帮忙算一算:这个犯罪嫌疑人的身高约是多少?

学生解决,如果用比例知识来解,怎样解呢?

教师点拨:用比例解的关键是找到关系式。身高:脚长=7:1,将脚长的条件换到这个关系中,就可以列出比例。

规范写法。

【巩固提升】

1、出示书35页例2、自己解决,小组交换检查。

2、育新小区1号楼的实际高度为35米,它的高度与模型高度的比是500:1。模型的高度是多少厘米?

【课堂小结】:这节课主要学习了什么内容?

篇13: 《解比例》教学设计

教学内容:

“解比例”是人教版小学六年级的数学课程,位于第十二册课本第二单元第二课时第35—37页的内容,是一节基础知识与技能的新授课。在新课程改革中规定授课时间为45分钟(一个课时)。

一、教材分析和学情分析

教材分析:

《解比例》教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。

学情分析:

学生先前在五年级上册时学习过简易方程以及本节课第一课时比例的意义和基本性质为本节课的学习奠定基础,同时学习本节课也是为后面比例的应用创造条件。五年级学生要注重引导他们从直观到抽象的思维方式,激发他们求知的欲望,调动学生学习的积极性和主动性。

二、教学目标

1、认知:使学生认识解比例的意义,学会应用比例的基本性质解比例。

2、能力:使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

3、情感:培养学生良好的学习习惯。

三、教学重难点

重点:认识解比例的意义。

难点:应用比例的基本性质解比例。

四、教学方法

课标指出:有效的'数学学习活动不是单纯的解题训练,不能单纯的依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课我采用启发式教学引导学生发现问题,组织学生小组合作,尝试自己解决问题,并在学生交流时进行自学辅导。

五、教学过程

课前准备:多媒体课件

(一)趣味游戏、复习导入顺口溜:

比例组成有条件,两相等不能变内外乘()要相等,性质应用最广泛。

用比例的基本性质可以用来干什么呢?(出示课题:解比例)生齐读。

【设计意图】:不拘泥于教材,创设学生感兴趣的引入新课,引起学生的共鸣;同时又渗透了比例的基本性质,对知识进行了复习起到了一举两得的作用。

(二)出示学习目标

1、理解比例的意义。

2、能利用比例的基本性质解比例。

【设计意图】:有了目标,就有了前进的动力和方向。

下面跟着老师的自学提示开始今天的探索之旅吧。

(三)出示自学导航。

1、什么叫解比例?

2、自学例

2、你明白为什么列式是X:320=1:10吗?指出这个比例中的内项和外项。

3、10X=320×1是依据什么得来的?这个方程你会解吗?

4、你能总结出解比例的方法吗?

(四)学生自学,师巡视。

1、学生自己先看书,找出自己看不懂的地方,在小组讨论时解决。

2、师巡视碰到小组解决不了的给予指导。

(五)交流汇报

1、求比例中的未知项叫做解比例。

2、根据比的对应性列出比例。

3、根据比例的基本性质把比例变成方程,然后在解方程。

【设计意图】让学生自己通过自己的自学以及交流,说出自己的发现,全班同学交流可以让他们体会到数学发现的乐趣。

(六)随机检测

1、来试试吧!解比例

8︰12=X︰15

0.8:4=X:8

2、我变身了,还认识我吗?挑战一下﹗

解比例

(七)课堂检测

1、求比例中的()叫做解比例;解比例的依据是()。

2、在一个比例中,两个内项互为倒数,其中一个外项是4,另一个外项是()

3、4X=7Y,那么Y:X=():()火眼金睛判对错

1、含有未知项的比例也是方程()

2、在比例里,两个外项的积与两个内项的积的差是0()求未知数

20:3=50:X

8X=2.4×6

侦探柯南之神秘脚印

一个月黑风高的夜晚,一家珠宝店失窃了。第二天早上,小侦探柯南经过仔细勘察,在现场发现了一枚犯罪嫌疑人留下的脚印,柯南很快判断出了嫌疑人的身高,你们知道他是怎么判断的吗?科学研究表明:人的身高与脚长的比大约是7:1,柯南在案发现场测得嫌疑人脚印长25厘米,你能算出这个嫌疑人的身高吗?(用比例的方法写)

题型培优岛

一种药水是把药和水按1:40的比配制成的,现有药240克,能配制药水多少克?(用比例的方法写)

【设计意图】课堂练习是为了让学生及时掌握知识,形成能力。根据学生的认知特点与认知水平的差异,我设计了具有梯度的层次性练习,通过不同类型、不同层次的练习使不同程度的学生都能得到发展。

(八)作业布置

1、出示书35页例2.自己解决,小组交换检查。

2、育新小区1号楼的实际高度为35米,它的高度与模型高度的比是500:1。模型的高度是多少厘米?

【设计意图】通过提问来加深对学习内容的表象。数学课程的内容不仅要包括数学的一些现成结果,还要使学生真正的理解和掌握基本的数学知识与技能。为此给同学们布置作业,不仅是检验学生的学习能力还可以检验教师的教学能力。

(九)谈谈你的收获!(进行课堂小结)

六、板书设计

解比例

例2模型的高度:原塔的高度=1:10

模型的高度:320=1:10未知项

解:设这座模型的高度是X米。

X:320=1:10 10X=320×1 X=320×1/10 X=32

答:这座模型高32米。

七、说课后反思

本堂课本着“化教为学,以练研讲”的教学模式讲课,走先学后教“导学案”的教学模式。

虽然本课教学中紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。但是由于自身的语言没有激情因而课堂气氛还有不够活跃,以后我会在这个方面努力。

篇14: 《解比例》教学设计

教学目标:

1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

教学重点:

掌握解比例的方法,会解比例。

教学难点:

应用比例的意义和基本性质解决生活中的实际问题。

教法设计:

讲解法、对比法、归纳法。

学法设计:

合作交流、对比归纳。

教学准备:

多媒体课件

教学过程:

一、复习铺垫,引入新课

(一)汇报预习案上复习题。

1、解下列方程.

χ=×

2、应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?把组成的比例写出。

6∶10和9∶155∶1和6∶2

3、在括号里填上适当的数。

3:9=():156:0.8=():4

可以根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。(板书课题)

看到课题你想了解些什么?(出示学习目标)

二、自主探究,合作交流,完成预习案。

三、汇报展示,引导点拨

1、从题目中你获得了哪些信息?

2、理解题意

根据题意可知“模型的高度:原塔高度=1:10”,已知原塔的高度为320m,如果设模型的高χ米,则可列出比例式为( ):320=1:10

根据比例的基本性质,两个外项χ与10相乘的积()两内项320与1的积。(填等或不等):

3、列式解答

指名板演,老师点拨。

小结:这种方法叫做用比例解决实际问题。

4、小结解比例的方法及应注意的问题。

四、知识检测,达标提升

1、解下面的比例

2、解下面的比例

(1)8︰12=X︰45

(2)0.4︰X=1.2︰2

3、博物馆展出了一个高为19.6厘米的'秦代将军俑模型,它的高度与实际高度的比是1:10。这个将军俑的实际高度是多少?

五、拓展延伸,总结激励

作业布置:

练习八7、10题。

板书:解比例

1、什么叫做解比例

例:1.5:2.5=6:X

解2.5×6=1.5X

1.5X=15

X=10

X:320=1:10

解10X=320

X=32

教学内容:

教材第42页例2、例3。

教学目标:

1、知道什么叫做解比例。

2、会根据比例的性质或比例的意义正确地解比例。

3、培养学生认真书写和计算的习惯。

过程与方法:

1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。

2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

教学重点:

解比例

教学难点:

解比例的方法。

突破方法:

引导学生小组合作探究、交流,掌握解比例的根据。

教法与学法:

教法:创设问题情境,引导发现。

学法:独立思考,自主探究。

教学准备:ppt课件。

教学过程:

一、复习准备

1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)

2、出示:应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。6:10和9:152:80和5:200

3、利用比例的一些知识,还可以帮助我们解决一些实际问题。

出示比例:3:9=():15

师:这个比例中的两个外项和两个内项分别是多少?

(外项是3和15,一个内项是9,另一个内项未知的。)

师:你能利用比例的知识求出这个未知的内项吗?

可以根据比例的意义:比值相等的两个比可以组成比例。因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。

师:像这样,求比例中未知的项,叫做解比例。(课件出示)。

今天这节课就利用比例的有关知识解比例。(板书课题)

二、探索新知

1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题,教学例2。学生读题。

师:1:10是谁与谁的比?

教师随学生的回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10。

师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)

师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)

师:这样知道比例中的任何三项,我们就可以求出这个比例中的另外一个未知项。怎样根据这个比例中的三项来求另外一个未知项呢?这就要用到我们前面学习的比例的基本性质。我们把埃菲尔铁塔模型的高度设为x米。可以写成一个比例,谁来说说看?

板书:解:设这座埃菲尔铁塔模型的高度是x米。

X:320=1:10

师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?

为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。

师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)

师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。(在全班学生独立解答的同时,抽一个学生在黑板上解答。)

师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。

那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们

知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)

出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例.)或比例的基本性质来检验。

解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)

3、巩固例2练习

(1)出示练习题p44第8题

(2)学生独立完成,二名学生板演讲解分析

(3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数X)

4、这个比例你能解答吗?出示例3:1.5/2.5=6/X

(1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)

(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项),让学生指出这个比例的外项、内项

(3)学生独立练习,求出未知项

(4)同学间互相交流,发现问题及时解决

5、指导学生梳理教材的知识点,完成p42“做一做”。

三、巩固练习

课件出示基本练习和提高练习,学生独立完成,指名板演。

四、本课小结

这节课主要学习了什么内容?

五、布置作业

p44第8题、第9题、第10题

板书设计

解比例

例2模型高度:原塔高度=1:10

未知项(x)320米

解:设这座模型高x米。

X:320=1:10

10X=320x1

X=320÷10

X=32

答:这座模型高32米。

教学反思:

解比例一课是在学习了比例的基本性质后学习的,教学解比例之前,教师先复习根据比例的意义和除法中各部分的关系可以求出比例里的未知项:然后告诉学生,还可以根据比例的基本性质来求比例里的未知项。所以,在实际授课的过程中,由于学生提前对这一部分进行了预习,对比例的意义和比例的基本性质也掌握的很扎实,所以对授课内容比较了解,教学组织和实施都比较顺利。遗憾的是,虽然扶放结合的课堂效果很好,利于大部分学生掌握知识,但是如果对例2的教学大胆放手,让学生直接板演并讲述思路,然后教师从旁点

篇15: 《解比例》教学设计

教学目标

使学生进一步理解和掌握比例的基本性质,知道什么叫做解比例,掌握解比例的方法,并运用解比例的方法解决简单的问题。

教学重点:

进一步掌握和理解比例的基本性质。

教学难点:

掌握解比例的方法。

教学过程

一、复习准备

1、比例的意义是什么?比例的基本性质呢?

2、运用比例的意义和比例的基本性质,判断下面哪一组中的两个比可以组成比例。

3:4和1.5:2 1/4 :1/3和9:12 72:8和1.2:0.13 3:8和12:32

二、导入新课

今天我们要学习的知识——解比例

三、1、教学例2

这样知道比例中的'任意三项,求另外一个未知项叫做比例,同学们能运用原来学习的知识求出3:8=15:x中x的值吗?

学生讨论交流后,并让学生自己介绍这种解法的思路,请其他学生补充完。

2、教学例2

这道题和例2相比,有哪些地方不同?想一想,怎样解?学生讨论解答。“做一做”第2题中的比例。

四、巩固练习

学生独立完成练习十四第1题。

创意作业:

如果5a=3b,你能写出尽量多的比例式吗?并用含a的式子表示出b。大家来比赛谁找的多。

篇16:比例的应用教学设计

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生运用正、反比例的意义正确解答应用题。

3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。

教学重点:

让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

教学难点:

利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

教学准备:

课件

教学步骤:

(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)

一、铺垫孕伏,建立表象

1、判断下面每题中的两种量成什么比例关系?

○1速度一定,路程和时间

○2路程一定,速度和时间()

○3单价一定,总价和数量()

○4每小时耕地公顷数一定,耕地的总公顷数和时间

○5全校学生做操,每行站的人数和站的行数

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

指名学生口答,老师板书。

二、创设情境,探究新知

从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

1、教学例1

(1)出示例1(课件演示)让学生读题

一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

师:你用什么方法解答,给大家介绍一下如何?(自由回答)

(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

学生解答如下几种:

解法一:140÷2×5=70×5=350千米

解法二:140×(5÷2)=140×2.5=350千米

如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

C它们有什么关系?(行驶的路程和时间成正比例关系)

D题中“照这样的速度”就是说XX一定,那么XX和XX成X比例关系?因此XX和XX的X是相等的。

教师板书:速度一定,路程和时间成正比例。

师追问:两次行驶的路程和时间的什么相等(比值相等)

解法三:(用比例方法,怎样列式)

解:设甲乙两地间的总路长X千米

140:2=X:5

2X=140×5

X=350

答:甲乙两地之间公路长350千米。

小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

2、怎样检验这道题做得是否正确呢?

3、变式练习改编题

出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

4、教学例2(课件演示)

(1)出示例2,学生读题

例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

提问:

(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

学生利用以前的方法解答。

70×5÷4=350÷4=87.5(千米)

(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

这道题里的路程是一定的,XXX和XXX成X比例,所以两次行驶的XX和XX的XX是相等的。

指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

4X=70×5

X=70×5/4

X=87.5

答:每小时行驶87.5千米。

师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?

B)题中哪一种是固定不变的?从哪里看出来?

C)它们有什么关系?

D)这道题的XX一定,XX和XX成X比例关系,所以两次行驶的和是相等的。

(5)变式练习(改编题)

出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

解:设需要x小时到达

87.5x=70×5

x=4

答:需要4小时到达。

三、归纳总结,揭示意义

想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

四、巩固练习,考考自己(课件演示)

请你们按照刚才学习例题的方法去分析,只要列出式子就行。

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。

3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成?

(2)王师傅4小时生产了200个零件,照这样计算?

4、四选一,每题只能选一次

(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

a.150×30=1200x

b.30:150=1200:x

c.150x=30×1200

d.150:30=1200:x

(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

a.60×8=3x

b.60:8=3:x

c.60×8=(8-3)x

d.3:x=8:60

(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

a.5×40=480x

b.5:40=x:480

c.40x=5×480

d.40:5=x:480

(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

a.24×5=6x

b.24:5=6:x

c.(24+6)x=24×5

d.(24+6):x=24:5

(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

a.3×75%=2x

b.75%:3=2:x

c.75%x=2×3

d.3:75%=2:x

五、分层练习,深化新知

○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

12×30=(12+6)×X

○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

120×28=(120+20)×X

六、全课总结,温故知新

解比例应用题的一般步骤是什么?(学生自己用语言叙述)

一般方法和步骤:

1、判断题目中两种相关联的量是成正比例还是反比例;

2、设未知量为x,注意写明计量单位;

3、列出比例式,并解比例式;

4、检查后写出答案;

5、特别注意所得答案是否符合实际。

七、课后反馈,挑战难题

小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:

“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

小明需要你的帮助,你会怎样编题?

【比例的应用教学设计(通用10篇)】

篇17:比例的意义教学设计

教材分析

这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。

学情分析

1、本班现有学生92人,男生49人,女生43人。

2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。

3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

教学目标

1、知识与技能:理解比例的意义,认识比例各部分的名称。

2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的意义,判断两个比能否组成比例,会组比例。

3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

教学重点和难点

1、掌握比例的意义。

2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

3、能根据一个比例写几个不同的比例。

教学过程

教学环节 教师活动 预设学生行为 设计意图

一、复习

1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的比,这些比表示的意义是什么?

2、怎样求比值?求下面各比的比值,你发现了什么?

20∶252.7∶4.56∶10生回答。

学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。

揭示

课题这节课我们在比的知识基础上,进一步学习新知识。

揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。

探究

比例的意义

1、课件出示

例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。

列表如下:

竹竿长(m)23...... 影子长(m)69......

2、你能写出多少个有意义的比?并求出它们的比值。

3、观察这些比,把能用等号连接的比用等号连接起来。

4、教师板书

3∶2=9∶6

2∶6=3∶9

强调:这些都是比例。

引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。

5、2∶9和3∶6能组成比例吗?你是怎么知道的?

6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”

1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。

2、学生试写:

2:3=6:9

2:6=3:9

3、学生合作探究:什么是比例?

4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。

1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。

2、让学生分享在主动参与、探究中获取知识的愉悦心情。

3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。

认识比例的各个项

1、课件出示:在一个比例中两端的两项叫外项,中间的两项叫内项。

要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。

介绍分数形式的比例写法。

学生小组合作探究,找出3∶2=9∶6和2:6=3:9

的内项和外项。加深认识,学以致用。

篇18:比例的意义教学设计

教学内容:

九年义务教育六年制小学数学第十二册P64——65

教学目标:

1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:

认识反比例的意义

教学难点:

掌握成反比例量的变化规律及其特征

设计理念:

课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

教学步骤教师活动学生活动

一、复习铺垫

1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

2、判断下面两种量是否成正比例?为什么?

时间一定,行驶的路程和速度

除数一定,被除数和商

3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

4、导入新课:

如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、探究新知1、出示例3的表格(略)

学生填表

2、小组讨论:

(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的`?

(2)你能找出它们变化的规律吗?

(3)猜一猜,这两种量成什么关系?

3、全班交流

学生初步概括反比例的意义(根据学生回答,板书)

4、完成“试一试”

学生独立填表

思考题中所提出的问题

组织交流,再次感知成反比例的量

5、抽象表达反比例的意义

引导学生观察例3和“试一试”,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用怎样的式子来表示?

篇19:比例的意义教学设计

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:

认识正比例的意义

教学难点:

掌握成正比例量的变化规律及其特征

设计理念:

课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律

1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

解比例教学设计

六年级《解比例》教学设计

比例的意义教学设计一等奖

比例的应用优秀教学设计

人教版比例的性质教学设计

比例的基本性质教学设计

《比例的基本性质》教学设计

最新人教版解比例教学设计

比例教学反思

人教版比例的应用比例尺教学设计

《人教《正比例》的教学设计(推荐19篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档