下面是小编为大家整理的《圆柱的表面积》教学方案,本文共16篇,欢迎大家借鉴与参考,希望对大家有所帮助。

篇1:《圆柱的表面积》教学方案
《圆柱的表面积》教学方案
圆柱的表面积
教学内容:P13-14页例3-例4,完成“做一做”及练习二的部分习题。
教学目标:
在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教学过程:春季小学六年级数学下册第二单元《圆柱的表面积》教学设计PPT课件优质课教案板书
一、复习
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽.
二、新课
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的.问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3. 理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2. 练习七第6题。
板书:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:① 侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
表面积:1758.4+314=2072.4≈2080(平方厘米)
课件, 设计, 表面积, 教学, 数学
篇2:《圆柱表面积》教学反思
《新课标》指出:在课堂教学中,要面向全体学生,为每一个学生的发展创造条件,让优秀学生不断出现,并且加快发展。让后进生也能跟上,并且在原有的基础上有较大的提高,达到个人发展的较高水平。在这个学期,我也一直注重这方面的引导,所以在探索圆柱侧面积的计算公式时,有许多同学不知道该如何推导公式,针对这种情况,我尊重学生的差异,采取分层要求:
a、不知道怎么求圆柱侧面积的同学,马上开动脑筋想想:能否将这个曲面转化成我们以前学过的平面图形。如果行,怎么转化。
b、知道怎么求圆柱侧面积的同学呢?我又有另外的要求:你们看能不能再结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。
在这样分层要求的情况下,每个学生的研究目标都很明确。每个学生经过独立思考后,都有不同程度的发现,这样就促使小组交流活动有效进行。
篇3:《圆柱表面积》教学反思
“圆柱的表面积”历来是学生学习的难点。观察发现:
难点一:圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程。这是理解的难点;
难点二:在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;
难点三:计算难度大,无论是圆的周长和面积计算中都涉及圆周率;
难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。
如何有效组织教学,谈谈自己的粗浅的看法。
一 、抓住特征,建立表象。在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。
二 、突破难点,紧抓联系。探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,例2结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。
三、抓住本质,理清思路。圆柱的表面积包括一个侧面和两个底面。计算圆柱的侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。
本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力。
篇4:《圆柱表面积》教学反思
通过本节课的教学,使我深深地认识到同学们的学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。
在第一环节中,教师就创设了“饮料罐”情景,你想学什么?让学生自己提出问题,激发了学生创造的愿望。
第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。在课堂上多给学生发言展示的机会会极大地调动学生的潜在意识,使其情感上得到满足。
篇5:《圆柱表面积》教学反思
一、在复习引入环节,我首先通过复习圆的周长和面积的计算,为下面的计算圆柱的侧面积和表面积打下基础;复习圆柱的特征为后面侧面积和表面积的公式推导做好铺垫。
二、在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的`侧面积和两个底面面积的和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,在这一环节中,培养了学生的观察、分析能力,同时也培养了学生的合作意识。
三、在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
四、在教学方法上,充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式。
在这节课的教学中,还存在着一些不足:
1、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已;
2、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;
3、部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。
篇6:《圆柱表面积》教学反思
我今天执教的内容是《圆柱的表面积》,圆柱的表面积,重点在于进行推导圆柱的侧面积计算公式,圆柱的表面积计算公式。在本节课的教学中,我从始至终贯穿着生本理念,以教学内容问题化为抓手,体现在教学中以学生小组活动为主体,教师为主导,训练思维为主线这样的原则,让学生在交流中学,在玩中学中课后,听取了孙主任和王主任的评课,又联系课堂教学,我进行了深刻地反思。
一、小组合作学习的组织有序
这节课,我以“圆柱的侧面积计算公式”和“圆柱的表面积计算公式”为核心问题进行教学。整节课,组织学生围绕这两个核心问题进行交流、讨论,汇报和交流。但合作学习小组,每位同学都参与进行学习活动,特别是个别差生,在优秀同学的指导下倾听有进步。还有教师在小组合作学习当中,加入学习小组,指导和帮助学习小组进行学习。
二、学生操作的缺失
整节课的基础应该是建立在学生动手操作的基础之上,再进行观察发现讨论交流问题,但由于课前布置的小练习已经做过。缺失了在课堂上操作展示这一块,直接进行讨论,造成个别中等和偏下的学生,没有和实例结合,造成理解思维困难。另外,在教学例3时,可以做一个模型帮助学生进行理解。
三、教师指导还需到位
由于这节课,整合学校课题,教学内容问题化,我选择进行小组合作学习,但教师,如何组织学生进行学生,面对学生交流的答案的不确定性,如何引导组织学生进行解决,给我们提出了更高的要求,所以在课堂教学中,一些事先没有预计到的情况出现时,没有很好的去解决,造成了学生学习当中的疑惑。这也给教师提出了更高的要求。另外,在小组合作学习中,作为教师,又应该如何去指导学生展开学习,都是我们需要注意的地方。
篇7:圆柱表面积教学反思
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由 2 个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
( 1 )只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
( 2 )立足发展学生的能力,设计课堂教学的策略。
( 3 )树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
篇8:圆柱表面积教学反思
圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”,首先我给学生一张长方形美术纸,用这张纸做成一个圆柱体,让学生以小组为单位做出它的底面,看谁的最好,学生的思维很好,给出了多种想法,
方法一:用一张纸盖住圆柱,沿着边缘剪(不会很圆)
方法二:把圆柱立起来用笔描绘出来地面再剪(不好描,自然不会很圆)
方法三:用尺子量出直径,算出半径,用圆规画出圆再剪(有点接近了,但是直径不会很精确)
方法四:把圆柱压扁,量出直径,接着同上做法(误解,这里的直径其实是半个圆的周长)
方法五:量出美术纸的长,就是底面的周长,由此求出半径,再画圆贴上(很好,能理解侧面积求解的难点)通过这些活动后,再让学生自学表面积的公式,自然水到渠成了。课堂交给学生,会有你意想不到的事情。
篇9:圆柱表面积教学反思
本节课在教学上采用了引导、放手、引导的方法,通过教师的“ 导” ,鼓励学生积极、主动地探究新知。
首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的`表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,然后我又启发学生:圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。这时有的学生会说,沿高展开后还可能得到正方形或平行四边形,这是两种特殊现象。借此我又让学生自己进行操作、尝试,得出了与书上不一样的结果。这样做,不仅启发了他们的思维,又培养了他们的创新意识。
在练习表面积的实际应用时由易到难,层层提高,又很自然进行了“ 进一法” 的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
篇10:《圆柱表面积》教学反思
圆柱的表面积是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个化曲为直的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率;经验少,类似烟囱、通风管、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。
一、在操作中建立表现。
学生已经学习了长方体和正方体的表面积,对表面积的概念并不陌生。在教学圆柱的表面积时,我先让学生自己制作圆柱体、在动手做一做的过程中理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的,从而真正建立圆柱侧面的表象。
二、化曲为直沟通联系。
课前布置预习作业,找一贴有商标纸的圆柱实物,沿高剪开你有什么发现。课上学生交流,沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。我在圆柱的教具上包一张长方形纸,然后张开,在黑板上画上教具的直观图,长方形纸的图(1:1)。让学生观察后说出:长方形与圆柱底面的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长宽,所以圆柱的侧面积=底面周长高。通过展、围的几次操作,让学生切实建立这两者之间的联系。
三、抓住本质,理清思路。
本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在解决问题时,我要求学生写出每一步求的是什么,用了哪一个公式,帮助学生理清思路。遇到计算比较繁琐的提供计算结果,我觉得不必在计算上花费大量的时间。
当然,学生接触到一些实际问题的时候,由于生活经验和社会经验都比较浅薄,对一些物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法一定的不理解,需要通过反复练习才能达到一定的程度。另外我认为在教材的编排上也有一定的问题,五年级时学了圆的知识,过了差不多一年再来运用,根据学生遗忘曲线规律,大部分学生对圆的周长和面积公式比较生疏,虽然通过新授前的基础训练可以唤起学生的记忆,但毕竟要能熟练地用于侧面积和表面积的计算,无形中增加了学生解题的难度。原来教材的编排相对来说更有系统性,学习间隔的时间不长,可以在知识的运用过程中相互巩固内化。
篇11:《圆柱表面积》教学反思
圆柱的表面积由侧面积加上两个底面积组成,学生在做题过程中往往不能顺利地找出解决问题的关键,一道题,往往不会直接给出解决问题的所有必要条件,在给出一些条件的同时,往往隐藏了一些,老师在教学的过程中,就是要引导学去”刨“出隐藏着的一些信息,例如一个圆柱体知道底面周长和高,怎样求出表面积,要求表面积,关键是求出两个底面积,知道底面周长求底面积,两个量之间的类似点在于都要用到圆周率,知道底面周长,可求出直径或半径,学生的思维症结在于不会联系起来思考,为了突破这一难题,我作了多方面的努力,取得一些效果,但仍有一些人不明白,为此,我认为,应该把圆柱的各个部分再次拆开来,重点在干剖析圆的面积与周长之间的关 当我一个人的时候,手里拿着手机,浏览一些网页,看看电视上的新闻,打打篮球,看看自己喜欢的书籍… 当我一个人的时候,睡睡懒觉,洗洗衣服,洗洗澡,呆呆地看大山,看看天空… 当我一个人的时候,给远方的母亲打个电话,和朋友在电话上互相调侃,在网上看看朋友、同学的动态… 当我一个人的时候,我能够让自己的心灵插上翅膀,自由的飞翔,当我一个人的时候,我总能收获几许温馨与甜蜜,当我一个人的时候,也许,远方的你,也正在一个人享受着那难得的宁静与幸福。
面积与周长之间的相同点在于,都要用到圆周率和半径去计算,知道周长可求半径,知道半径可求面积,在这里,我对学生的引导不到位,这是我的不足之处。
篇12:圆柱表面积教学课件
[教学目标]
知识与技能:
1、理解圆柱表面积和侧面积含义。
2、掌握圆柱表面积和侧面积的计算方法。
3、会正确计算圆柱的表面积和侧面积。
过程与方法: 经历猜想、操作、验证、应用的学习过程,提高学生解决问题的能力。
情感、态度、价值观: 感受数学与生活的密切关系,增强学习数学的兴趣与数学应用的意识。
[教学重点] 理解求表面积、侧面积的计算方法,并能正确进行计算。
[教学难点] 能灵活运用表面积、侧面积的有关知识解决实际问题。
[教学手段]
1、教学方法:观察法、分析法、讨论法
2、学习方法:观察、实验、合作、交流
3、教学准备:多媒体课件
[媒体说明]
[教学时间] 40分钟
[教学过程]
一、复习旧知(口答):
1、(1)已知半径或直径,怎样求圆的周长和面积?
(2)长方形的面积 =
2、什么是表面积?怎样求长方体、正方体的表面积?
二、创设情境,激发兴趣。
1、教师出示一圆柱形茶叶筒:
要制作这样一个茶叶筒,至少需要多少材料?对于这个问题,你是怎样想的?
2、拿出自备的圆柱体,仔细观察,你有什么发现?(圆柱体是由两个平面和一个曲面围成的立体图形。)
3、你能否复制出一个同样大小的圆柱体?你打算怎么做?
三、合作探究,学习新知。
1、观察、猜测:
将圆柱的表面展开,会得到什么图形? (两个底面是一样大的圆形,侧面是一个长方形或平行四边形。)
2、动手操作:(分组讨论后再动手操作,并汇报交流)
1组:我们用铅笔在圆柱的侧面画出了一条高,然后把它放倒在纸上,以这条高为起点开始向前滚一圈,并在纸上做好结束的标记,这是圆柱的侧面,再把两个底印在纸上画出两个圆,合起来就能知道大概用多少纸了。
2组:我们有个大圆柱体,但没有那么大的纸能让它滚一圈,怎么办?
师:对于2组遇到的实际情况,谁有更好的办法来解决?
3组:我们发现可以用长方形纸卷成圆柱体,所以就想到把圆柱体的侧面沿一条线剪开,结果发现它正好是个长方形,再加上两个圆形的底面就可以了。
师:你们真聪明,能利用手中的工具把我们头疼的曲面变成了平面,那么你们仔细观察一下,这条线是什么?
生(齐声):是圆柱体的高。
部分学生认同3组同学的发现,纷纷效仿跟着操作。
老师将3组学生动手操作的结果贴在黑板上。
3、推导圆柱的侧面积计算公式。
师:这个展开的长方形与圆柱体的哪个面有关系?有什么关系?
生:长方形的面积等于圆柱体的侧面积。
师:长方形的长、宽与圆柱体的什么有关?
生:长方形的长是圆柱体的底面周长,长方形的宽是圆柱体的高。
(板书) 长方形面积=圆柱体侧面积。
长×宽=底面周长×高。
师:如果用S侧表示圆柱体的侧面积,用c表示底面周长, h表示高,那么 S侧=Ch 。
师:如果已知底面半径为r,圆柱体侧面积也可以写成什么? (S侧=2πr8226;h )
师:还有没有不同的想法?
4组:如果不沿高去剪,而是沿一条斜线来剪,结果就不是长方形,而是平行四边形。
5组:我们小组剪出的侧面是一个正方形,它的底面周长和高相等。
师:那你们能计算出这个侧面积吗?需要测量哪些数据?(高和直径或底面周长)
4、反馈练习。( 课件出示 )
求下面各圆柱的侧面积:
(1)c = 6.28 dm , h = 3 dm ; (2)r = 5cm , h = 5 cm ;
5、引导学生总结圆柱的表面积公式。
课件出示圆柱的表面展开图,学生根据提示填空。
因为圆柱的表面展开后可得到:两个底面是大小相等的( ),一个侧面是( )或( )形,所以圆柱的表面积就等于两个圆面积加上一个长方形的面积。即:
(板书结论) 圆柱表面积=底面积×2 + 侧面积
6、练兵场。( 课件出示 )
计算下面各圆柱的表面积:
(1)S侧= 25.12 cm , S底=12.56 cm ; (2)d = 6 dm ,h = 40cm .
(2)一个茶叶筒高2 dm,底面周长31.4 cm .做这样一个茶叶筒至少需要多少材料?
四、指导练习,及时反馈。
1、学生独立完成教材第六页练一练第一题的第一小题,集体订正。
2、教材第六页试一试:
重点交流“无盖水桶”的表面积,要计算的是哪几个面的面积。
3、教材第六页练一练第2题:
重点理解“压路机前轮转一周,压路的面积就是圆柱的侧面积”。
五、课堂小结,布置作业。
1、这节课你有什么收获?
2、课后计算自己做的圆柱体,看看每个圆柱各需要多大的材料。
[板书设计]
篇13:圆柱表面积教学课件
圆柱的侧面积 = 底面周长 × 高
S侧 = Ch 或 S侧 = 2πr8226;h
圆柱的表面积 = 底面积×2 + 侧面积
[课后评议]
本节课能充分发挥学生的主动性,通过动手操作、合作探究并总结出圆柱表面积的计算方法。一开始,通过观察圆柱形茶叶筒,学生了解了圆柱的.表面是由两个相同的底面和一个侧面构成的,而计算圆柱底面积就是计算圆面积。然后在学生初步理解圆柱表面积的含义后,重点安排学生进行圆柱侧面积计算方法的探索。学生通过剪、卷、滚等一系列动手操作活动探索出圆柱的侧面是一个长方形或平行四边形,从而推导出圆柱侧面积计算公式,也顺势得出圆柱表面积的计算方法。没有了生硬的填鸭式灌输教学,用的时间也稍微长了一些,但是学生在“作中思、思中学”,因而学得轻松、快乐,效果自然好很多。
[教后反思]
一、创造性地使用教材。
圆柱的表面积教材首先沿着一条高剪开罐头盒的商标纸,使学生初步感知圆柱的侧面展开图是一个长方形,再将这个长方形与圆柱侧面相比较,得到长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而推导出圆柱的侧面积的计算方法,接着教材安排例题,已知圆柱的底面直径与高,求圆柱的侧面积,再直接给出圆柱表面积的计算方法。教材把圆柱侧面展开定位在沿高剪开得到一个长方形,逼学生“上路”,这样不利于培养学生的探索精神。我改变了这种传统的教学方法,在初步认识圆柱后直接让学生“复制”圆柱体,大胆地放手让学生自己去探索,学生在自己动手操作过程中,尝试用剪、卷、滚的方法将圆柱的表面展开,得到两个圆形的底面和一个长方形的侧面,从而切实掌握圆柱的表面展开图及侧面积、表面积的计算方法,感受到学习数学的乐趣。
二、让出课堂空间,提供学生自主探究的机会。
伟大的教育学家霍姆林斯基说过:“在每个人的心灵深处都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者。在儿童的精神世界里,这种需要特别强烈。”新课程标准中也指出:“动手实践、自主探索、合作交流是学生学习数学的重要方式。”将课堂向学生开放,学生在制作圆柱过程中发现,圆太大或太小了都做不成圆柱,只有当圆的周长与侧面图形的底边长度相等时才能做成圆柱。平形四边形、长方形、正方形的面积就是圆柱的侧面积,长方形的长、正方形的边长和平行四边形的底就是圆柱的底面周长,长方形的宽、正方形的边长和平行四边形的高就是圆柱的高,归纳出圆柱侧面积的计算方法,以及圆柱表面积的计算方法。这些都不是教师“灌”给他们的,教师只是教学中的组织者、引导者与合作者,教师的任务是引导和帮助学生去发现、去探究。课堂应是学生的课堂,教师少讲、少说,把大量的时间和空间还给学生,为学生营造一个民主、平等、宽松、和谐的学习环境,让学生自主探究,真正成为了学习的主人。
篇14:圆柱的表面积
圆柱的表面积
教学目标
1、理解圆柱的侧面积和表面积的含义、
2、掌握圆柱侧面积和表面积的计算方法、
3、会正确计算圆柱的侧面积和表面积、
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算、
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题、
教学过程
一、复习准备
(一)口答下列各题(只列式不计算)、
1、圆的半径是5厘米,周长是多少?面积是多少?
2、圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征、
二、探究新知
(一)圆柱的侧面积、
1、学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系、
2、小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高、
(二)教学例1、
1、出示例1
例1、一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积、(得数保留两位小数)
2、学生独立解答
教师板书:3.14×0.5×1.8
=1.75×l.8
≈2.83(平方米)
答:它的侧面积约是2。83平方米、
3、反馈练习:一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积、
(三)圆柱的表面积、
1、教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积、
2、比较圆柱体的表面积和侧面积的区别、
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积、
(四)教学例2、
1、出示例2
例2、一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2、学生独立解答
侧面积:2×3。14×5×15=471(平方厘米)
底面积:3。14×25=78。5(平方厘米)
表面积:471+78。5×2=628(平方厘米)
答:它的表面积是628平方厘米、
3、反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积、
(五)教学例3、
1、出示例3
例3、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
2、教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米、实际上是求这个圆柱形水桶的表面积、题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积、
3、学生解答,教师板书、
水桶的侧面积:3。14×20×24=1507。2(平方厘米)
水桶的底面积:3。14×
=3。14×
=3。14×100
=314(平方厘米)
需要铁皮:1507。2+314=1821。2≈1900(平方厘米)
答:做这个水桶要用1900平方厘米、
4、教师说明:这里不能用“四舍五入”法取近似值、在实际中,使用的'材料都要比计算得到的结果多一些、因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1、这种取近似值的方法叫做进一法、
5、“四舍五入”法与“进一法”有什么不同、
(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去、
(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一、
三、课堂小结
这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题、圆柱的表面积在实际应用时要注意什么呢?
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握、如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积、另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用、
四、巩固练习
(一)求出下面各圆柱的侧面积、
1、底面周长是1。6米,高是0。7米
2、底面半径是3。2分米,高是5分米
(二)计算下面各圆柱的表面积、(单位:厘米)
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积、(有盖和无盖两种)
五、课后作业
(一)砌一个圆柱形的沼气池,底面直径是3米,深是2米、在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?
(二)一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?
六、板书设计
探究活动
面包的截面
活动目的
培养学生的观察能力和操作能力,发展学生的空间观念、
活动题目
有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?
活动过程
1、学生分组讨论、
2、利用橡皮泥捏一个圆柱体,进行实验,验证结论、
3、画出截面图,表示结论,发展空间观念、
参考答案
1、沿水平方向横切一刀,截面是圆形、(如图1)
2、沿垂直方向纵切一刀,截面是一个长方形、(如图2)
3、沿侧面斜切一刀,会形成大小不一的椭圆形、(如图3)
4、从顶面向侧面斜切一刀,会形成椭圆的一部分、(如图4)
5、从上底面斜切一刀到下底面,会形成椭圆的一部分、(如图5)
(图1) (图2) (图3) (图4) (图5)
篇15: 《圆柱的表面积》教学反思
一、合理灵活地组织和利用教材。
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
教学这节课,我改变了传统的先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3d=4c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7h=6h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
三、较好地培养学生的合作意识和实践能力。
1、培养了学生的合作意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。
2、培养了学生的实践能力。
新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。
四、较好地利用现代化的教学手段。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系。
篇16: 《圆柱的表面积》教学反思
《圆柱的表面积》是北师大版六年级下册第一单元的圆柱与圆锥之圆柱表面积第一课时,这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。在此前的学习中,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质及计算方法。通过剪一剪的活动来探索圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:斜剪!展开之后是什么图形?有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始拿出另一个准备好的圆柱,然后沿着斜线剪开,平行四边形展现在同学们面前。紧接着用长方形的面积推导侧面积公式,长方形的长是圆柱的底面周长 ,宽是圆柱的高。得出圆柱的侧面积等于底面周长乘高。通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。
实践也使我们体会到,创建生活课堂应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。学生在动手、动脑、动口的操作过程,实际上就是一种积极有效的意义建构过程。在这个不断的操作、观察、体验的过程中,学生都在思考,都在感悟。体验的越丰富,对概念的感悟也就越深刻。圆柱侧面计算方法和表面积计算方法都是学生在操作、体验中获得的。
文档为doc格式