下面是小编给大家带来的七年级数学下册《相交线与平行线》教学反思,本文共18篇,以供大家参考,我们一起来看看吧!

篇1:七年级数学下册《相交线与平行线》教学反思
七年级数学下册《相交线与平行线》教学反思
这一周的教学进度异常缓慢,我的教与学生的学都十分艰难,这一章是《相交线和平行线》,学生平生第一次遇到几何推理,而且要用数学符号语言表达出逻辑推理的过程,其难度是可以想象的,但是经过这一周的攻坚战,学生的.畏难情绪正在渐渐消失,他们从迷茫中慢慢理顺着思路,我看到课堂上一双双眼睛渐渐明亮起来,学生们从几何学习的“悟”中品味到了一点点数学的简洁美、逻辑推理成功的愉悦感;经历了从认识到害怕、到再认识、到小的成功的过程,学生对几何学习的积极性明显增强,作业质量日渐提高。这一良性变化证明了教学中几点收获:
1、适时多给学生唱赞歌,激励学生的求知欲;学生学得轻松一些。
2、在几何入门教学中,可递进式的逐步提高逻辑推理的严密性;为学生留下思维的缓冲地带,不可一步到位。
3、精心备好几何入门课的同时,并根据学生的学情及时调整优化;使之最贴近学生;练习题作业题的设计上要多下功夫,体现从单一到运用再到综合的循环上升。
4、多对学生的错题进行辨析,多对学情分析反馈;
5、强化困难学生个别辅导,让他们一题一得,落到实处;分层作业,共同提升;
篇2:七年级数学下册《相交线与平行线》教学反思
这一周的教学进度异常缓慢,我的教与学生的学都十分艰难,这一章是《相交线和平行线》,学生平生第一次遇到几何推理,而且要用数学符号语言表达出逻辑推理的过程,其难度是可以想象的,但是经过这一周的攻坚战,学生的畏难情绪正在渐渐消失,他们从迷茫中慢慢理顺着思路,我看到课堂上一双双眼睛渐渐明亮起来,学生们从几何学习的“悟”中品味到了一点点数学的简洁美、逻辑推理成功的愉悦感;经历了从认识到害怕、到再认识、到小的成功的过程,学生对几何学习的积极性明显增强,作业质量日渐提高。
这一良性变化证明了教学中几点收获:
1、适时多给学生唱赞歌,激励学生的求知欲;学生学得轻松一些。
2、在几何入门教学中,可递进式的逐步提高逻辑推理的严密性;为学生留下思维的`缓冲地带,不可一步到位。
3、精心备好几何入门课的同时,并根据学生的学情及时调整优化;使之最贴近学生;练习题作业题的设计上要多下功夫,体现从单一到运用再到综合的循环上升。
4、多对学生的错题进行辨析,多对学情分析反馈;
5、强化困难学生个别辅导,让他们一题一得,落到实处;分层作业,共同提升;
篇3:七年级下册数学相交线与平行线暑期练习题
七年级下册数学相交线与平行线暑期练习题
一.解答题(共17小题)
1.(春栖霞市期末)如图1,直线MN与直线AB、CD分别交于点E、F,1与2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,BEF与EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GHEG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使PHK=HPK,作PQ平分EPK,问HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
2.(2014春西城区期中)已知,BC∥OA,A=100,试回答下列问题:
(1)如图①,求证:OB∥AC.
(2)如图②,若点E、F在线段BC上,且满足FOC=AOC,并且OE平分BOF.则EOC的度数等于 ;(在横线上填上答案即可).
(3)在(2)的条件下,若平行移动AC,如图③,那么OCB:OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(3)的条件下,如果平行移动AC的过程中,若使OEB=OCA,此时OCA度数等于 .(在横线上填上答案即可).
3.(2014春渝北区校级期中)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且OAB=108,F在线段CB上,OB平分AOF,OE平分COF.
(1)请在图中找出与AOC相等的角,并说明理由;
(2)若平行移动AB,那么OBC与OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使OEC=2OBA?若存在,请求出OBA度数;若不存在,说明理由.
4.(2014春新洲区期中)已知E,F分别是AB、CD上的动点,P也为一动点.
(1)如图1,若AB∥CD,求证:BEP+
(2)如图2,若PFDBEP,求证:AB∥CD;
(3)如图3,AB∥CD,移动E,F使得EPF=90,作PEG=BEP,求 的值.
5.(2014春江阴市期中)(1)如图1,AC平分DAB,2,试说明AB与CD的位置关系,并予以证明;
(2)如图2,在(1)的结论下,AB的下方点P满足ABP=30,G是CD上任一点,PQ平分BPG,PQ∥GN,GM平分DGP,下列结论:①DGPMGN的值不变;②MGN的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.
6.(春甘井子区期末)已知:A=(90+x),B=(90x),CED=90,射线EF∥AC,2CD=m.
(1)判断AC与BD的位置关系,并说明理由.
(2)如图1,当m=30时,求C、D的度数.
(3)如图2,求C、D的度数(用含m的代数式表示).
7.(2013春金平区校级期末)(1)如图(1),EFGF,垂足为F,AEF=150,DGF=60. 试判断AB和CD的位置关系,并说明理由.
(2)如图(2),AB∥DE,ABC=70,CDE=147,C= .(直接给出答案)
(3)如图(3),CD∥BE,则31= .(直接给出答案)
(4)如图(4),AB∥CD,ABE=DCF,求证:BE∥CF.
8.(2013春江岸区校级期中)如图1,点E在直线BH、DC之间,点A为BH上一点,且AECE,DCEHAE=90.
(1)求证:BH∥CD.
(2)如图2:直线AF交DC于F,AM平分EAF,AN平分BAE.试探究MAN,AFG的数量关系.
9.(2013春江岸区期中)如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中ACB=90,且DAB=BAC,直线BD平分FBC交直线GH于D.
(1)若点C恰在EF上,如图1,则DBA= .
(2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由.
(3)若将题目条件ACB=90,改为:ACB=120,其它条件不变,那么DBA= .(直接写出结果,不必证明)
10.(2013春相城区期中)平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若AB∥CD,点P在AB、CD外部,求证:BPD=B
(2)将点P移到AB、CD内部,如图2,(1)中的结论是否成立?若成立,说明理由:若不成立,则BPD、B、D之间有何数量关系?不必说明理由;
(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则BPD、B、D、BQD之间有何数量关系?并证明你的结论;
(4)在图4中,若B+D+F+G=n90,则n= .
11.(2013春洪山区期中)在平面直角坐标系中,D(0,3),M(4,3),直角三角形ABC的边与x轴分别交于O、G两点,与直线DM分别交于E、F点.
(1)将直角三角形ABC如图1位置摆放,请写出CEF与AOG之间的等量关系: .
(2)将直角三角形ABC如图2位置摆放,N为AC上一点,NED+CEF=180,请写出NEF与AOG之间的等量关系,并说明理由.
12.(2013春新洲区月考)(1)如图1,AC平分DAB,2,试说明AB与CD的位置关系,并予以证明;
(2)如图2,在(1)的条件下,AB的下方两点E,F满足EBF=2ABF,CF平分DCE,若F的2倍与E的补角的和为190,求ABE的度数;
(3)如图3,在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分BPG,PQ∥GN,GM平分DGP,下列结论:①DGPMGN的值不变;②MGN的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.
13.(春盐城校级期末)平面镜反射光线的规律是:射到平面镜上的光线和被反射出的'光线与平面镜所夹的锐角相等,如图,一束光线m先射到平面镜a上,被平面镜a反射到平面镜b上,又被平面镜b反射出光线n.
(1)若m∥n,且1=50,则2= ,3=
(2)若m∥n,且1=40,则3=
(3)根据(1)、(2)猜想:当两平面镜a、b的夹角3是多少度时,总有m∥n?试证明你的猜想.
14.(2012春江夏区校级月考)如图1,CE平分ACD,AE平分BAC,EAC+ACE=90
(1)求证:AB∥CD;
(2)如图2,由三角形内角和可知E=90,移动直角顶点E,使MCE=ECD,当直角顶点E点移动时,问BAE与MCD否存在确定的数量关系?并证明;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)CPQ+CQP与BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)CPQ+CQP与BAC有何数量关系?猜想结论,不需说明理由.
15.(2012春江岸区校级月考)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有2,4,请判断光线a与光线b是否平行,并说明理由.
(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线a与水平线OC的夹角为42,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)
(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.BAF=110,DCF=60,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.
16.(春福州校级期中)将一副三角板的直角重合放置,如图1所示,
(1)图1中BEC的度数为
(2)三角板△AOB的位置保持不动,将三角板△COD绕其直角顶点O顺时针方向旋转:
①当旋转至图2所示位置时,恰好OD∥AB,求此时AOC的大小;
②若将三角板△COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的AOC的大小;如果不存在,请说明理由.
17.(春新洲区期末)科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.
(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且1=50,则2= ,3= ;
(2)在(1)中,若1=40,则3= ,若1=55,则3= ;
(3)由(1)(2)请你猜想:当3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的?请说明理由.
篇4:数学课《相交线与平行线》的教学反思
本期第一章就是几何知识《相交线与平行线》,这对学生来说,无疑是很大的挑战。虽然上期的最后一章是图形的初步认识,已经涉及到相关的知识,但在我看来,从以前的具体文字突然跨越至大量的符号、图形语言,以及逻辑推理能力的常态化使用。对学生而言还是显得一下适应不了,太难了。
从上学期开始,学校就配备了多媒体电子讲台。现代教育技术的应用,不仅仅是方便了教师,更重要的是可以轻松呈现数学中特别是几何中的抽象的内容,《同位角,内错角,同旁内角》这一内容以前上了多次,尽管有教师的当场作图,学生操作等程序,但因为缺失了多媒体,始终觉得效果不太好,学生理解得不深刻。如今,我就充分发挥多媒体的作用。通过图形中符号标记、线条的动态闪烁、整体图形翻转,移动和变化,再辅之以文字说明等等方式,并对基本图形进行简化,定型,随后再出示变式的,复杂的图形巩固训练。以往要么因为黑板面积小,容纳不下,要么因为亲自作图费时间,造成种种遗憾。
现在一切都不是问题,从作业看,效果是大不一样。因此,学生还有没有问题,还有哪些具体的想法和理解,一直未去关注。但一进入平行线的判定后,无论是从课堂还是作业都有种感觉,学生眼神里有着很多困惑,很多时候回答问题跟不上。于是昨晚自习对学生进行了口头调查。
发现困扰学生的两个问题:
其一就是不知道怎么看图,简单的还好,稍稍复杂的图就茫然不知所措。或许在老师眼里,在熟练者那里,这完全不成为问题,但对于初学者来说,偏偏就是问题,从数字过渡到图像,尽管直观,但必须在理解题意的基础进行识图,并能去除干扰条件和因素,确实不容易。
其二不知道怎么写推理的步骤。比如说哪些要写在“因为”后?哪些要写在“所以”后。针对这两个普遍问题,我先让掌握情况比较好的'学生谈谈自己的经验,然后自己逐一总结,归纳,甚至说了一些小窍门,比如说告诉学生,拿到图,先观察哪些是截线,哪些是被截的直线,然后让学生回忆“三种角”的外形特征,再去辨认;对于推理过程,指出哪些可以作为“因为”后写的,“所以”后的就是推出的结论。有些内容可以说直白点,具体点,哪怕是一些不成熟的小窍门,这对于初学者反而有帮助。当然学习几何,甚至整个学习,还是需要悟性。有悟性的,教师只需稍稍点拨,而悟性差点的,往往是启而不发。这里也就涉及到学生的资质等等因素。想起来难免有些悲观,但事实就是这样,我们不得不承认,这反而有利于我们保持清醒的头脑,不盲目乐观,不给自己太大的压力,同时也可以避免给学生太大的压力。
篇5:七年级数学下册《平行线的判定》教学反思
七年级数学下册《平行线的判定》教学反思
本节课我对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定进行了灵活的运用。注重学生自己分析,启发学生用不同方法解决问题,探索直线平行的条件。
反思这节课,我感觉讲解基本到位,练习难度适中,并基本达到练习的目的。在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课,教师作为学习的组织者,引导者,合作者,做好牵针引线的工作,除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;
3、在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的`变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
4、有意识地对学生渗透“转化”思想;引导学生将数学学习与生活实际联系起来。
当然,还存在很多不足,如:课堂气氛不理想,没有完全体现学生的主体地位;课堂升华不高;探究学习引导不够,导致占用时间过多,从而使后面的环节有些仓促。如果能处理好这几方面的问题,效果会更好。
篇6:七年级数学下册《平行线的性质》教学反思
七年级数学下册《平行线的性质》教学反思
反思本节课的教学有以下成功之处:
1、这节课是在学生已学习习近平行线判断方法的基础上进行的,所以我通过创设一个疑问:能不能通过两直线平行,来得到同位角相等呢,自然引入新课,激发学生的思考,进而引导学生进行平行线性质的探索。
2、整个课最突出的环节是平行线性质的得到过程,事先让学生准备好白纸、三角板,在上课时学生通过自主画图进行探索,得到猜想,再通过验证发现的。即在学生充分活动的基础上,由学生自己发现问题的结论,让学生感受成功的喜悦,增强学习的兴趣和学习的自信心。在探究“两直线平行,同位角相等”时,要求全体学生参与,体现了新课程理念下的交流与合作。
3、在教学中,设计了知识的.拓展环节,加深了学生对平行性质的理解。
4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。
这节课存在的问题:
1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。
2、由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程的书写格式还不够规范。
篇7:七年级数学下册《5.3平行线的性质》的教学反思
七年级数学下册《5.3平行线的性质》的教学反思
第五章平行线的性质内容,是在学生学习习近平行线的条件之后来进行学习的。因此,在引入环节,就充分考虑到学生已经具备的这一知识基础,从回忆平行线的判定入手,创设一个疑问来激发学生的思考,进而引导学生进行平行线性质的探索。
本节课最突出的是平行线性质的'得到过程,不是教师将学生听得到的,而是学生通过自主探索、实验、验证发现的,即在学生充分活动的基础上,由学生自己发现的,并用自己的语言来归纳的,这对学生增强学习的兴趣和学习的自信心都很有好处,而两次探索情景的引导又不尽相同,第一次探究“两直线平行,同位角相等”着重面向全体学生,让全体学生都能参与的到探究活动中来,因此先安排了一个“探究步骤的”探索,而第二次探究“两直线平行,内错角相等”“两直线平行,同旁内角互补”,则更是强调学生的自主学习,强调学生在学习过程的自主、自控学习过程。
知识的拓展部分又助于学生加深对平行线性质的理解,区分性质与判定方法的区别与联系,以及对三个性质之间内在的联系的理解,同时也是为平行线性质的运用大好基础。
篇8:数学七年级下册相交线平行线知识点
数学七年级下册相交线平行线知识点
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
用尺规作线段和角
1.关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。
2.关于尺规的功能
直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
初中数学学习方法分享
理解数学学习概念
很多初中生对于数学的学习有所误解,他们认为数学只需要会运算就可以了,对于一些概念什么的不需要特别记忆。但是这些都是错误的偏见,概念是学好初中数学的基石,这里的概念当然还包括定理和一些数学性质。
那么当初中生在背诵和理解概念的时候不单单是要记住,还要明白为什么。如果初中生仅仅注重概念从而忽略了对于概念本身的理解,这样是学不好数学的。对于初中数学的每一个定义我们都明白其实是怎么来的,又要会如何运用。
多做练习题
我们不得不承认,想要学好初中数学是离不开练习题的。很多同学不愿意做练习题,这样是没有办法学好数学的。因为虽然我们记住了定理和公式,但是最后的目的能够把它应用到数学题上面。为什么有的同学做了很多的练习题但是数学成绩依然上不去呢?
数学函数的概念知识点
1.常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量.
2.函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量.
(1)自变量取值范围的确定
①整式函数自变量的取值范围是全体实数.
②分式函数自变量的取值范围是使分母不为0的实数.
③二次根式函数自变量的取值范嗣是使被开方数是非负数的实数,若涉及实际问题的函数,除满足上述要求外还要使实际问题有意义.
篇9:《相交线与平行线》复习教学反思
这一段时间复习了《相交线与平行线》,发现学生存在以下问题:
1.对于“三线八角”中,有不少同学一直认为,只要是同位角和内错角,就应该相等,只要是同旁内角就是互补的,把前提条件两直线平行这个条件就给忘记了。这个知识点要再给学生讲清楚,不能让学生有误解的。
2.在平行线的性质和判定的应用中,学生不太明白是哪两条直线应该平行,或者说由哪两条直线应该得到哪些角平行,不少学生搞不太清楚。比如在平行四边形ABCD中,连接AC,不少学生搞不明白,假如是AB∥CD,应该得到∠DCA=∠CAB还是得到∠DAC=∠ACB,所以在学生练习时要结合图形,让学生明白在平行的三条线中,到底是哪两条直线被哪一条直线所截,应该得到哪些角相等,要让学生完全弄明白。
3.在平移中,学生对于画平移的图形掌握的不是太好,要么是画图时不体现画图痕迹,要么是不会画,完全凭自己的'感觉在画图,说明学生对于平移的规律和特征没有掌握,要以后练习中要加强这方面的训练。
4.对于有关平行的计算和证明,做的也不是太好,有的同学根本不会做,也有一部分学生会做,但是不会写解题过程,没有严格的逻辑推理。
综上所述,在以后的复习中要注意,加强基础知识点的掌握,对于一些概念和定理,要让学生准确无误的掌握,不能让学生因为基础知识掌握的不好,出现这样那样的问题。对学生的解题过程要加强训练和指导,让学生尽快的掌握几何的书写过种和推理过程。
篇10:七年级下册《相交线与平行线》教案优秀
1两条直线的位置关系(第1课时)
课时安排说明:
《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.
一、学生起点分析
学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析
针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。因此,本节课的目标是:
1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。
3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。
三、教学过程设计
本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节: 拓展延伸,综合应用;第五环节:学有所思,反馈巩固; 第六环节:布置作业,能力延伸。
第一环节 走进生活 引入课题
活动内容一:两条直线的位置关系
1.请同学们自学第一节,提前两天搜集有关“两条直线的位置关系”的图片,提炼出数学图形,进行归类,然后小组合作交流。
2.教师提前一天进行筛选,捕捉出有代表性的答案,课堂上由学生本人主讲,最后概括出有关结论。
巩固练习:
结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 .
2.定义分别为: 。
问题1:在2.1—1中,直线m和n 的关系是 ;a和b是 ;
a和n是 。
问题2:在2,1—2和2.1—3中你能提出哪些问题?
活动目的:独立思考、学会思考是创新的核心。数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学。充分利用现代化教学手段加强直观教学,引起学生学习的兴趣:通过师生互动,生生互动,增加学生之间的凝聚力,在相互探讨中激发学生学习积极性,提高学课堂效率。
活动注意事项:在实际教学中可让学生自由搜寻,课堂上让学生充分发表自己的见解,清晰的表达自己的想法。学生搜集的信息是丰富多彩的,教师应注意捕捉有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对图2.1—1中,如果有学生提出a和m有何位置关系,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。如果学生的作品中已经包含了“巩固练习”的内容,教师应恰当取舍。
第二环节 动手实践 探究新知
结合图形完成教科书的问题。
动手实践二
补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角
余角定义:
如果两个角的和是900,那么称这两个角互为余角(complementary angle)
活动目的:通过动手画图,可以加深学生对概念的理解,在相互交流中,初步形成评价与反思的意识,在相互补充、相互学习中,体验“互补互余”仅仅表明了两个角的度量关系,并没有限制角的位置关系;在合作共赢中,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。
活动注意事项:教师首先应关注全体学生是否积极思考?是否进行有效讨论?在巡视中,还应关注学生的画图是否合乎要求,要及时收集学生一些好的画法进行展示,关注学习上稍微落后的学生,提前给予点拨,在集体展示时给这部分同学展示的机会,可以极大的调动这部分同学的学习热情!
巩固反馈:
问题1:小组合作,每人编一道有关余角或者补角的题目,其余同学抢答,组长记录、整理各种题型,练习2分钟。教师巡视,给予评价,捕捉好资源。
问题2:教师将捕捉到的好资源用投影仪集体展示,全班抢答,及时给予评价。
问题3:下列说法中,正确的有 。(填序号)
① 已知∠A=40?,则∠A的余角=500②若∠1+∠2=90?,则∠1和∠2互为余角。
③若∠1+∠2+∠3=180?,则∠1、∠2和∠3互为补角。④若∠A=40?26′,则∠A的补角=139?34′⑤一个角的补角必为钝角。⑥一个锐角的补角比这个角的余角大900
活动目的:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。问题3是针对学生易错题而改编的一组判断题,这种形式能引导学生逐步加深对余角、补角的概念及其性质的理解和掌握。
活动注意事项:学生在编题的过程中,教师一定要仔细聆听每组的发言,对每组的表现予以点拨和激励,注意收集出色的资源及学生出错的信息,教师还应关注学生已经掌握了什么?具备了什么能力?还存在哪些不足? 展示时给予合理的评价和强调。
动手实践三
打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,ON与DC交于点O,∠DON=∠CON=900,∠1=∠2
2.1—7
小组合作交流,解决下列问题:在图2.1—8中
问题1:哪些角互为补角?哪些角互为余角?
问题2:∠3与∠4有什么关系?为什么?
问题3:∠AOC与∠BOD有什么关系?为什么?
你还能得到哪些结论?
活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。通过生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的数学活动,使学生在自主学习的过程中,掌握“同角或者等角的补角相等。”“同角或者等角的余角相等。”并能够用自己的语言说出简单推理。同时发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力。并在这个过程中,培养学生抽象几何图形进行建模的能力。本着面向全体的原则,从学生生活经验和熟悉的背景知识出发,通过创设情境串---问题串,极大的调动全体学生的参与意识,充分挖掘他们的潜能,给学生一个充分展示的舞台,以达到人人都能学好数学的目标!
活动注意事项: 学生应有足够的时间和空间经历观察、猜测、推理、验证等活动过程。本环节的三个问题是环环紧扣、层层递进提出来的,前一个问题为下一个问题作好铺垫。在学习的过程中,时刻不能忘记学生是主体,一切教学活动都应当从学生已有的认知角度出发,问题环节设计跨越性不能太强,让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,体验成功的喜悦;教师要充分发散学生的思维,鼓励学生各抒己见,敢于质疑;上课要渗透合情说理的方法,进一步培养学生的推理能力。
第三环节 学以致用,步步为营
问题1:①.因为∠1+∠2=90?,∠2+∠3=90?,所以∠1= ,理由是 .
② 因为∠1+∠2=180?,∠2+∠3=180?,所以∠1= ,理由是 .
问题2:
①用你手中的三角板,画一个直角三角形,如图2.1—9.则∠A是∠B的 。
变式训练:
② 在①的基础上,做∠CDA=900。如图2.1—10.
1. 则∠A的余角有哪几个?为什么?
2. 请找出互补的角,并说明理由。
3. 你还能提出哪些问题?试试看吧!
活动目的:通过一题多变,可以引导学生透过现象看本质、通过本质找规律、通过规律找方法。重视动手操作,是发展学生思维,培养学生数学能力最有效途径之一。通过亲自画图,可以直观的发现有关结论,它有利于让学生参与知识的形成过程,促进对抽象数学的理解,为问题的顺利解决而奠定基础。变式训练题的设置更能激发学生的兴趣,在超级变变变中体验数学的美,学会从不同的角度看待问题。
活动注意事项: 学生可能会认为概念和性质不难理解,但认识中却存在不清晰的地方。此处应给学生充分的讨论与思考的时间,可以分组讨论合作,也可以现场辩论,充分发挥学生的作用,让他们之间思维互相碰撞,在争论中发现问题要比盲目的接受知识更有意义,特别是学生之间通过合作学来的知识更能在脑海中留下深刻的印象。
第四环节 拓展延伸,综合应用
问题1:已知:直线AB与CD交于点O, ∠EOD=900,回答下列问题:
1. ∠AOE的余角是 ;补角是 。
2. ∠AOC的余角是 ;补角是 ;对顶角是 。
问题2:点O在直线AB上,∠DOC和∠BOE都等于900.
请找出图中互余的角、互补的角、相等的角,并说明理由。先独立探究,再小组交流。
活动目的:通过问题串的巧妙设置,不仅高效率的复习了本节的知识点,而且让学生在开放的环境中畅所欲言,收获了一份自信!问题串的设置提高了学生的探索意识和创新意识的形成,激发了学生的学习兴趣和探究欲。
活动的注意事项:鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,对出现的错误,一定进行积极的辨析,让学生学会解决的方法。
第五环节 学有所思 反馈巩固
归纳总结:
1. 你学到了哪些知识点?
2. 你学到了哪些方法?
3. 你还有哪些困惑?
活动目的:本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力。锻炼学生组织语言及表达能力,经历与同伴分享成果的快乐过程。
活动注意事项:教师一定让学生畅谈自己的切身感受,对于知识点的整合,更要有所思考,达到对所学知识巩固的目的。鼓励其他学生进行补充纠正,教师也应进行适时的点拨和强调。
巩固反馈
1. 如图2.1-13,直线AB与CD交于点O,∠BOC=900,EF经过点O.
(1)指出图中所有的对顶角;
(2)图中那些角与∠AOE互余?互补?
(3)若∠BOF=34°,试求出∠AOF,∠BOE,∠DOE的度数.
2.如图2.1—14,点O在直线AB上,OC平分∠BOD,OE平分∠AOD,请找出∠COD的余角和补角,并说明理由。
3.学以致用: 如图2.1—15:小颖想测量一堵拐角高墙在底面上所成的角∠AOB度数,人不能进入围墙内,你能帮小颖想出简单的测量方法吗?请简述你的方法。
活动目的:巩固本节课的知识点,检验学生的掌握程度。
活动注意事项:要及时反馈,关注学生易错点,及时进行强调巩固。
第六环节 布置作业 能力延伸
基础题:1.书P42页习题2.1 第 1,2,3,4,5题
提高题:2.下图由两块相同的直角三角板拼成,其中∠FDE=∠AOB=900,点O在FD上,DE在直线AB上, 请找出相等的角、互余的角、互补的角。
活动目的:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了一道探究性的题目,实现了同一图形经过不同变化可以产生不同问题,与课堂的问题相呼应;作业分层,可以让不同程度的学生都能有不同的收获。
活动注意事项:首先应激励学生独立完成作业,其次注意提高效率,最后应鼓励学生进行反思。
四、教学设计反思:
1. 开放课堂 激发潜能
数学来源于生活,反之又服务于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,体会本节课的重要性和在生活中的广泛应用;通过课堂开放,可以让学生在直观有趣的问题情境中学到有价值的数学;学生搜集的信息是丰富多彩的,有利于教师给学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发了学生的潜能,使学生成为课堂的主人,提高了学生分析问题解决问题的能力!
2.动手操作 探究新知
“几何直觉是增进数学理解力的很有效的途径,而且它可以使人增加勇气,提高修养。”通过动手画图,可以加深学生对知识的理解,这也是促使学生认真审题的重要方法。学生的画法千变万化,他们在相互交流中,很容易发现自己的问题,起到相互补充,相互学习的效果,可以轻而易举地掌握新知识。
3.巧设问题串 打造高效课堂
我在教材提供的教学素材的基础上,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境。变式训练、一题多解的设置,题目由易到难,由简到繁,争取能让每一位学生都能领略到成功的喜悦!使学生思维分层递进,揭示概念的实质,不断完善新的知识结构,同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力;鼓励学生从多角度思考问题,充分激发学生的创新能力,使学生的思维多向开花,极大的调动学生学习数学的热情!
4.注意事项。
课堂上让学生充分发表自己的见解。学生搜集的信息是丰富多彩的,学生的思维也是百花齐放,教师应注意捕捉有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应注重学生几何语言的培养,对课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。
篇11:七年级下册《相交线与平行线》教案优秀
课时安排说明:
《两条直线的位置关系》共分两课时,我们在第一课时已经学习了在同一平面内两条直线的位置关系、对顶角、余角、补角的定义及其性质;今天我们将要学习第二课时,主要内容是掌握垂直的定义及其表示方法,会借助有关工具画垂线,掌握垂线的有关性质并会简单应用。
一、学生起点分析
学生的知识技能基础:学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识;上一节课又进一步学习了两直线的位置关系、两角互补、互余等概念,这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在上一节课,通过引导学生走进生活,从身边熟悉的情境出发,使学生经历了从现实生活中抽象出数学模型的过程;让学生通过直观和大量的操作活动,引导学生积极动手、动口、动脑来进行归纳整理;鉴于学生已有充分的知识储备,本课时将继续延续还课堂于学生,在开放的前提下,让学生经历动手画图(或者操作)、合作交流的过程,给学生一个充分发表见解的舞台,激发学生的创新精神,提高学生的自信力,打造高效课堂!
二、教学任务分析
根据七年学生好奇的心理,首先应引导学生走进现实世界,用一双慧眼去发现有关垂直的情境,借助视觉思维的直观性,复习旧知识,提炼新知识,让学生在主动“探索发现”的过程中增进对数学知识的理解,激发他们的创造力,在无形中培养学生的推理能力!根据学生已经具备的知识储备和能力,特制定目标如下:
1.知识与技能:
(1)会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线。
(2)通过折纸、动手操作等活动探究归纳垂直的有关性质,会进行简单的应用。
(3)初步尝试进行简单的推理。
2. 过程与方法:经历从生活中提炼、动手操作、观察交流、猜想验证、简单说理等活动,进一步发展学生的空间观念、推理能力和有条理表达的能力。善于举一反三,学会运用类比、数形结合等思想方法解决新知识。
3.情感与态度:激发学生学习数学的兴趣,体会“数学来源于生活反之又服务于生活”的道理,在解决实际问题的过程中了解数学的价值,通过“简单说理”体会数学的抽象性、严谨性。
三、教学过程设计
本课时我遵循“开放”的原则,在把握教材编写意图的基础上,进行了再创造。通过重组教材,恰当地创设情境,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节:综合应用,开阔视野;第五环节:学有所思,反馈巩固; 第六环节:布置作业,能力延伸。
第一环节 走进生活 引入课题
1.请每位同学提前搜集有关“两条直线的位置关系”的图片,提炼出数学图形,重点关注有关“垂直”的内容,然后小组内交流资料,进行合理分类、整理。
2.
复习两条直线的位置关系
教师提前进行筛选,捕捉出有代表性的题目,课堂上由学生本人主讲,最后概括出有关结论。
3.巩固练习:教师展示下列图片,学生快速回答:
问题:1.观察图形,你能找出其中相交的直线吗?他们有什么特殊的位置关系?
2.你还能提出哪些问题?.
归纳总结
两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直(perpendicular),其中的一条直线叫做另一条直线的垂线。它们的交点叫做垂足。通常用“⊥”表示两直线垂直。
活动目的:数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,既复习了上一节课的知识点——两条直线的位置关系,又体会到生活中大量存在特殊的相交线——垂直,在比较中发现发现新知,加深了学生对垂直和平行的感性认识,感受垂直 “无处不在”;使学生充分体验到现实世界的美来源于数学的美,在美的享受中进入新知识的殿堂。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中抽象出有价值的数学模型,然后利用现代化教学手段加强直观教学,在展示学生作品中进行师生互动、生生互动,激发学生的学习热情,调动学生的参与意识。
活动注意事项:教师应放手让学生参与,启发引导学生进入角色,组织好学生之间的合作交流。首先要给予学生足够的时间搜寻信息,提炼信息;其次在课堂上应充分展示学生的杰作,在活动中提高学生与他人合作交流的能力,让学生充分发表他们的见解,及时作出恰当的评价,激励学生以满腔热情投入到学习中;最后教师应提炼学生中出现的错误,在辨析中让学生“明辨是非”。如怎样判断两条线段的位置关系?在第三个图中,如果有学生提出a和c有何位置关系,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。如果学生的作品中已经“生成”了“问题一”的内容,教师应因势利导,适时调整预案。
第二环节 动手实践,探究新知
动手画一画1:
工具1:你能借助三角尺或者量角器,在一张白纸上画出两条互相垂直的直线吗?
工具2:如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?
说出你的画法和理由.
工具3:你能用折纸的方法折出互相垂直的直线吗,试试看吧!请说明理由。
活动目的: “条条大路通罗马”,相同的问题可以借助不同的工具不同的方法来解决,让学生的思维得到充分发散,引导学生透过现象看本质。通过画、折等活动,进一步丰富对两条直线互相垂直的认识,掌握有关的符号表示。课改理念之一就是改变学生被动的学习方式,让学生积极主动的投身于“做数学”中。本环节的设置,将问题更加形象生动的呈现在学生面前,让学生在经历思考、实践、猜想,动手验证等过程,不仅加深对“垂直”的理解,而且感受到“做数学“的乐趣,从而享受到成功的喜悦,形成探索新知的内驱力!而学生在相互交流探讨中,可以相互点拨,顺其自然的掌握新知识。对于第2问的最后一种画法,必要时给出示范,并利用量角器等工具进行验证,为今后探索图形的性质积累活动经验。
活动注意事项:要给学生充裕的时间操作、思考。教师应关注学生的画图是否合乎要求,还要及时收集学生一些好的画法进行展示。教师应关注个体差异,关注学习上稍微落后的学生,帮助他们分析产生困难或错误的原因,提前给予点拨,在集体展示时给这部分同学展示的机会,可以极大的调动这部分同学的学习热情,提高自信力!教师还应注意收集错误信息,进行辨析,将易错点消灭在萌芽中!
归纳结论:
1.点A和直线m的位置关系有两种:点A可能在直线m上,也可能在直线m外。
2.平面内,过一点有且只有一条直线与已知直线垂直。
活动目的:这是本节课的难点,首先通过让学生画“点和直线的位置关系”,让学生在直观中抽象出“点在直线上和点在直线外”这一数学模型,这是分散难点的有效途径,让学生在看似“盲目”的探究中发现问题的本质,增加继续探究的勇气!问题的设置由易到难,由直观画图到理性思考的过程。学生的学习兴趣在问题串的激发下,逐步高涨。开放的环境让学生拥有了自由发挥的空间。
活动注意事项:教师应关注学生在画图过程中的不良习惯并及时纠正;参与到学生中进行讨论,及时捕捉好的资源,充分利用多媒体进行展示,注重调动学生的积极性!
活动目的:通过动手画图,可以加深学生对知识的理解,能更好的关注知识的形成过程,这也是促使学生认真审题的重要策略。比较线段的大小,是学生能轻松解决的问题,他们在动手操作中,很容易得出结论,轻而易举地掌握这一重要性质。
活动注意事项:教师应关注学生的画图是否合乎要求,关注学生是否掌握了“比较线段大小”的方法,让学生充分体会“新知识都是由旧知识解决的”这一重要方法,在小组交流期间,教师还应重点帮扶在理解上有困难的学生,让每位学生都学到有价值的数学。
第三环节 学以致用,步步为营
请动手画一画四
如图:一辆汽车在直线形的公路上由A向B行驶,M、N分别是位于公路AB两侧的两所学校。
问题1:汽车行驶时,会对公路两旁的学校造成一定的噪音影响。当汽车行驶到何处时,分别对两个学校影响最大?在图中标出来。
问题2:当汽车由A向B行驶时,在哪一段上对两个学校影响越来越大?越来越小?
问题3:在哪一段对M学校影响逐渐减小而对N学校影响逐渐增大?( 用文字表达)
活动目的:通过一题多问,可以引导学生透过现象看本质、通过本质找规律、通过规律找方法。本环节的设置能够很好地锻炼学生的观察、分析、归纳的能力,使数学学习充满了趣味性和挑战性。本题的设置可以较大限度的调动学生的参与热情,学生通过动手画图,就可以将一个较难的题目分解于无形,从而轻而易举的突破难点;本题的设置,为学生掌握解决难题的方法指明了方向。
活动注意事项:教师不仅要引导学生养成画图的好习惯,而且要培养学生善于从复杂的题目中分离出简单的小题目,从而各个击破,化难为易!本题渗透了从特殊到一般,又从一般到特殊的思想方法,只要掌握“点到直线的距离”,多角度地观察图形,再综合运用所学的知识进行分析,就能从千变万化中找到问题的切入点。
第四环节 综合应用,开阔视野
问题1:体育课上老师是怎样测量跳远成绩的?能说说说其中的道理吗?与同伴交流.
问题2:如图2.1-5已知∠ACB=90°,即直线AC BC;若BC=4cm,AC=3cm,AB=5cm,那么点B到直线AC的距离等于 ,点A到直线BC的距离等于 ,A、B两点间的距离等于 。
你能求出点C到AB的距离吗?你是怎样做的?小组合作交流.
问题3:如图2.1—6,点C在直线 AB上,过点C 引两条射线CE、CD,且∠ACE=32°,∠DCB=58°,则CE、CD有何位置关系关系?为什么?
活动目的:问题一取材于学生最熟悉的情境,既可以激发学生学习数学的热情,同时又鼓励学生用数学知识来分析解决实际问题,满足他们的好奇心,问题1的设置不仅仅巩固了垂直的定义及其性质,而且让学生进一步领会了数学的建模思想!通过设置问题2和问题3,使学生思维分层递进,突出了本节课的重点,通过变式练习,步步递进,不断完善了新的知识结构,同时让学生体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力。问题串的提出,可以满足不同层次学生学习的需要,提出的问题能激发学生认知上的冲突,从而促使他们去探索,去对自身的认知结构进行调整和变革。
活动注意事项:教师要充分发散学生的思维,鼓励学生各抒己见,敢于质疑;要渗透合情说理的方法,进一步培养学生的推理能力。
第五环节 学有所思 反馈巩固
活动目的:该环节是为了提高学生归纳问题的能力,鼓励学生积极表达自己的观点,体现了学生是学习的主人,教师只是一个组织者和引导者。本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结构化、网络化,引导学生时刻注意新旧知识之间的联系。
活动注意事项:教师一定让学生畅谈自己的切身感受,仔细聆听学生对本节知识的达成度,注意鼓励学生说出自己的困惑,以便进行适时的点拨和强调。
巩固反馈
1.如图2.1—7中,∠BAC=90°,AD⊥BC于点D,则下面结论中正确的有( )个。
①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;
③线段AD是点A到BC的垂线段;④线段BD是点B到AD的垂线段。
A、1个;B、2个;C、3个;D、4个。
2. 如图2.1—8中, 点O在直线AB上,OE⊥AB于点O,OC⊥OD,若∠DOE=320,请你求出∠EOC、∠BOD的度数,并说明理由。
3. 如图2.1—9中,点O在直线AB上,OC平分∠BOD,OE平分∠AOD,则OE和OC有何位置关系?请简述你的理由。
活动目的:本环节是为了检验学生对本节课的掌握程度。在测试题的选择上,体现了分层次的原则。题目由易到难,由简到繁,争取能让每一位学生都能领略到成功的喜悦!
活动注意事项:应当堂反馈,针对学生出现的问题及时纠正!
第六环节 布置作业 能力延伸
基础题:1.书P45页习题2.2 第 1,2,3题
提高题:2.请学有余力的同学采取合理的方式,搜集整理与本节课有关的“好题”,被选中的同学下节课为全班展示。
活动目的:作业的布置不仅体现了分层次的原则。而且将课内的学习延伸到了课外,给了学生更广阔的提升空间,激励学生为了获得“展示”而积极的投入到学习中,从而使每个学生都能学到了有价值的数学!
活动注意事项:教师一定要将所有学生搜集的题目批阅一遍,给予这部分同学很高的评价,采取“赏识教育”激励更多的学生走向讲台,展示自我;将“好题”除了部分展示外,多余的“好题目”还可以采取“布置作业”的形式供全体同学共享!
四 教学设计反思
首先我通过让学生搜集资料、动手实践等活动,让全体学生通过自主参与知识的过程,主动掌握探求新知的方法,培养了一种积极向上的探究精神,引导学生真正把知识变为自己的学问,以便随时驾驭流动的世界.
根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的动手实践、独立探究、合作交流的学习方法,引导学生挖掘生活中的实际素材,能够列举一些具有合理性、科学性、创造性的实例,并辅以语言及书面的表达,使学生经历知识的生成过程,既加深了对所学知识的理解,也培养了他们的创新精神;注重了学生的情感、态度和价值观的培养。
独立思考、学会思考是创新的核心;概括归纳得到猜想和规律,并加以验证,是创新的重要方法。本节课采用教师引导,学生自主探索和小组合作相结合的教学方式。利用多媒体和实物演示等教学设备辅助教学,充分调动学生的积极性,创设和谐、轻松的学习氛围。课程的设置注重以问题串的方式及变式练习,以激发学生探究、解决实际问题的兴趣,并在学生的探索、分析、交流、归纳、类比中突破难点,突出重点!整节课的设置渗透了数学的建模思想。学生是课堂的主人,教师是学生学习的组织者、促进者、合作者。本节课是一个不断提出问题、解决问题的思维过程,是为学生的自主探索与合作交流提供机会,搭建平台的过程。在教学过程中,教师扮演了引导、点评的角色,数学舞台上的“主演”是全体学生!本节课,所有的学生都得到了参与讨论和发表见解的机会,所有的结论和发现都是学生全员参与,热烈讨论,相互启发,思考探索获得的,充分尊重了学生的主体地位!充分利用了问题的情境,增加了教学过程的趣味性和实践性,激发了学生浓厚的学习兴趣,使学生产生了强烈的求知欲望,体验到了成功的喜悦!
篇12:七年级下册《相交线与平行线》教案优秀
教学目标
1、理解相交线、邻补角、对顶角的概念;
2、理解对顶角相等的性质.
3、通过对顶角性质的推理过程,提高推理和逻辑思维能力;
4、通过变式图形的识图训练,提高识图能力。
重点:邻补角、对顶角的概念,对顶角性质与应用。
难点:理解对顶角相等的性质。
一、情景诱导
教师在轻松欢快的音乐中演示第五章章首图片为主体的多媒体课件。
学生欣赏图片(多媒体投影汕头大桥的图片、围棋的棋盘),阅读其中的文字。
师生共同总结:同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案;围棋的纵线相互平行,横线相互平行,纵线和横线相交。这些都给我们以相交线、平行线的形象。在我们生活的中,蕴涵着大量的相交线和平行线。那么两条直线相交形成哪些角?这些角又有什么特征?本节我们一起来学习相交线所成的角及
它们的关系。
教师板书:5.1.1相交线
教师出示一块纸片和一把剪刀,表演剪刀剪纸过程,提出问题:剪纸时,用力握紧把手, 把手
引发了什么变化?进而使剪刀刃也发生了什么变化?
二、探究指导
探究提纲(请同学们利用8分钟时间自学课本第2页至第3页练习以前的部分,并完成探究提纲)
1、请你画直线AB、CD相交于点O,并说出图中4个角两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
2、你用量角器分别量一量各个角的度数,发现“相邻”关系的两角_____,“对顶”关系的两角_______。请同桌比赛说说邻补角和对顶角的定义,并快速写下来。
3、对顶角有何性质?并用一句话叙述。
4、对顶角性质证明:(学生独立写出已知,求证并证明)
已知:
求证:
三、展示归纳
1、找有问题的学生逐题汇报。老师板书。
2、发动学生评价,完善。
3、教师画龙点睛地强调。
四、变式练习
(一、二、三题口答,四题先让学生做,教师巡回指导,然后让有一定问题的学生汇报展示,发动其他学生评价完善,教师情调关键地方,总结思想方法)
篇13:七年级数学《511相交线》的个人教学反思
七年级数学《511相交线》的个人教学反思
本节课是在七年级上册学习过线、角的有关知识的基础上,进一步研究两直线位置关系的第一课时。对顶角是几何求解、证明中的一个基本图形,其中对顶角相等也是证明中常用的结论,以此实现角之间的相互转化。内容相对简单,但又非常重要。
从剪刀引入相交线,从相交线引导学生发现对顶角并探究其关系。但是,在从相交线引出对顶角概念时,学生所描述的位置关系不能切合老师的预设(或课本的定义),而老师又不想一开始就被动,所以都表现得很“主动”,导致这个环节有点别捏。
在辨别给出图形是否为对顶角的一组题目中,果然如课前所料,学生的几何语言运用不够熟练、严谨,我耐心地纠正,原因是几何开始一定要让学生重视几何语言的表述,养成好习惯。在这个题目中我始终让学生对照定义辨别,加强认识。在第二个问题中,对于如何有条理地不重不漏地找对应角这个问题涉及分类策略问题,为防止跑题,所以简单提及,并未在课堂上解决。
探究对顶角相等这个性质是本课的重难点,所以我的设计是先画图量角,让学生有个感性认识,同时让学生认识到度量是有误差的,所以叫学生记下角的读数,提出可不可以根据一个角的'度数,计算出其对顶角的度数这样一个问题。其实这个问题设计是承上启下的,因为证明比较困难,所以通过具体的度数计算以作铺垫。结果证明这个设计是利于学生的思考的,因为在证明时我听到他们说出“和刚才计算一样”的话。
篇14:七年级数学《平行线的判定》教学反思
1、对于平行线的判定(2)的引入,在上课时平行线判定(1)的基础上,导入得当,衔接自然,达到预期设想目标。
2、把本课时一分为二,重点在于对例2的讲解上,添加辅助线的导入也十分顺畅,学生掌握较好。
3、对于少部分同学同位角、内错角是哪两条直线被哪一条直线所截构成的还不是很清楚,要引起足够的重视。
篇15:七年级数学平行线相交线知识点
七年级数学平行线相交线知识点
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系
4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质
对顶角的性质:对顶角相等。
17.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
初中数学直线的性质
(1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
学好初中数学的必备技能
数学运算
初中生学习数学要培养自己的运算能力,因为这是学习初中数学的基础,而且初中是培养数学运算能力的最佳时期。比如有理数运算、因式分解等等。初中数学一定要打好基础,这样会影响将来的数学学习。
数学的思维
想要学好初中数学,一定要培养数学的思维能力。对于一道练习题,不仅仅是只有一个解题方法。它有对立性在解决问题的时候,一定要相互转换和补充。平时多做练习题可以提高学生的思维能和数学能力。
篇16: 《相交线与平行线》教后反思
《相交线与平行线》教后反思
这一段时间复习了《相交线与平行线》,发现学生存在以下问题:
1.对于“三线八角”中,有不少同学一直认为,只要是同位角和内错角,就应该相等,只要是同旁内角就是互补的,把前提条件两直线平行这个条件就给忘记了。这个知识点要再给学生讲清楚,不能让学生有误解的。
2.在平行线的性质和判定的应用中,学生不太明白是哪两条直线应该平行,或者说由哪两条直线应该得到哪些角平行,不少学生搞不太清楚。比如在平行四边形ABCD中,连接AC,不少学生搞不明白,假如是AB∥CD,应该得到∠DCA=∠CAB还是得到∠DAC=∠ACB,所以在学生练习时要结合图形,让学生明白在平行的三条线中,到底是哪两条直线被哪一条直线所截,应该得到哪些角相等,要让学生完全弄明白,教学反思《相交线与平行线》复习教学反思》。
3.在平移中,学生对于画平移的图形掌握的不是太好,要么是画图时不体现画图痕迹,要么是不会画,完全凭自己的感觉在画图,说明学生对于平移的规律和特征没有掌握,要以后练习中要加强这方面的训练。
4.对于有关平行的计算和证明,做的也不是太好,有的同学根本不会做,也有一部分学生会做,但是不会写解题过程,没有严格的逻辑推理。
综上所述,在以后的复习中要注意,加强基础知识点的`掌握,对于一些概念和定理,要让学生准确无误的掌握,不能让学生因为基础知识掌握的不好,出现这样那样的问题。对学生的解题过程要加强训练和指导,让学生尽快的掌握几何的书写过种和推理过程。
篇17:数学第五章相交线与平行线试题
数学第五章相交线与平行线试题
一、填空题
1.如图,直线AB、CD相交于点O,若∠1=28°,则∠2=_______.
2.已知直线,,,则度.
3.如图,已知AB∥CD,EF分别交AB、CD于点E、F,∠1=60°,则∠2=______度.
4.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P=_____.
5.设、b、c为平面上三条不同直线,
(1)若,则a与c的位置关系是_________;
(2)若,则a与c的位置关系是_________;
(3)若,,则a与c的位置关系是________.
6.如图,填空:
⑴∵(已知)
∴_____________( )
⑵∵(已知)
∴_____________( )
⑶∵(已知)
∴______________( )
二、解答题
7.如图,与是邻补角,OD、OE分别是与的平分线,试判断OD与OE的位置关系,并说明理由.
8.如图,已知直线AB与CD交于点O,OE⊥AB,垂足为O,若∠DOE=3∠COE,求∠BOC的度数.
9.如图,直线,求证:.
10.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE
过点C作CF∥AB,
则____
又∵AB∥DE,AB∥CF,
∴____________()
∴∠E=∠____( )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
11.如第10题图,当∠B、∠E、∠BCE有什么关系时,有AB∥DE.
12如图,AB∥DE,那么∠B、∠BCD、∠D有什么关系?
13、如图9,直线a∥b,∠1=28°,∠2=50°,则∠3=____。∠3+∠4+∠5=___。
14、若两条平行线被第三条直线所截得的八个角中,有一个角的度数已知,则( )
A 只能求出其余3个角的度数 B 只能求出其余5个角的度数
C 只能求出其余6个角的度数 D 只能求出其余7个角的度数
15、如图,已知AB∥CD,EG平分∠FEB,若∠EFG=40°,则∠EGF=( )
A 60° B 70° C 80° D 90°
16、设A、B、C是直线a上的三点,P为直线a外一点,若PA=2,PB=3,PC=5,则点P到直线a的`距离( )
A 等于2 B 小于2 C 不小于2 D 不大于2。
17、两条直线被第三条直线所截,则( )
A同位角的邻补角相等 B内错角的对顶角相等
C同位角一定不相等 D两对同旁内角的和一定等于一个周角
18、如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有( )
A 1个 B 2个 C 3个 D 4个(提示:三角形内角和为180°)
19、如图,已知∠AGD=∠ACB,∠1=∠2。求证:CD∥EF。(填空并在后面的括号中填理由)
证明:∵∠AGD=∠ACB ( )
∴DG∥____ ()
∴∠3=____ ()
∵∠1=∠2 ( )
∴∠3=____ (等量代换)
∴___∥___()
20、如图,已知∠1=∠C,∠2=∠3。BE是否平分∠ABC?为什么?
21、如图,∠A=60°,DF⊥AB于F,DG∥AC交AB于G,DE∥AB交AC于E。求∠GDF的度数。
解:∵DF⊥AB ( )
∴∠DFA=90° ()
∵DE∥AB ()
∴∠1=___=__ ()
∠EDF=180°-∠DFA
=180°-90°=90° ()
∵DG∥AC ( )
∴∠2=____=____ ()
∴∠GDF=
22、阅读:如图①,CE∥AB,∴∠1=∠A,∠2=∠B。∴∠ACD=∠1+∠2=∠A+∠B。这是一个有用的事实,请用这个事实在图②的四边形ABCD内引一条和边平行的直线,求出∠A+∠B+∠C+∠D的度数。
23、如图,已知四边形ABCD中,AD∥BC,AB∥DC,试说明∠A=∠C,∠B=∠D。
24、如图,已知∠A=∠1,∠C=∠D。试说明FD∥BC。
25、如图,直线a∥b,A、B为直线b上两点,C、D为直线a上两点。
(1)请写出图中面积相等的三角形;
(2)若A、B、C为三个定点,点D在a上移动,那么无论D点移动到何处,总有_____与△ABC的面积相等。理由是______________________。
26、如图,已知AD⊥BC于D,EF⊥BC于F,∠E=∠1,AD平分∠BAC吗?若平分,请写出推理过程;若不平分,试说明理由。
篇18:初一数学平行线与相交线期末复习
1. 同一平面内,两直线不平行就相交。
2. 两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
3. 垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
4. 垂直三要素:垂直关系,垂直记号,垂足
5. 垂直公理:过一点有且只有一条直线与已知直线垂直。
6. 垂线段最短;
7. 点到直线的距离:直线外一点到这条直线的垂线段的长度。
8. 两条直线被第三条直线所截
a.同位角:在两条直线的同一方,在第三条直线的同一侧。
b.内错角:在两条直线的内侧,在第三条直线的两侧。
c.同旁内角:在两条直线的内侧,在第三条直线的—同侧。
9.平行公理:过直线外一点有且只有一条直线与已知直线平行。
10. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
平行线的性质:
a.两直线平行,同位角相等。
b.两直线平行,内错角相等。
c.两直线平行,同旁内角互补。
相交线与平行线中重要的考点
考点一,相交线。相交线指的是两条直线相交,其中特殊的情形为两条直线互相垂直。在相交的过程当中会出现对顶角和邻补角这时对对顶角的定义和零补角的计算所用到的技巧是我们在看到这一内容时,要形成条件反射的重要结论,能够熟练地了解对顶角的概念,使用对顶角相等这一性质来求解角度。这其中涉及到邻补角,对顶角或周角这些不同的角之间存在怎样的关系是我们求解角度时的隐藏条件,希望大家在做题时一定要快速的结合这些知识点,有助于解题思路的形成。
考点二,点到直线的距离。同样这一考点还是需要对点到直线的距离有充分的了解。只有掌握了清楚的概念,然后抓住垂直这一关键点才能真正的理解点到直线的距离代表的是什么?点到直线的距离是指过这一点,做直线的垂线,点到垂足之间的距离称为点到直线的距离,在理解的过程当中要注意与两点之间的距离的区分。
考点三,平行线的性质和判定。平行线我们通常指的是在同一平面内,这是我们初中数学平行过程中最重要的前提。在通常考察过程当中,平行的性质和判定是结合使用的通过内错角,同旁内角和同位角的关系来证明两直线平行,同时如果两直线平行,也能得到这些角之间的关系。
考点四,平移。这部分的内容并不是很难,我们只需要结合以前学习的平移内容即可解决相对应的问题,也即,图形平移前后,其线段的长度或角度的大小都没有发生改变。只需要记住另外一条平行前后对应点的连线是互相平行且相等的。
考点五,相交线线中的方程思想。方程思想的运用其实就是几何与代数相结合,统称数形结合方法的普遍使用,这是我们解决几何问题中的一种重要方法。在香蕉线与平行线这一章节当中,主要是用来求解角度问题是会比较常见。方程的运用主要还是运用到了补角这一概念及多个角的和为180度来作为方程的数量关系。
历年易错点分析之相交线与平行线
对定理、公理理解不透彻
分析:如果对定理、公理理解不透彻,很容易出错。直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;垂线段最短;平行公理及推论:平行于同一直线的两直线平行。
不能正确辨别同位角、内错角、同旁内角
分析:需要注意的是,内错角就是内错角,不能说内错角相等。同理,也不能直接说同位角相等,同旁内角互补。因此,在找内错角时,不能只盯着平行线去找。内错角是在截线的同侧,在两条被截直线的同侧,满足这两个条件的角为内错角。
平移时忽视隐含条件
分析:在平移的过程中,要抓住平移前后不变的量,比如平移前后对应的线段相等,对应的角相等,并且平移前后两个图形的面积相等,周长也相等。
找对顶角时易重复或遗漏
分析:对顶角需要满足两个条件,(1)两条直线相交后所得的只有一个公共顶点;(2)两个角的两边互为反向延长线,缺一不可。
概念模型不清
分析:分清平行公理、垂线、垂线段以及点到直线的距离等定义。
忘记分情况讨论
分析:当三条直线平行时,没有交点,三条直线交于一点时,有一个交点;两条平行线与一条直线相交时,有两个交点;三条直线两两相交时有三个交点。要学会分情况讨论,考虑周全,不要漏解。
初一数学下册复习内容
第一章、基本的几何图形
第二章、有理数
第三章、有理数及其运算
第四章、数据的收集与整理
第五章、代数式与函数的初步认识
第六章、整式的加减
第七章、数值估算
第八章、一元一次方程
步骤/方法
初一数学下册复习目标
1、整理本学期学过的知识与方法,用一张图把它们表示出来,并与同伴进行交流。
2、在自己经历过的解决问题活动中,选择一个最具有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。
3、通过本学期的数学学习,让同学总结自己有哪些收获,有哪些需要改进的地方。
文档为doc格式