欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

数学平行线公式定理

时间:2022-05-23 12:51:08 其他范文 收藏本文 下载本文

【导语】以下是小编为大家准备的数学平行线公式定理(共5篇),仅供参考,欢迎大家阅读。

数学平行线公式定理

篇1:数学平行线公式定理

平行线要领:在同一平面内,永不相交的两条直线互为平行线。

平行线的性质

1.两条平行线被第三条直线所截,同位角相等。

2.两条平行线被第三条直线所截,内错角相等。

3.两条平行线被第三条直线所截,同旁内角互补。

4. 两条平行线被第三条直线所截,外错角相等。

以上性质可简单说成:

1.两条直线平行,同位角相等。

2.两条直线平行,内错角相等。

3.两条直线平行,同旁内角互补。

4.两条直线平行,外错角相等。

平行线的判定

1.平行线的定义(在同一平面内,不相交的两条直线叫做平行线。

2.平行公理推论:平行于同一直线的两条直线互相平行。

3.在同一平面内,垂直于同一直线的两条直线互相平行。

4.同位角相等,两直线平行。

5.内错角相等,两直线平行。

6.同旁内角互补,两直线平行。

平行公理

在同一平面内,经过直线外一点,有且只有一条直线与这条直线平行。

平行公理的推论:(平行传递性) 如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

即平行于同一条直线的两条直线平行

知识延伸:虽然平行线在平面内定义,但也适用于立体几何。

[数学平行线公式定理]

篇2:初中数学平行线的特征定理公式教案

初中数学平行线的特征定理公式教案

同学们认真学习,下面是老师对平行线的特征定理公式的内容学习哦。

平行线的特征:

①两直线平行,同位角相等;

②两直线平行,内错角相等;

③两直线平行,同旁内角互补;

平行公理:经过直线外一点有且只有一条直线平行于已知直线。

以上对数学中平行线的特征定理公式的内容讲解学习,希望同学们都能很好的掌握,相信同学们会学习的很好的哦。

初中数学正方形定理公式

关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式

正方形的特征:

①正方形的四边相等;

②正方形的.四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

正方形的判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

平行四边形

平行四边形的性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分;

平行四边形的判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

上面对数学公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

篇3:初中数学定理公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(-tanα ・tanβ)

tan(α-β)=(anα-tanβ)/(1+tanα ・tanβ)

三角函数公式是数学考试中必考的考点,同学们认真学习,相信同学们一定会在考试中取得好成绩的。

篇4:初中数学定理公式

正方形的特征:

①正方形的四边相等;

②正方形的四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

正方形的判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

篇5:初中数学定理公式

平行四边形的性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分;

平行四边形的判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

初中数学重点公式、定理、推论节选第四部分

数学说课稿:正弦定理

初中数学平行线教学设计

初中数学代数公式

关于数学励志公式

八年级数学平行线的证明知识点

初中数学正割的公式

小学数学常用公式总结

小学数学植树问题公式

高二数学知识点及公式

《数学平行线公式定理(精选5篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档