欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

集合(一)教学案例

时间:2023-10-17 08:43:54 其他范文 收藏本文 下载本文

下面小编给大家整理的集合(一)教学案例,本文共15篇,欢迎阅读!

集合(一)教学案例

篇1:数学广角(集合问题)教学反思(人教版三年级教学案例)

数学广角教学片断1:

1、开场白,进入主题

今天这节课我将带着同学进入“数学广角”,讨论一些有趣的数学问题。

2、谈生活中有关集合和数学练习中的分类事例,说明我们常常把相同属性的物体集合在一起 。

3、调查,用集合图统计并提问解答,

①、调查本班两组参加语数课外兴趣小组的情况。分类集合站北、中南。

②、把名字贴在黑板(分类摆)

③、问学过哪些统计方法?

④、按自己想法,设计自己喜欢的统计图表,把名字写入合适的位置,效果最好,让人一眼看出哪一部分属于哪一类?方便数人数。

⑤、汇报,比较得出集合图统计更清楚。

⑥、看图提问,用各种方法解答。

评:名字一开始不应该分类摆放在黑板,应打乱摆放在黑板,让学生分类再想办法设计直观统计图去整理。

反思:通过对学生学习状况的观察和听课老师的评议,对教材目标进行了重新思考,书中首先出示统计表,然后让学生求语数一共有多少人参加?引出如何直观统计语数都参加了的?而我用现场调查的方式开展教学时,没有强调统计表的缺陷,激发学生去找新的统计方式。

改进片断:

1、名字随意摆放在黑板

2、分类站好

3、用统计表统计,设置出语数都参加了的名字应该放那哪边?怎么统计语数都参加了的?4、汇报,比较得出集合图统计更清楚。5、看图提问,用各种方法解答。反思:通过改进,效果确实更好,教学中,学生设计图表时间应该把握好。

通过对本案例的反思,使我更能抓住重点,提升自己课堂驾驭能力。

篇2:集合教学设计

集合教学设计

教学内容:新人教版三年级上册《数学》第104-105页的内容。

教学目标:

1、使学生能借助直观的维恩图解决简单的实际问题,并能用数学语言描述。

2、让学生经历探究维恩图的产生过程,使学生感知维恩图的各部分意义,初步培养学生建模意识和能力,体验解决问题策略的多样性,并初步渗透集合思想。

3、使学生体验数学的应用价值,进一步感受数学与生活的联系,养成善于观察、勤于思考的学习习惯。

教学重点:

理解集合图的各部分意义,并能用集合图分析生活中简单的有重复部分的问题。

教学难点:

借助直观图解决集合问题,体会集合思想。

教学方法:调查法 合作讨论法观察法

教学准备:

多媒体课件、题卡、姓名卡。

教学过程:

一、结合班级,初悟重复。

通过调查本班孩子最喜欢吃肉和蔬菜情况感悟生活中的“重复”现象。

二、善用例题,情景引入。

师:咱们班都是些身体强壮的孩子,展示咱们运动能力的时候到了,看学校大队部的通知。

出示例题(课件)。

(1)、提出问题

(2)、讨论问题

(3)、探究方法

三、合作探究,体验过程

1、观察释疑。

师:请大家仔细观察学生名单,你发现了什么?

(1)学生发现:三名同学重复了。

(2)提问:重复的怎么表示?

2、巧设集合圈(点名参加活动),生成维恩图。

3、理解维恩图。

(1)介绍维恩图。

师:你们真是一群爱学习,爱动脑筋的好孩子,瞧,一位未来的数学家不就在我们身边诞生了吗?你们知道吗?我们的这个设计图就和世界上最著名的数学家、逻辑学家韦恩的想法完全一样(出示课件,介绍韦恩图),让我们来认识认识韦恩吧。这个图用两个交叉的圆来描述有重叠的两部分,是英国的`哲学家韦恩第一个发明使用的。因此被命名为“维恩图”。你们能和历史名人不谋而合,实在是太了不起了!让我们为你们的聪明才智和创造发明鼓鼓掌吧。

(2)、请学生解释图中各部分的含义,介绍集合图。

左边部分:只参加跳绳的同学共6人。

右边部分:只参加踢毽的同学共5人。

中间交叉部分:既参加跳绳又参加踢毽的同学,共3人。 这个“只”字用得很好,去掉这个“只”字可以吗?

这个“既”“又”也用的不错。看来同学们的语言表达还可以吧!

4、用集合圈计算总人数。

(1)认真观察这幅图,要想求参加跳绳和踢毽的同学的总人数,还可以怎么列式?

(2)列式:8+9—3=14 5+3+6=14??.师生反馈交流时,重点是引导学生借助集合图来理解各种计算方法的意义。

四、巩固应用,建构模型

1、完成“做一做”的两题练习。

2、解决课本106页第1题.

五、知识延伸

1、根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得我们班可能会选拔多少人?

提示:教师分析各种可能出现的情况

2、解决生活中进货、卖蔬菜、参加竞赛等问题。

3、生活中的座位问题、排队问题:小明坐在第五组,从前往后数,小明坐第3位,从后往前数,小明坐第6位,第五组一共有多少人?

4、脑筋转一转:一共有三个人,却有两个爸爸,两个儿子,这是为什么?

六、全课总结,谈收获。

师:“解决重叠问题,可以从条件入手进行分析,画出示意图,借助示意图进行思考,当两个计数部分有重叠包含时,为了不重复计数,应从他们的和中减去重叠部分;也可以先用其中一部分减去重叠部分,再加上另一部分。”

板书设计:

数学广角——集合

参加跳绳的 参加踢毽的

既参加跳绳又参加踢毽的

8+9—3=14 (人)

5+3+6=14(人)

9—3+8=14 (人)

8—3+9=14 (人)

《 数学广角——集合》课后反思

本节课教学新人教版三年级上册第九单元数学广角—集合。针对三年级学生的认知水平,在这里只是让学生通过生活中容易接受、容易理解的题材去初步体会集合思想。本节课设计时教师立足于培养学生良好的数学思维能力,从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、错做、推理、交流等活动寻找解决问题的方法,初步体会集合思想。利用生活事例让学生感受数学与生活的密切联系,激发学生学习数学的兴趣。因此,在教学中,教师注重“学生学习生活”现实情境的创设。

1、创设情境,初步感悟。

为了激发学生的学习兴趣,教师在课前先以学生喜欢的“吃蔬菜和肉”的相关问题进行交流,激发了学习兴趣,让学生从中体验重叠,初步感悟事物的双重性,为下一步的教学做好铺垫。

2、解释应用,解决矛盾。

在构成认知冲突时,教师首先出示参加跳绳和踢毽子的统计表,收集学生名单。通过观察,学生发现有3名同学既参加了跳绳有参加了踢毽活动,从中得到准确的数学信息。然后在处理信息的过程中发现问题并提出问题,通过直观感悟,为后面的自主探索解决问题做好准备。

3、展示成果,激发冲突。

在现实的情境中,学生自主发现并提出问题,结合真实学习生活事例积极主动地投入到自主探索中去??亲身经历了知识的形成过程,学生就能根据自己的体验去理解知识,从而得出多种不同的算式,通过展示自己的算式,与其他同学相互交流,体验算法的多样化。

俗话说“细节决定成败”,一节课下来,我也发现存在许多不足:

1、评价语言比较单一,学生的学习积极性没有被调动起来。

2、每一个环节的过渡语言不够简练,放手不够。

篇3:教学案例

教学案例

小鸟的邂逅

作为新时代的教师,面临重重压力与挑战。在种种压力与挑战面前,教师需要高度的专业素养和各项相关技能。在教学中实践中教师会遇到各种教学无法与设的问题。作为教师怎样才能快速正确的处理教学中所面临的突发问题呢?我觉得这是一门深奥的学问。需要自己在处理此类问题之后不断的反思与总结,以达到完美。

我在教学中有这样一个例子:那是一个风雨交加的早晨,我正在给一年级上语文第二册的《两只鸟蛋》,突然一只小鸟撞到教室外的玻璃上,掉了下来。顿时,安静的教室热闹起来,学生根本没有上课的心思了。巧的`是,这课的教学目标就是培养学生热爱小鸟,热爱动物的思想感情。于是我就灵机一动运用这个好机会,来引导学生爱小动物。我把受伤的小鸟捧到学生中间,让他们观察有没有受伤?以及其学生的怜悯之心。经过观察体外没有伤,可小鸟依然耷拉着脑袋,紧闭双眼,这时,有的同学说:“小鸟受伤了,好可怜啊!”,有的说:“他为什么会撞到玻璃上呢?”,还有的说:“我们给小鸟治病吧!”面对学生的疑问,我只做了简单回答,然后把小鸟放到窗台上,下课再救治。我又趁机说:“既然小鸟受伤了这么可怜,以后我们应该怎样对待小鸟和小动物呢?”我就让学生自由发言,很多学生都说到:要保护动物,保护小鸟。下课了,我走出教室后一个学生对我说:“小鸟死了。”我就让学生把它扔了。

课后我就在想我处理问题的整个过程,我觉得还算满意,完成了教学目标。可是,经过我有反复的想,是有问题的:对小鸟死后的处理太草率了。表面上我是完成了教学目标,实际上是没有完全完成。自从国家实施课改,提倡素质教育以后,教学中的教学目标改为“三维目标”而他的第三条是培养学生的“情感、态度、价值观”。就本节课我来说,学生已经有了爱护动物的情感,在后面的谈话中也表明了态度。那么怎样让这种思想在学生的生活中实施呢?这就是价值观的形成。如果我能在小鸟死后,通过榜样示范,引领学生怎样的爱动物?亲自带领全班学生把小鸟埋了,就能更好的促使学生价值观的形成。我认为这样才算是,真正正确的运用教育机智处理教学中的突发问题。

篇4:教学案例

教学案例

学校开展了新课程改革,传统的教学模式与观念是老师先教,学生后学,但新课改们要求教师以大胆创新的精神实施行之有效的课堂教学模式“先学后教,当堂训练”。新的课堂教学模式的精髓值得我们借鉴与学习,更有待于把这种新型的课堂教学模式切实地运用到我们现实课堂中去。

在学习新课改的过程中,我担任了英语学科的授课任务。如何改变自己一如既往,墨守成规的传统教学模式?如何让学生重新找回学习的兴趣?如何把学生真正变成学习的主人?如何把洋思的课堂教学模式巧妙地运用于自己的英语教学中?这些问题时刻萦绕在自己的脑海中,也希望能通过运用这一模式,提高自己的课堂教学质量,增强学生学习的兴趣,及时解决学生学习中的困难,将学生的学习变被动为主动。

案例的问题及境地:

然而,他们的教育对象是小学生,小学生无论在年龄,还是身心发展等方面都略低于小学生,小学生受到年龄,性格,认知水平的限制,缺乏自主学习的能力,因此“先学后教,当堂训练”能否适合于小学课堂教学,又能否适合我们的小学生呢?又怎样将新课改的教学模式真正落实到小学课堂中呢?

(第一次授课)

带着这些疑问与困惑,我认真学习新课改的“先学后教,当堂训练”的五步教学法,即明确学习目标,自学前的指导,学生自学,后教,当堂训练。在第一次授课中,学生们能在小组学习中积极参与,乐于学习。但课堂效果非常理想。

(片断一)学习前的热身

师:Good morning boys and girls !How are you?What day is it today ?It’s cool today 。Let’s do,ok?

生:Ok。

(老师和学生一起做运动,打节奏,调动学生的积极情绪,从而更好地投入学习。)

师:I have two animals 。They’re cat and rabbit 。They can jump

(老师边说边做动作,吸引学生的注意力,营造轻松的课堂氛围)

师:These animals can do somethings 。你们在家会做什么呢?

生:我会抹桌子,洗碗…(争先恐后地说)

师:Ok,今天我们学习Unit Four What can you do?(自然引出课题并板书)

师:I have a good friend 。Her name is Chen Jie。Now what’s she doing at home ? (播放幻灯片)

生:她在做饭,浇花,倒垃圾,扫地,打扫卧室。

师:既然陈洁这么能干,那么老师相信你们今天也很棒,也能学会这些家务事,并且掌握相应的词组以及句型。(自然明确地指出本节课的.教学目标,并给予学生极大的自信心。)

师 :我们分成了六个组,小组内自学单词和词组:cook the meals ,water the flowers ,sweep the floor ,clean the bedroom,empty the trash 。并且找出自己认识的单词。

(片断二)师生共同解决疑难单词

师:请同学们自由说说你们认识的单词吧

生:我会认clean the bedroom,floor ,trash,(生边说,师边板书)

师:那么,你们不认识的又有哪些单词呢

生:cook ,meals ,water ,flowers ,sweep,empty

师:我们一起来解决这些陌生的单词吧(老师教,学生学)

(在教授这些新单词的同时,我注意采取多种教学方法,来调动学生学习词汇的积极性,如在教授“water ,flowers”这两个单词时,教师拿来一杯水,一枝花,形象,直观地教授单词,在教cook the meals 时采取快慢读法,在教sweep ,empty 等单词时采用分节读或做游戏等方式来教词汇。让学生充满兴趣地学习单词,在轻松的氛围中习得语言,避免枯燥乏味,让学生们在学中乐,在乐中学。)

(片断三)在掌握词组的基础之上,教学句型。

师:Can you clean the bedroom?

生:Yes,I can。(老师随机板书I can,并教读单词)

(生踊跃读I can)

师:谁会用“I can …”说一句话呢

生:I can clean the bedroom 。I can sweep the floor…

(教室里顿时热闹非凡,学生们都不由自主地说,自己会干什么事情,由会说词组自然过渡到句型的学习)

师:(微笑着表扬一句)You’re helpful!(及时表扬学生能干有用,巧妙引出新句型You’re helpful!

生:You’re helpful!

师:I’m helpful!

(师生互说这两句话You’re helpful!/I’m helpful !小组内互相表扬,让学生在学习中学会如何称赞他人,欣赏他人,培养良好的思想品质)

师:I’m helpful 。I can …

生:I’m helpful 。I can …

(引导学生进行口语交际,锻炼口语能力)

师:What can you do?

生:I’m helpful 。I can … (自然引出句型What can you do?小组互问互答,师生互问互答,设置情景对话,复习已学句型)

第一次授课后的教师研讨:

教学环节安排紧凑,课堂气氛活跃,形式多样。但是教学容量大,虽然赶着上完了,但并不轻松,学生的掌握程度并不理想。在“先学后教”环节上,还有待改进,应给予学生更多的自学空间,以及运用“兵教兵”的教学方法,在自学之前,教师还应明确指出学生在小组学习是重点解决的问题,使学生有的放矢。

第二次授课:

(片断一)明确小组自学目标

师:同学们,分小组自学,找出自己不认识的单词。

(生仔细查找,并做上记号)

师:请自由说说。(生纷纷举手说)

师:对于这些不认识的单词,有谁会呢?(生自由读,采取“兵教兵”的方法,师适当指导,及时纠正发音错误)

(在第一次授课基础之上,有所改进,由找认识的单词变为找不认识的单词,进而先解决疑难,扫除单词障碍,再带出已学旧单词,从而学习整个新的词组,教学效果较好,学生解疑答惑的兴趣浓厚。)

(片断二)开展活动,复习巩固词组,Play games滚雪球。

师:I can weep the floor 。

生:I can weep the floor and clean the bedroom。

(片断三)删掉句型I’m helpful

师:I can …What can you do?

生:I can …

(教学句型What can you do?师生互动,一问一答,操练句型,小组内分角色口语交际并情景表演,教学内容量合理,避免了第一次授课时的内容量过大的问题)

第二次授课后的研讨:

初步体现了洋思中学课堂教学模式的基本步骤,即“明确教学目标――自学前的指导――学生自学质疑――教师点拨释疑――学生当堂训练”五步教学法。从复习旧知入手创设学习情境呈现本课主要学习任务和教学目标。以“兵教兵”的方法,让先行学会的学生示范读、教师随机点拨、范读。遵循了“单词→词组→句子→对话应用”的教学思路,由简入难,分层推进,将本课教学难点得到有效化解。

然而教学中也存在许多不足之处,作为英语老师应注意英语课堂教学用语,应规范严谨。同时还应注重自己的语音,不断学习。更多地关注班级里的后进生,给予他们赞赏的目光,鼓励他们进行口语训练,为他们创设更多的英语表达机会。

依然困惑的问题:

如何在有限的课堂时间里,不仅有效实施新课改的“先学后教,当堂训练”的课堂模式,而且还对学生进行有效的听力训练?对学生进行笔头练习,对学生所学语言进行复习巩固呢?这些都是值得自己不断思索和钻研的问题。

总之,有效实施新课改课堂教学模式,任重而道远,需要在教学实践中,切实领悟新课改教学模式的精髓,不断总结教学过程中存在的问题,努力构建大家所期待的真正的新课堂!

篇5:高中数学集合教学设计

一、内容及其解析

(一)内容:集合间的基本关系。

(二)解析:本节课要学的内容有集合间的基本关系指的是集合间的包含和相等关系,其核心(或关键)是弄清楚集合中的元素之间的关系理解它关键就是分析清楚集合中的元素,学生已经学过了集合的含义与表示并且学习过实数间的大小关系。本节课的内容集合间的基本关系就是在此基础上的发展(或就是它的下位概念,就可以类比它,等等)(定起点)。由于它还与后续很多内容,比如圆锥曲线有思想方法上(都通过类比的想法来进行学习)联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是子集、真子集、等集和空集所以解决重点的关键是分析好集合间的关系、弄清楚集合中的元素。

二、目标及其解析

(一)教学目标

(1)理解集合之间包含与相等的含义,能识别给定集合的子集、真子集;

(2)在具体情境中,了解空集的含义;

(二)解析

(1)理解集合之间包含与相等的含义,能识别给定集合的子集就是指集合两个集合之间是子集、真子集还是相等,掌握相应的含义以及数学表示、数学记号,并不致混淆;;

(2)在具体情境中,了解空集的含义。就是指要掌握空集的含义,能分析给出的集合是否为空集;对关于空集的规定即空集是任何非空集合的子集,是任何非空集合的真子集要牢记。

三、问题诊断分析

在本节课的教学中,学生可能遇到的问题是解题中对空集是任意集合的子集这一条件容易忽略,产生这一问题的原因是对这一新规定接受度不强.要解决这一问题,就是要依据实例反复操练,其中关键是师生的互动要到位.

四、教学过程设计

一、导入新课

实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?

二、提出问题

问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?

(1) ;

(2)设A为某中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;

(3)设

(4) .

问题2:同样是子集,会不会有差别呢?

(1) 请看幻灯片上的例子,你能发现什么问题吗?

(2) 这两种不同的情形该如何表述呢?

(3) 学生回答,师生共同归纳出真子集和集合相等的数学定义及数学语言表述。

问题3:请看幻灯片上给出的几个集合,你能发现什么问题?

(1) 这些集合有什么共同特征?

(2) 你能举出更多的空集的例子吗?

(3) 你认为空集和其它集合是什么关系?和非空集合又是什么关系

三.概念的巩固和应用

四.课堂目标检测

优化设计:随堂练习.

五.小结

1、集合之间的关系,子集,集合相等,真子集等概念;

2、Venn图的运用;

3、空集的定义和性质;

4、集合之间的基本关系的主要结论;

5、当一个集合有n个元素的时候,其子集有 个,真子集有 个,非空真子集有 个。

篇6:高中数学集合教学设计

一、知识结构

本小节首先从初中代数与几何涉及的实例人手,引出与的元素的概念,并且结合实例对的概念作了说明.然后,介绍了的常用表示方法,包括列举法、描述法,还给出了画图表示的例子.

二、重点难点分析

这一节的重点是的基本概念和表示方法,难点是运用的三种常用表示方法正确表示一些简单的.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解的概念和表示方法.

1.关于牵头图和引言分析

章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到和逻辑的知识,也就是把它数学化.一方面提高用数学的意识,一方面说明和简易逻辑知识是高中数学重要的基础.

2.关于的概念分析

点、线、面等概念都是几何中原始的、不加定义的概念,则是论中原始的、不加定义的概念.

初中代数中曾经了解“正数的”、“不等式解的”;初中几何中也知道中垂线是“到两定点距离相等的点的”等等.在开始接触的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个,也简称集.”这句话,只是对概念的描述性说明.

我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.

3.关于自然数集的分析

教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意.

新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数{0,1,2,…,9}中最小的数,有了0,减法运算 仍属于自然数,其中 .因此要注意几下几点:

(1)自然数与非负整数是相同的,也就是说自然数集包含0;

(2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;

(3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用.

4.关于中的元素的三个特性分析

中的每个对象叫做这个的元素.例如“中国的直辖市”这一的元素是:北京、上海、天津、重庆。

中的元素常用小写的拉丁字母 ,…表示.如果a是A的元素,就说a属于A,记作 ;否则,就说a不属于A,记作

要正确认识中元素的特性:

(l)确定性: 和 ,二者必居其一.

中的元素必须是确定的.这就是说,给定一个,任何一个对象是不是这个的元素也就确定了.例如,给出{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其他对象都不用于这个.如果说“由接近的数组成的”,这里“接近的数”是没有严格标准、比较模糊的概念,它不能构成.

(2)互异性:若 , ,则

中的元素是互异的.这就是说,中的元素是不能重复的,中相同的元素只能算是一个.例如方程 有两个重根 ,其解集只能记为{1},而不能记为{1,1}.

(3)无序性:{a,b}和{b,a}表示同一个.

中的元素是不分顺序的.和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而{1,0}和{0,1}表示同一个.

5.要辩证理解和元素这两个概念

(1)和元素是两个不同的概念,符号和是表示元素和之间关系的,不能用来表示之间的关系.例如 的写法就是错误的,而 的写法就是正确的.

(2)一些对象一旦组成了,那么这个的元素就是这些对象的全体,而非个别现象.例如对于 ,就是指所有不小于0的实数,而不是指“ 可以在不小于0的实数范围内取值”,不是指“ 是不小于0的一个实数或某些实数,”也不是指“ 是不小于0的任一实数值”……

(3)具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.

6.表示的方法所依据的国家标准

本小节列举法与描述法所使用的的记法,依据的是新国家标准如下的规定.

符号

应用

意义或读法

备注及示例

诸元素 构成的集

也可用 ,这里的I表示指标集

使命题 为真的A中诸元素之集

例: ,如果从前后关系来看,集A已很明确,则可使用 来表示,例如

此外, 有时也可写成 或

7.的表示方法分析

有三种表示方法:列举法、描述法、图示法.它们各有优点.用什么方法来表示,要具体问题具体分析.

(l)有的可以分别用三种方法表示.例如“小于 的自然数组成的”就可以表为:

①列举法: ;

②描述法: ;

③图示法:如图1。

(2)有的不宜用列举法表示.例如“由小于 的正实数组成的”就不宜用列举法表示,因为不能将这个中的元素—一列举出来,但这个可以这样表示:

①描述法: ;

②图示法:如图2.

(3)用描述法表示,要特别注意这个中的元素是什么,它应该符合什么条件,从而准确理解的意义.例如:

① 中的元素是 ,它表示函数 中自变量 的取值范围,即 ;

② 中的元素是 ,它表示函数值。的取值范围,即 ;

③ 中的元素是点 ,它表示方程 的解组成的,或者理解为表示曲线 上的点组成的;

④ 中的元素只有一个,就是方程 ,它是用列举法表示的单元素.

实际上,这是四个完全不同的.

列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.

8.的分类

含有有限个元素的叫做有限集,如图1所示.

含有无限个元素的叫做无限集,如图2所示.

9.关于空集分析

不含任何元素的叫做空集,记作 .空集是个特殊的,除了它本身的实际意义外,在研究、的运算时,必须予以单独考虑.

篇7:高中数学集合教学设计

知识目标:

(1)使学生初步理解的概念,知道常用数集的概念及其记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

能力目标:

(1)重视基础知识的教学、基本技能的训练和能力的培养;

(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;

(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;

德育目标:

激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。

教学重点:的基本概念及表示方法

教学难点 :运用的两种常用表示方法——列举法与描述法,正确表示一些简单的

授课类型:新授课

课时安排:2课时

教 具:多媒体、实物投影仪

教学过程 :

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.论的创始人——康托尔(德国数学家);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)。

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)中元素的特性是什么?

(一)的有关概念(例子见书):

1、的概念

(1):某些指定的对象集在一起就形成一个。

(2)元素:中每个对象叫做这个的元素。

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的。记作N

(2)正整数集:非负整数集内排除0的集。记作N_或N+

(3)整数集:全体整数的。记作Z

(4)有理数集:全体有理数的。记作Q

(5)实数集:全体实数的。记作R

注:

(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。记作N_或N+ 、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

3、元素对于的隶属关系

(1)属于:如果a是A的元素,就说a属于A,记作a∈A;

(2)不属于:如果a不是A的元素,就说a不属于A,记作 .

4、中元素的特性

(1)确定性:

按照明确的判断标准给定一个元素或者在这个里,或者不在,不能模棱两可。

(2)互异性:

中的元素没有重复。

(3)无序性:

中的元素没有一定的顺序(通常用正常的顺序写出)

注:

1、通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

2、“∈”的开口方向,不能把a∈A颠倒过来写。

练习题

1、教材P5练习

2、下列各组对象能确定一个吗?

(1)所有很大的实数。 (不确定)

(2)好心的人。 (不确定)

(3)1,2,2,3,4,5.(有重复)

阅读教材第二部分,问题如下:

1.的表示方法有几种?分别是如何定义的?

2.有限集、无限集、空集的概念是什么?试各举一例。

(二)的表示方法

1、列举法:把中的元素一一列举出来,写在大括号内表示的方法。

例如,由方程 的所有解组成的,可以表示为{-1,1}.

注:(1)有些亦可如下表示:

从51到100的所有整数组成的:{51,52,53,…,100}

所有正奇数组成的:{1,3,5,7,…}

(2)a与{a}不同:a表示一个元素,{a}表示一个,该只有一个元素。

描述法:用确定的条件表示某些对象是否属于这个,并把这个条件写在大括号内表示的方法。

格式:{x∈A| P(x)}

含义:在A中满足条件P(x)的x的。

例如,不等式 的解集可以表示为: 或

所有直角三角形的可以表示为:

注:(1)在不致混淆的情况下,可以省去竖线及左边部分。

如:{直角三角形};{大于104的实数}

(2)错误表示法:{实数集};{全体实数}

3、文氏图:用一条封闭的曲线的内部来表示一个的方法。

注:何时用列举法?何时用描述法?

(1) 有些的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。

如:

(2) 有些的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。

如: ;{1000以内的质数}

注: 与 是同一个吗?

答:不是。

是点集, = 是数集。

(三) 有限集与无限集

1、有限集:含有有限个元素的。

2、无限集:含有无限个元素的。

3、空集:不含任何元素的。记作Φ,如:

练习题:

1、P6练习

2、用描述法表示下列

①{1,4,7,10,13}

②{-2,-4,-6,-8,-10}

3、用列举法表示下列

①{x∈N|x是15的约数} {1,3,5,15}

②{(x,y)|x∈{1,2},y∈{1,2}} {(1,1),(1,2),(2,1)(2,2)}

注:防止把{(1,2)}写成{1,2}或{x=1,y=2}

④ {-1,1}

⑤ {(0,8)(2,5),(4,2)}

{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}

三、小 结:

本节课学习了以下内容:

1.的有关概念:(、元素、属于、不属于、有限集、无限集、空集)

2.的表示方法:(列举法、描述法、文氏图共3种)

3.常用数集的定义及记法

四、课后作业 :教材P7习题1.1

篇8:高中数学集合教学设计

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

篇9:高中数学集合教学设计

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教 具:多媒体、实物投影仪

篇10:高中数学集合教学设计

1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明

篇11:高中数学集合教学设计

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合 记作N,

(2)正整数集:非负整数集内排除0的集 记作N*或N+

(3)整数集:全体整数的集合 记作Z ,

(4)有理数集:全体有理数的集合 记作Q ,

(5)实数集:全体实数的集合 记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数 (不确定)

(2)好心的人 (不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__

4、由实数x,-x,|x|, 所组成的集合,最多含( A )

(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

(1) 当x∈N时, x∈G;

(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

∵a∈Z, b∈Z,c∈Z, d∈Z

∴(a+c) ∈Z, (b+d) ∈Z

∴x+y =(a+c)+(b+d) ∈G,

又∵ =且 不一定都是整数,

∴ = 不一定属于集合G

篇12:高中数学集合教学设计

1.集合的有关概念:(集合、元素、属于、不属于)

2.集合元素的性质:确定性,互异性,无序性

3.常用数集的定义及记法

篇13:集合运算教学反思

针对三年级学生的认知水平,在这里只是让学生通过生活中容易接受、容易理解的题材去初步体会集合思想。

本节课设计时我立足于培养学生良好的数学思维能力,从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、推理、交流等活动寻找解决问题的方法,初步体会集合思想。根据学生的实际情况,在教材处理上,我不断设计悬念,先是设计了“脑筋急转弯”这个活动,鼓励学生大胆猜想,发散学生的多元思维。抓住三年级学生天真好玩的天性,接着我又让学生玩了“抢椅子”,首先搬出两把椅子,请上来两个学生。制造冲突,让学生再次体验新的知识,同时复习以前学过的一一对应的思想。为了解决抢椅子游戏当中的问题,要请人,我故意多请了几个同学制造矛盾,在决定谁留下来参加抢椅子游戏的同时,又多玩了一个“猜拳”游戏。

为后面深入学习“重复”做好了铺垫。那么参加两次游戏的同学到底是7人还是6人?我又故意设计冲突,把呼啦圈引进课堂,让学生在“钻圈”过程中想办法,找解决问题的方法,再把呼啦圈摆放到黑板上,由生活实物呼啦圈抽象出数学符号集合圈。集合圈很自然的引出是我没有预设到的。“让他们站中间”一句话提醒了我,马上引出集合圈。再通过画一画,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。在设计练习时,在练习巩固了重复知识之后,我设计了给爸爸找位置的活动。让同学们给自己的爸爸找到合适的位置,也使同学们体会到抽烟和喝酒是不良的习惯。另外我提出“那么既不抽烟又不喝酒同学的爸爸位置应该在哪呢?”同学们再次思考。最后得出爸爸的位置在圈外。渗透全集概念,为以后集合的学习做准备,拓展了学生的固有知识。不足之处:在上课时,由于自己准备不充分,把一部分练习忽略,有些孩子就有可能出现不管什么题目都用43—1这种模式去做。做游戏时学生的参与面不够广,只有几个同学参与其中,所以到课后总结体会时,以至于有些同学说不好玩。其实可以在后面的调查当中让同学们都上来贴上自己的条,真正体现学生的参与性。当我再反思地去研读教材,发现对于教材的理解还是不够到位的。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

篇14:集合运算教学反思

集合作为高中数学的起始章,它的内容比较起来相对较为简单。本章教学有两个重点:一是让学生初步理解集合是描述集会问题的一种语言,并能会集合语言表示数学问题;二是对元素与集合的关系,集合间的关系和运算的理解、运用。教学的基本定位是要让学生掌握好集合语言和集合的有关常识,为整个高中阶段的学习做准备。因此,在教学时可从以下几个方面来思考。

1、教学中注意培养和提高学生数学阅读的能力

集合语言的学习和其他语言的学习一样,首先要掌握这种语言的表达方式和规则;其次要利用这门语言来表述数学问题。而我们的学生刚从初中升如高中,还处在从算术(具体的)上升到代数(抽象的)的初级阶段,抽象思维能力较弱,而集合语言抽象度较高,并且集合语言有其独有的符号和表达方式,学生理解起来较为困难。而符号化、形式化是数学的一个显著特点,在数学学习中,通常要求我们通过语言转换将一个自然语言表述的问题转换成形式语言的问题,或反之也然。因此,语言的转换能力是学习数学、理解数学、解决数学问题的重要一环。而阅读理解能力将是影响语言转换能力的关键,也是影响培养学生数学学习能力的关键。在教学中,可以设计一些阅读问题和阅读要求,围绕教材的概念、法则、问题、例题,指导学生在课堂完成自主阅读,先阅读、再发问,再讨论。教给学生一些基本的阅读技巧和检测方法。

2、教学中要突出对集合语言中的符号语言的认识与理解

在高中,集合是作为语言来学习的,教材紧密结合学生的生活经验和已有的数学知识,创设学生运用集合语言表达、交流的情景和机会,使学生了解集合的含义,理解并掌握集合与元素的关系,集合间的基本关系和运算。并在这过程中引出了一些集合中的符号语言,而这些语言将伴随整个高中数学学习。因此,在教学中,我们应从符号语言、自然语言、图形语言、生活语言多角度来认识与理解集合语言,应突出图形语言的直观性,如运用VENN图或数轴表达集合的关系及集合运算中的交、并、补集;强调生活语言的生动性,如余集CuB——掉余(谐音:钓鱼),即在U中去掉B中的元素剩余的元素组成的集合;交集即交公,集合A∩集合B即集合A、B的公共元素组成的集合;并集即合并,集合AU集合B,即集合A、B中的所有元素合在一起组成的集合;取自生活中语言:掉余(钓鱼)、交公、合并来理解这些符号,学生非常容易接受和理解。所以,在教学中能突出四种语言的'转换学习与使用,可以更好的加强学生对集合语言的认识与理解。

3、在集合教学中要强化学生对数学思想与方法体会

在集合教学中,对学生的培养不仅仅局限于集合知识的学习,还要能够使学生综合运用知识解决数学有关问题,培养学生分析探究和思考问题能力,激发学生的学习兴趣,培养其抽象思维能力。本章的重点在集合间的交、并、补集运算,在教材分析,例题讲解,习题练习点评中,教学时要尽可能地突出数形结合、分类讨论的思想的运用,体会在解决一些有关集合数学问题时这些思想带来的时效性。数性结合的思想主要运用VENN图和数轴来处理集合间的交、并、补集运算,还可以用VENN图来呈现集合间的关系,而数形结合的思想主要运用于数集间的运算。让学生深刻体会图形研究的直观性,体会抽象问题图形处理的方法是解决数学问题最基本的方法之一;另一思想则是分类讨论思想,在集合练、习题中,有一些含参的集合间的运算问题,在教学中要引起重视,分类与整合的思想也是高中阶段最基本的思想之一。让学生初步接受数学思想的熏陶和启迪,为进一步学习数学技能、概念、过程思维方法、解决实际问题作准备。

4、教学中注意培养学生养成良好的数学学习习惯

良好的学习习惯能促使学生数学能力的逐步提高。由于高中数学内容较多、课堂密度大、教学进度快、知识信息广、题目难度加大,只靠教师讲、学生听很难使学生掌握数学知识,这就要求学生要勤于思考、善于归纳总结、掌握数学思想、提高自学能力、注重反思、注重提问,规范、准确使用数学语言,养成复习小结的习惯。

篇15:集合运算教学反思

集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。

第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。

第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。

第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。

教学案例

案例教学

数学广角(集合问题)教学反思(人教版三年级教学案例)

集合教学设计

集合教学反思

数学教学案例

数学教学案例

音乐教学案例

高中数学教学案例

初中语文教学案例

《集合(一)教学案例(锦集15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档