欢迎来到千学网!
您现在的位置:首页 > 高中语文 > 考点突破

考研数学选择题高数考点解析

时间:2022-09-09 08:58:23 考点突破 收藏本文 下载本文

下面是小编为大家推荐的考研数学选择题高数考点解析,本文共6篇,欢迎大家分享。

考研数学选择题高数考点解析

篇1:考研数学选择题高数考点解析

考研数学选择题高数考点解析

的考研数学考生已经顺利结束了,从试题上看,试题依然延续往年的风格,注重对基础知识的考查,从高数科目来看,今年数学一、数学二、数学三的选择题部分考查,主要以基本题型和常规题型考查为主,考研教育网专家整合数学一、数学二、数学三试题,提取相关高数考题,具体考点解析如下:

数学一部分:

题号

考点

分析

1

已知未定式,求参数

本题属于常规题,考查学生的求未定式极限的能力,本题可用无穷小代换、罗必塔法则等多种方法方法解答。

2

曲面的切平面方程

本题属于基本题,考查曲面的切平面方程,直接求出切平面的法向量,即可求解

3

傅里叶级数

本题考查以2l为周期的偶函数的'傅里叶级数的和函数在某点的值,属于基本题型。

4

第一类曲线积分的性质

本题考查第一类曲线积分的性质,可利用格林公式解决。

数学二部分:

题号

考点

分析

1

高阶无穷小

本题考查判断两个函数的无穷小关系,属于常规题型,直接求两函数比值的极限即可判断

2

考查利用导数定义求数列极限

本题属于基本题型,但在设计上打破了以前以显函数给出函数的惯例,给出隐函数形式,需要考试能敏锐地挖掘出这一隐含信息。

3

判断变限积分函数在某点处的性质

本题属于常规题,但由于所给函数是一个以分段函数为被积函数的变限积分,因此有一定难度。

4

已知反常积分的敛散性,求参数的范围

本题考查已知反常积分的敛散性,求参数的范围,属于常规题型,但要注意由于所给函数是一个以分段函数为被积函数的反常积分,因此要注意分段讨论。

5

二元复合函数的偏微分

本题考查二元复合函数的偏微分的计算,属于常规题型。

6

二重积分的性质

本题属于基本题,但设计比较新颖,考查学生利用极坐标二重积分的能力。

数学三部分

题号

考点

分析

1

高阶无穷小的运算

本题属于基本题型,考查高阶无穷小的运算的运算性质。

2

函数的间断点

本题属于基本题型,但较之往年此类考题,难度有所提高,主要在于这两个函数,无形中增加了难度。

3

二重积分的性质

本题属于基本题,但设计比较新颖,考查学生利用极坐标二重积分的能力。

4

数项级数的敛散性的判别

本题属于常规题,考查学生灵活利用数项级数敛散性的各种判别法判断级数的收敛性,在历年的考试中,一只手广大考试比较惧怕的一类试题,需要在今后的复习中引起重视。

篇2:考研数学选择题考点解析

的考研数学考生已经顺利结束了,从试题上看,试题依然延续往年的风格,注重对基础知识的考查,从高数科目来看,今年数学一、数学二、数学三的选择题部分考查,主要以基本题型和常规题型考查为主,跨考教育数学教研室廖家斌老师整合数学一、数学二、数学三试题,提取相关高数考题,具体考点解析如下:

数学一部分:

题号

考点

分析

1

已知未定式,求参数

本题属于常规题,考查学生的求未定式极限的能力,本题可用无穷小代换、罗必塔法则等多种方法方法解答。

2

曲面的切平面方程

本题属于基本题,考查曲面的切平面方程,直接求出切平面的法向量,即可求解

3

傅里叶级数

本题考查以2l为周期的偶函数的傅里叶级数的和函数在某点的值,属于基本题型。

4

第一类曲线积分的性质

本题考查第一类曲线积分的性质,可利用格林公式解决。

数学二部分:

题号

考点

分析

1

高阶无穷小

本题考查判断两个函数的无穷小关系,属于常规题型,直接求两函数比值的极限即可判断

2

考查利用导数定义求数列极限

本题属于基本题型,但在设计上打破了以前以显函数给出函数的惯例,给出隐函数形式,需要考试能敏锐地挖掘出这一隐含信息。

3

判断变限积分函数在某点处的性质

本题属于常规题,但由于所给函数是一个以分段函数为被积函数的变限积分,因此有一定难度。

4

已知反常积分的敛散性,求参数的范围

本题考查已知反常积分的敛散性,求参数的范围,属于常规题型,但要注意由于所给函数是一个以分段函数为被积函数的反常积分,因此要注意分段讨论。

5

二元复合函数的偏微分

本题考查二元复合函数的偏微分的计算,属于常规题型。

6

二重积分的性质

本题属于基本题,但设计比较新颖,考查学生利用极坐标二重积分的能力。

数学三部分

题号

考点

分析

1

高阶无穷小的运算

本题属于基本题型,考查高阶无穷小的运算的运算性质。

2

函数的间断点

本题属于基本题型,但较之往年此类考题,难度有所提高,主要在于这两个函数,无形中增加了难度。

3

二重积分的性质

本题属于基本题,但设计比较新颖,考查学生利用极坐标二重积分的能力。

4

数项级数的敛散性的判别

本题属于常规题,考查学生灵活利用数项级数敛散性的各种判别法判断级数的收敛性,在历年的考试中,一只手广大考试比较惧怕的一类试题,需要在今后的复习中引起重视。

篇3:考研数学高数填空题考点解析

考研数学高数填空题考点解析

数学一:

题号

卷种及题型

考点

分析

9

数一填空

隐函数方程求导及导数的定义

本题属于基本题型,考察隐函数方程求导:将看成自变量,方程两端对求导;导数的定义是历年来考研数学的重点。

10

数一填空

求二阶常系数非齐次线性微分方程的通解

本题属基本题型,中等难度,根据二阶常系数非齐次线性微分方程的解的性质写出二阶常系数非齐次线性微分方程的通解

11

数一填空

参数方程求导

本题考查参数方程二阶导数在一点处的值

12

数一填空

广义积分的计算,积分的分部积分法

本题属于基本题型,考察广义积分的计算及积,积分的分部积分法是考研的重点

数学二:

9

卷种及题型

考点

分析

10

数二填空

幂指函数的求极限

本题属于基本题型,考察幂指函数的`求极限

11

数二填空

变上限定积分求导及反函数的运算

本题属基本题型,中等难度,考察变上限定积分求导及反函数的运算。变上限定积分的求导是考研常考的考点

12

数二填空

极坐标系下的平面图形的计算

本题考查极坐标系下的平面图形的计算,属于考研常考的定积分的应用方面的问题,难度适中

13

数二填空

参数方程的求导,求曲线的法线方程

本题属于基本题型,考察参数方程的求导,进而写出曲线的法线方程

14

数二填空

求二阶常系数非齐次线性微分方程的通解

本题属基本题型,中等难度,根据二阶常系数非齐次线性微分方程的解的性质写出二阶常系数非齐次线性微分方程的通解

数学三:

题号

卷种及题型

考点

分析

9

数三填空

导数的定义及曲线的切线

本题属于基本题型,考察曲线的切线及导数的定义

10

数三填空

隐函数方程求导及导数的定义

本题属于基本题型,考察隐函数方程求导:将看成自变量,方程两端对求导;导数的定义是历年来考研数学的重点。

11

数三填空

广义积分的计算,积分的分部积分法

本题属于基本题型,考察广义积分的计算及积,积分的分部积分法是考研的重点

12

数三填空

求二阶常系数齐次线性微分方程的通解

本题属基本题型,中等难度,根据二阶常系数齐次线性微分方程的解的性质写出二阶常系数齐次线性微分方程的通解

篇4:考研高数解析

考研高数解析

从难度的角度,首先,从难度来讲,今年的难度跟去年的数学难度可以持平,但是比要简单了很多,也比更简单,这应该是最近四年以来可以跟去年持平的一次。所以,今年的分数线提前可以这么讲讲,考生看到这个视频的时候,你也可以发现题目做出来的感觉是挺好的。所以,整体难度是跟去年持平,比20更容易。

从最近几年考题都可以看出,现在考研数学题的特点还是以考试大纲为基础,我们从一开始讲课就从头到尾跟考生始终落实的一个观点,我们说数学要重视基础的复习,基本概念,基本原理,基本方法,从今年的考题也可以充分看出来。

首先拿高等数学题来做个示范,我们知道高等数学首先在考研三份试卷里占的比重是最大的,高数里有三个最最基础的计算,求极限,求导数,求积分,求极限是最基础的又是非常重要的计算,我现在拿数(二)与数(三)的真题讲。

听过课的同学,即使你是明年参加考研的学生,如果你20下半年听过我的数学专题讲座的话,我经常跟学生讲这个话,求极限在很多书上看到的各种各样的方法,真要讲求极限有怎样的方法,真正处理极限的技巧方法的话,我经常讲我说要学会使用泰勒公式处理,是经过我们整理过的泰勒公式。

拿这个题来讲,整理过的泰勒公式,如果你知道这样的结论,当X趋于0的时候,x-sinx等价于六分之一x的立方,果然今年这个又考了。今年数(二)这道题,如果你知道这个结论,你计算的速度应该会更快。

再看数(三)这道极限题,在课堂里至少重复讲过四次,这是一道很典型的求极限题,如果从极限的类型归类是0:0型,而且它的函数形式是分子是两个指数函数做差。看到这样的题,我们最常见的处理方法,第一种用等价无穷小先化解,先把后面的指数函数提出来,然后使用e的f(x)次幂-1等价于f(x)。第二种用拉格朗中值定理处理。

如果还没听过我课的同学就不明白什么意思,听过我课的同学很容易反映出来,我说这样的题一定是这么考的,一定是e的狗次幂减去e的猫次幂,一定是变成e的猫次幂乘以e的狗减猫次幂,然后再减1,等价于狗减猫。这道题都是平时练过,应该练的很熟练的题。

分数线跟去年的平均分会很接近,如果今天早上已经考完数学,我们说点对不同的考生有帮助的分数线。今年的分数绝对可以预测,如果考的是经济管理,考的是数(三),又报考了比较好的学校,你考这样的'学校至少要考到120分以上,这样的分数只要考稍微好一点的院经济管理的专业,我敢保证很多考生绝对会考过130分。当然,如果你是考的一般的学校,你千万不要以为考一个及格分就可以满足,如果今年这样的难度,你考个一百来分只是你发挥的很正常,关键是看你报考什么院校什么专业了,如果你报考的是一些普通院校,考到这个分数还是可以过线的。

从难度的角度,首先,从难度来讲,今年的难度跟去年的数学难度可以持平,但是比年要简单了很多,也比20更简单,这应该是最近四年以来可以跟去年年持平的一次。所以,今年的分数线提前可以这么讲讲,考生看到这个视频的时候,你也可以发现题目做出来的感觉是挺好的。所以,整体难度是跟去年持平,比2010年更容易。

从最近几年考题都可以看出,现在考研数学题的特点还是以考试大纲为基础,我们从一开始讲课就从头到尾跟考生始终落实的一个观点,我们说数学要重视基础的复习,基本概念,基本原理,基本方法,从今年的考题也可以充分看出来。

首先拿高等数学题来做个示范,我们知道高等数学首先在考研三份试卷里占的比重是最大的,高数里有三个最最基础的计算,求极限,求导数,求积分,求极限是最基础的又是非常重要的计算,我现在拿数(二)与数(三)的真题讲。

听过课的同学,即使你是明年参加考研的学生,如果你2011年下半年听过我的数学专题讲座的话,我经常跟学生讲这个话,求极限在很多书上看到的各种各样的方法,真要讲求极限有怎样的方法,真正处理极限的技巧方法的话,我经常讲我说要学会使用泰勒公式处理,是经过我们整理过的泰勒公式。

拿这个题来讲,整理过的泰勒公式,如果你知道这样的结论,当X趋于0的时候,x-sinx等价于六分之一x的立方,果然今年这个又考了。今年数(二)这道题,如果你知道这个结论,你计算的速度应该会更快。

再看数(三)这道极限题,在课堂里至少重复讲过四次,这是一道很典型的求极限题,如果从极限的类型归类是0:0型,而且它的函数形式是分子是两个指数函数做差。看到这样的题,我们最常见的处理方法,第一种用等价无穷小先化解,先把后面的指数函数提出来,然后使用e的f(x)次幂-1等价于f(x)。第二种用拉格朗中值定理处理。

如果还没听过我课的同学就不明白什么意思,听过我课的同学很容易反映出来,我说这样的题一定是这么考的,一定是e的狗次幂减去e的猫次幂,一定是变成e的猫次幂乘以e的狗减猫次幂,然后再减1,等价于狗减猫。这道题都是平时练过,应该练的很熟练的题。

分数线跟去年的平均分会很接近,如果今天早上已经考完数学,我们说点对不同的考生有帮助的分数线。今年的分数绝对可以预测,如果考的是经济管理,考的是数(三),又报考了比较好的学校,你考这样的学校至少要考到120分以上,这样的分数只要考稍微好一点的院经济管理的专业,我敢保证很多考生绝对会考过130分。当然,如果你是考的一般的学校,你千万不要以为考一个及格分就可以满足,如果今年这样的难度,你考个一百来分只是你发挥的很正常,关键是看你报考什么院校什么专业了,如果你报考的是一些普通院校,考到这个分数还是可以过线的。

大学网考研频道。

篇5:考研数学高数常考考点梳理

考研数学高数常考考点梳理

高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。

为了帮助提高大家高效复习,本文为大家梳理了高等数学的常考考点,希望大家不要盲目复习,加强巩固以下知识点。

1.函数、极限与连续

求分段函数的复合函数;

求极限或已知极限确定原式中的常数;

讨论函数的连续性,判断间断点的类型;

无穷小阶的比较;

讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。

2.一元函数微分学

求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;

利用洛比达法则求不定式极限;

讨论函数极值,方程的根,证明函数不等式;

利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;

几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;

利用导数研究函数性态和描绘函数图形,求曲线渐近线。

3.一元函数积分学

计算题:计算不定积分、定积分及广义积分;

关于变上限积分的题:如求导、求极限等;

有关积分中值定理和积分性质的证明题;

定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;

综合性试题。

4.向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积;

求直线方程,平面方程;

判定平面与直线间平行、垂直的`关系,求夹角;

建立旋转面的方程;

与多元函数微分学在几何上的应用或与线性代数相关联的题目。

这一部分为数一同学考查,难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

5.多元函数的微分学

判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;

求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;

求二元、三元函数的方向导数和梯度;

求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;

多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。

这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。

6.多元函数的积分学

二重、三重积分在各种坐标下的计算,累次积分交换次序;

第一型曲线积分、曲面积分计算;

第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;

第二型(对坐标)曲面积分的计算,高斯公式及其应用;

梯度、散度、旋度的综合计算;

重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。

8.无穷级数

判定数项级数的收敛、发散、绝对收敛、条件收敛;

求幂级数的收敛半径,收敛域;

求幂级数的和函数或求数项级数的和;

将函数展开为幂级数(包括写出收敛域);

将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);

综合证明题。

9.微分方程

求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;

求解可降阶方程;

求线性常系数齐次和非齐次方程的特解或通解;

根据实际问题或给定的条件建立微分方程并求解;

综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

篇6:考研数学 高数第一章学习目标解析

2016考研数学 高数第一章学习目标解析

极限是整个高等数学学习的工具,高数中很多重要概念例如导数、定积分、二重积分等都是由极限定义出来的。就考研数学考查的计算题来说,极限的计算占据很大一部分,能否快速准确地判定出类型采取正确的方法来进行计算影响到整张试卷的成败。千里之行始于足下,作为高等数学的第一章,把它学好具有非常重要的意义。那么准备2016年考研的同学,在基础阶段(到6月底止)如何去复习极限部分的内容呢?应该掌握到何种程度呢?希望以下内容对同学们有所帮助。

基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所代表的任意小以及代表的距离。

除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为。

极限的'计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的;第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换);第三种是洛必达法则,适用于及 型未定式,在使用的过程中需要注意一下几点:1、洛必达法则必须结合等价无穷小使用;2、使用一次整理一次;3、其他类型未定式需要转化成 及 型才可以使用洛必达法则等;第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出;第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于 个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的;第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题;第七种方法是适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。

以上,从大的框架结构上给出了极限一章极限定义和极限计算的常用方法,希望同学们对这一章有一个宏观的把握,但是具体的细节掌握还还有待进一步细致的学习,比如分段函数分段点处的极限如何处理,哪些函数需要讨论单侧极限,幂指函数又是如何求极限的呢?这些都是考验的重点和热点问题,需要引起大家的高度重视,在复习的过程中要多留心多总结把重要的方法记录下来,错题记录下来方便后续的自我检查。

考研数学高数常考考点梳理

考研数学 高数总结

考研高数复习计划

考研数学 高数重视三大能力

GMAT数学考点解析

把握考研数学规律规划高数复习

考研数学 高数考试8大重难点

考研名师谈 基础阶段数学高数复习

考研数学高数 要掌握重点及方法

考研数学线性代数四个核心考点

《考研数学选择题高数考点解析(集锦6篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档