下面小编给大家整理的《比例尺》数学教案设计,本文共20篇,欢迎阅读!

篇1:《比例尺》数学教案设计
教学目标
1、让学生在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义,并且知道什么是图上距离,什么是实际距离。
3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学重难点
教学重点:
1、正确理解比例尺的含义。
2、利用比例尺的知识,解决生活中的实际问题。
教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学工具
ppt课件
教学过程
同学们,今天由我给大家上一节课,大家有没有信心展示一下自己的能力。
一、激发兴趣,感受比例尺
师:好,我先来考考大家,从北京到天津坐动车组需要要15分钟,可是一只小蚂蚁只用了5秒钟,你知道是怎么回事吗?
生:在地图上爬行的。
师:大家真聪明,蚂蚁爬的是从北京到天津的图上距离,而人们坐车所行的是从北京到天津的实际距离。
师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。
二、动手操作,认识比例尺
1、操作计算。
师:你们喜欢画画吗?那我们来个最简单的——画线段游戏。我说线段的长度,你在练习本上画出来,好吗?
①3厘米长的线段
②1米长的线段
师:咦?怎么不画了?
生:画不下。
师:纸不够大吧,有什么好的办法吗?
生:可以把1米缩小若干倍后画在纸上。
师:这个办法不错。那同学们就用这种方法画一下吧。
(重点:体会比例尺的实际意义,因为需要所以产生。)
学生画完,集体交流。
师:你是用图上几厘米的线段来表示实际1米的呢?
教师有选择的板书:
师:像2厘米、5厘米、10厘米这些在纸上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。
师:你能用比表示出图上距离与实际距离的关系吗?
教师指名回答,并板书计算过程。
2、揭示比例尺的意义。
(1)初步理解比例尺的意义
师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)
师:根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)
师:同样是1米的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)
师:同学们,你们还记得我们上课时所说的一道脑筋转弯的题目吗?
师:请看大屏幕。原来坐动车组所行的是从北京到天津的实际距离约是120千米,而蚂蚁行的是2.4厘米的图上距离,怪不得只要5秒就爬到了!那么,你能求出这副地图的比例尺吗?
(学生做前先交流)
师:大家交流一下,谁能告诉大家首先要做什么事情?
师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先要把单位统一起来。
学生汇报计算结果
让能说说求一幅图的比例尺的方法是怎样的?
对应练习: 完成课本第49页“做一做”
(2)联系生活,进一步理解比例尺
师:比例尺我们已经求出来了,那你能说说1:5000000所表示的意义吗?
生1:图上距离与实际距离的比是 1:5000000。
生2:图上1厘米代表实际距离5000000厘米。
师:你能用另一种说法说出图上距离和实际距离的关系吗?比如谁是谁的几倍?谁是谁的几分之几?
生1:图上距离是实际距离的几分之几?
生2:实际距离是图上距离的几倍?)
三、认真比较,深刻理解
1、比较比例尺,揭示数值比例尺的意义。
师:像1:5000000这样的比例尺我们叫它数值比例尺。它也可以写成1/5000000。
2、认识线段比例尺。
师:除了数值比例尺,在生活中你还见过别样的比例尺吗?请同学们看大屏幕。
师:这里的这条线段,它的长度是1厘米。那么根据上面的数据,同学们想一想图上1厘米相当于地面上实际距离多少呢?
生:图上1厘米相当于地面上实际距离50千米。
师:表达得真清楚。谁能像他这样说一说?
3、将线段比例尺转化成数值比例尺
师:数值比例尺和线段比例尺是可以互相转化的。那这个线段比例尺转化成数值比例尺是多少呢?
师:下面请同学们把这个线段比例尺改写成数值比例尺。
1厘米:50千米
=1厘米:5000000厘米
=1:5000000
4、认识把实际距离放大后的比例尺
师:同学们,刚才我们把1米的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等。
师:而在绘制比较精细的零件图时,由于零件比较小,经常需要把零件的尺寸按一定的比放大。请同学们看大屏幕,这是一幅机械零件的图纸,你们能找到它的比例尺吗?
师:说来说说
生:2:1
师:那2:1表示什么意义呢?
生:说得很好,请坐。
师:接下来让我们把这两个比例尺进行一下对比。请看大屏幕,仔细观察,它们有什么不同?
生1:一个前项为1,一个后项为1。
生2:1:50000000是将实际距离缩小,2:1是将实际距离扩大。
师:为了计算的方便,我们通常将比例尺写成前项是1或后项是1的比。当比例尺的前项为1时就表示将实际距离缩小,当比例尺的后项为1时,就表示将实际距离扩大。
四、比例尺的应用
师:刚才我们学习了如何利用图上距离和实际距离求一张图的比例尺,但是如果知道图上距离和比例尺,又该怎样求实际距离呢?
五、回顾总结,梳理提升:
这节课有什么收获?
生1:我知道有数值比例尺和线段比例尺。
生2:我知道比例尺的前项是1.
生3:我知道了图上距离和实际距离的比,叫这幅图的比例尺。
师:什么叫比例尺?
生齐答:图上距离和实际距离的比,叫这幅图的比例尺。
师:同学们,比例尺分为大比例尺、中比例尺、小比例尺。它们分别应用在哪些地方呢?请用数学的眼光观察生活、走进生活,了解更多的比例尺的知识。
板书
比例尺
图上距离∶实际距离 = 比例尺 图上距离/实际距离 = 比例尺
篇2:比例尺(六年级)(人教版六年级教案设计)
教学目标
1.使学生理解比例尺的意义并能正确地求出平面图的比例尺.
2.使学生能够应用比例知识,根据比例尺求图上距离或实际距离.
教学重点
理解比例尺的意义,能根据比例尺正确求出图上距离或实际距离.
教学难点
设未知数时长度单位的使用.
教学步骤
一、复习准备
(一)填空.
1千米=( )米 1分米=( )厘米
1米=( )分米 1厘米=( )毫米
30米=( )厘米 300厘米=( )分米
15千米=( )厘米 40毫米=( )厘米
(二)解比例.
二、新授教学
谈话导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图.在绘制这些地图和平面图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上.有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上.不管是哪种情况,都需要确定图上距离和实际距离的比.今天我们就来学习这方面的知识--比例尺.
板书课题:比例尺
(一)教学例4(课件演示:比例尺)
例4.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.
1.读题回答:这道题告诉了我们什么?要求什么?
教师板书:图上距离∶实际距离
2.思考.
(1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?应该怎么办?
(2)是把厘米化成米,还是把米化成厘米?为什么?应该怎样化?
教师板书:10米=1000厘米
3.求出图上距离和实际距离的比.
教师板书:10∶1000=1∶100或 =
答:图上距离和实际距离的比是1∶100.
4.揭示比例尺的意义.
教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字--比例尺.(教师在“图上距离∶实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也可以写成分数形式.
板书:
图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比.
教师强调:
(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位.
(2)求比例尺时,前、后项的长度单位一定要化成同级单位.
(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.
5.练习
北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺.
(二)教学例5(课件演示:比例尺)
例5.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?
教师提问:题目中告诉了我们什么已知条件?要求什么?
根据比例尺的意义,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?
(因为 ,已知图上距离为15厘米,比例尺为 ,要求的实际距离不知道,可用 表示,所以可列比例式 )
1.讨论:这个比例式中的 指的是实际距离.题中要求的是南京到北京的实际距离为多少千米,根据本题的已知条件,所设未知数 应用什么单位? 为什么?
2.订正并追问
(1)为什么要设南京到北京的实际区高为 厘米?
(2)这个比例式表示的实际意义是什么?
(3)解这个比例式的依据是什么?
(4)在求出 =90000000后,为什么还要化成900千米?
3.反馈练习.
先说出下图中的比例尺是多少;再用直尺量出图中河西村与汽车站间的距离是多少厘米,并计算出实际的距离大约是多少千米.
篇3:数学《比例尺》教案
数学《比例尺》教案
教学目标:
1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。
2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。
3.理解比例尺的书写特征。
教学重点:
比例尺的意义。
教学难点:
将线段比例尺改写成数值比例尺。
教学过程:
一、引入
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?
请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的'一种应用。今天我们就来学习这方面的知识。
二、教学比例尺的意义。
1.什么是比例尺(自学书上内容,学生交流汇报)
出示图例1
在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2.介绍数值比例尺
让学生看图。
我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。
3.介绍线段比例尺
还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。
4.介绍放大比例尺
出示图例2
在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。
篇4:六年级数学比例尺课件
六年级数学比例尺课件
教学目标
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点
理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点
从不同的角度理解比例尺的意义。
教学准备
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图、一张方格纸。
教法学法
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
教学过程
一、导入激趣
我每天上班骑电动车从家到学校要15分钟,可是一只小蚂蚁只用了5秒钟,你知道是怎么回事吗? 大家真聪明,那小蚂蚁爬的路程和我行的路程有什么区别呢?(引出图上距离和实际距离)这就是我们这节课要学习的知识。
二、探究新知
1、师:如果要给我们教室画一个平面图,它应该是什么形状的?
生:长方形。
师:我们以前测量过教室的长、宽各是多少?
(生:长大约8米,宽大约6米 。 )
师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的'?(展示生的作品)
(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是4:3。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)
引导学生汇报:
(1)直接写上“教室面积大约50平方米。”
(2)在图上标出“长8米、宽6米。”
(3) 标上“1厘米=1米”。
(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”
( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)
让生自学课本中的什么是比例尺?
集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。
2、让学生议一议可以怎样理解比例尺所代表的意义。
图上的1厘米表示实际的多少?(注意单位要统一)
实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?
图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?
图上距离相当于多少份?实际距离相当于多少份?
三、巩固练习
(一)基本运用(小黑板出示)
1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。
判断下列几句话中,哪些比是比例尺,哪些不是.
(1)图上宽与图上长的比是1∶2 ( )
(2)图上宽与实际宽的比1/400是 ( )
(3)图上面积与实际面积的比是1 ∶160000
(4)实际长与图上长的比是400 ∶1()
(5)图上长与实际宽的比是1 ∶200 ( )
通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。
2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。
3、深圳到上海的 距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。
在这个基本运用的过程中,鼓励学生用多种方法解。
4、生先独立完成课本第30页1至5题,然后集体订正。
(二)拓展延伸
1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?
2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。
四、课堂小结
师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?通过本节课的学习你知道什么叫比例尺了吗?如何求一幅图的比例尺?图上距离?实际距离呢?
五、布置作业(略)
六、板书设计
比例尺
学生的图1:100 或分数 图上距离:实际距离=比例尺
(贴)1:200 或分数 前项一般为1
(强调比例尺的前项一般为1)
3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。
篇5:数学比例尺教学设计
【教学内容】
北师大版数学六年级下册30页――比例尺
【教材分析】
教材从学生比较熟悉的房屋平面图入手,引导学生认识比例尺,初步感受比例尺在生活中的应用。出示平面图后,借助图形放缩的经验和其他学习经验,了解比例尺的含义。
【学情分析】
本节课内容是学生在学习了化简比的基础上学习的,因此不会感到陌生。但学生对比例尺的意义可能不好理解,这部分知识相对来说比较抽象,在具体计算上可能存在一定困难。
【教学目标】
1、结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。
2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
3、能积极参与数学学习活动,进一步体会数学与日常生活的密切联系。
【教学重点】
结合具体情境理解比例尺的意义。
【教学难点】
应用比例尺的知识解决实际问题。
【教学准备】
多媒体课件,直尺,中国地图
【教学流程】
一、谈话导入,激起兴趣
1、如果要绘制我们教室的平面图,需要多大的纸?
如果要绘制中国地图呢?
(学生自由回答。得出结论。)
2、聪明的人想出了一个办法,把物体实际的长度按一定比例缩小再画在图纸上,这就是我们这节课要研究的内容。
【设计意图:先抓住学生急于认知的心理,从生活中熟悉的事物出发,真切感受到在绘制平面图的时候,不可能按照实际的长度来操作,需要有一个科学的方法,从而引入本节课内容。】
二、创设情境,探究新知
活动一:(课件出示)
六.一儿童节快要到了,学校要举办一个大型的篝火晚会,想让同学们设计一个舞台。在平面图上如果用10厘米表示地面上10米的距离,那么图上距离与实际距离的比是多少呢?
【设计意图:用学生喜欢的活动引起浓厚的兴趣,用亲身经验走近数学,探索其中的奥秘。】
(1)读懂题目中的信息。
(学生汇报已知条件和所求问题。)
(2)根据题目的要求,引导学生得出10厘米:10米,并用学生已有的学习经验化简比。
【设计意图:利用已有的学习经验,学生自然会想到要化简这个比,必须要统一计量单位,这也是比例尺这个知识点重点强调的地方。】
(3)随学生汇报,板书提炼:图上距离:实际距离
10厘米:10米
10:1000
1:100
(4)揭示比例尺的含义。使学生理解图上距离与实际距离的比就是比例尺。
【设计意图:不把比例尺作为一个知识点让学生背诵,而是在情景中鼓励学生进行充分的思考与交流后得出结论。】
(5)讲授比例尺的另一种表示形式,即分数的形式。板书。
活动二:(课件出示)(投影仪展示)
师生共同搜集的生活中不同的比例尺,引导学生交流讨论,说说自己的发现。
(学生积极展开讨论与研究,各抒己见。)
教师归纳为三点。
① 比例尺是一个比,不带计量单位。
② 比例尺的前项和后项一定是同级单位。
③ 为了计算方便,比例尺通常都写做是前项为1的比。
【设计意图:多角度理解比例尺的含义,使学生对比例尺的意义、形式、求法有初步了解,为解决实际问题打好基础。】
活动三:(出示教材30页情境图)
(1) 理解比例尺1:100的意义,引导学生用自己的语言描述。
(2) 完成2、3题。
(学生独立思考后小组内交流自己的想法,然后全班交流方法。)
(3) 完成4、5题。
(引导学生理解题意,独立思考后进行交流。)
【设计意图:学生可以利用比的意义、比例尺的含义等知识和解决问题的经验来解决这些问题,放手学生有利于提高解决问题的能力。】
(4)引导学生进行总结归纳。已知图上距离、实际距离、比例尺中的两个量怎样求第三个量。
三、拓展引申,巩固新知
出示一中国地图。
1、找到自己的家乡。估一估家乡到北京的距离,求一求实际距离。
2、放暑假时,你打算从------到-------去旅游,两地间的实际距离大约是------千米。
引导学生交流各自的想法。
【设计意图:本体具有开放性和挑战性,对学生的估算和计算能力都是一种考验。】
四、运用所学,解决问题
1、学了本节课,你有获得了哪些知识?
2、怎样画我们教室的平面图呢?(长8米,宽6米)
引导学生交流自己的看法,自定比例尺,画出平面图。
【设计意图:回顾前面的问题,首尾呼应,为学生提供充分的自由发展空间,让他们倾听、协作、分享、交流。】
五、布置作业,课后延伸
1、搜集生活中后项为1的比例尺。
2、比例尺除了可以用1:100、1/100这样的形式表示,你知道还可以怎样来表示吗?
【设计意图:作为知识的拓展,将旧教材中的扩大比例尺和缩小比例尺、数值比例尺和线段比例尺的知识点给学生,拓宽学生视野和知识面。】
【板书设计】
比例尺
图上距离:实际距离 图上距离/实际距离
10厘米:10米
10:1000 计量单位要统一
前项 为1
1:100
不带计量单位
1.数学教学设计步骤
2.数学教学设计推荐
3.数学周长教学设计
4.日历中的数学 教学设计
5.数学的优秀教学设计
6.《圆的认识》数学教学设计与反思
7.奥运中的数学教学设计
8.初二数学实数教学设计
9.小学数学学科教学设计
10.小学数学圆的认识教学设计
篇6: 数学比例尺教学设计
教学过程:
一、导人新课
教师:上节课我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,如比例尺1:10000就表示图上距离是l厘米实际距离就是10000厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有。什么是线段比例
尺呢:这就是我们这节课要学习的内容。(板书课题)
二、新课
教师:是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第16页.看右下角有一幅地图。地图的下面就有一条。它上面有0、50和100几个数,还注明了长度单位千米。这些数和单位表示什么意思呢?大家量一量从0到50这段线段有多长。(1厘米。)从50到100呢?(也是1厘米。)从0到50就表示地图上1厘米的距离相当于地面上50千米的实际距离。从0到100就表示地图上2厘米的距离相当于地面上100千米的实际距离。
然后教师问:
l如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际距离?
让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米。再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?
引导学生想:1厘米.的图上距离代表地面上多少千米的实际距离,(50千米。)我们量出沈阳到长春的图上距离是5.5厘米,就代表几个50千米的实际距离。(5.5个50千米。)怎么列式计算?
让学生说怎样列式。教师板书:505.5=275(千米)
之后,进一步提出:
你能不能把这个地图上的改写成数值比例尺?怎样改写?(因为图上1厘米相当于地面上50千米的实际距离,现在图上距离和实际距离的单位不同,根据图上距离:实际距离=比例尺,要把图上距离和实际距离的单位化成同级单位,50
千米等于5000000厘米。所以这条改写成数值比例尺就是1:5000000。)
教师板书出数值比例尺。
三、课堂练习
完成练习五的第49题:
1.第5题,让学生独立填表:填表前,要提醒学生图上距离的单位应用什么,实际距离的单位应用什么。
2.第8题,让学生独立计算。集体订正后,让学生按照东南西北的方位说说拖拉机站、电影院、汽车站和供销社离学校的距离。如,电影院在学校的南面,距学校200米;拖拉机站在学校的西北面,距学校2500米。
3.第9题,让学生先求出试验田长和宽的图上距离,然后画出平面图,并且要注意在平面图上注明比例尺。
篇7:数学《比例尺》教学教案
教学内容:六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。
教学目标:1.使学生理解比例的意义。
2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。
3.培养学生分析问题、解决问题的能力和创新能力。
教学重点:理解比例尺的意义。
教学难点:根据比例尺求图上距离和实际距离。
教具准备:多媒体课件一套。
教学过程:
一、问题的情景:
1. 出示邮票。问:你能同样大小的把它画在图纸上吗?
让同学们画一画,再拿出邮票的长,比一比,怎么样?
归纳:(同样长)得:图上的长和实际的长的比是1:1。
2. 教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?
如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?
3. 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?
4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。
板书:比例尺
二、问题解决:
5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的`倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。
6. 小组回报设计方案,教师选择以下四种方案。
(1).用9厘米表示9米
(2).用4.5厘米表示9米
(3).用3厘米表示9米
(4).用1厘米表示9米
7. 说说以上方案是图上距离比实际距离缩小了多少倍?
算一算,每幅图 图上距离和实际距离的比。
(1).9厘米9米=9900=1100
(2).4.5厘米9米=4.5900=1200
(3).3厘米9米=3900=1300
(4).1厘米9米=1900
8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。
齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。
比例尺怎样求:(看上述四个比例式得出):
图上距离实际距离=比例尺 或 图上距离
实际距离
9. 讨论汇报:上面四幅图,比例尺是多少图最大?
比例尺是多少图再小?为什么?
10. 练习:
(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。
(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。
(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?
(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?
(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?
上述四题分层练习,后讲评。
11. 比较(3)、(4)两题的比例尺有什么不同?
教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。
12. 比例尺有多少种表示方法?让生说一说
(常见的有:比的形式 分数的形式 线段形式)
三、问题的应用:
根据比例尺的关系式,求实际距离。
(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?
(学生独立解答,同时抽一生板演)
解:设上海到北京的实际距离为x厘米,
x=105000000
105000000厘米=1050千米。
答:上海到北京的实际距离大约是1050千米。
(2).分析讲述:
根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。
(先设x,再根据比例尺的计算公式列出方程。)
(3).图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。
(4)怎样设x,.教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。
(5)尝.试练习第57页试一试。
河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?
篇8:《比例尺》数学教学设计
教学目标:
知识与技能:
1.在实践活动中体验生活中需要的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。
过程与方法:
通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。
情感与态度:
1、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
2、在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣。
教材分析:
《比例尺》这节课是在学生学习了比和比例的基础上进行学习的,它是比和比例知识的延伸和应用,比例尺不是一把真正意义上的尺子,却是一个日常生活中极其重要的工具。在现实生活中有着广泛的应用,因此,对比例尺的学习具有很现实的意义。比例尺知识比较枯燥,也比较抽象,尽管教材对比例尺这一部分的知识进行了改动,但不易让学生直观的理解,与实际生活较远,所以在教学时可以将这部分知识进行稍许改动。
学生分析:学生对于常见的平面图和地图并不陌生,对化简比、比例的知识也已经掌握了,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上将紧密借助学生已有的知识和经验引导学生,主动建构知识,让学生充分动手操作,动脑思考,经历“比例尺”知识的形成过程。
教学重点:理解比例尺的意义。
教学难点:多角度理解比例尺的含义。
教学方法:在教学中,我采用动态的、多元的评价方式,并以多媒体演示为辅助教学手段,达到了生动、直观、形象的教学效果。
教学过程:
一、设疑激趣
师:“脑筋急转弯”:九江到北京的距离有1300多公里,而一只蚂蚁从九江爬到北京只用了5秒钟,这是为什么?
生:爬的是地图.
师:对了,同学们见过地图吗?
生:见过
师:为什么我们国家有960万平方公里的辽阔土地却可以画在一张小小的地图之上?
生:是按照一定比例缩小的。
师:为什么同样是中国地图,却有大小不一呢?
生:缩小的倍数不一样
【设计意图】猜谜语是儿童喜闻乐见的一种形式,能引发学生的学习兴趣,使枯燥无味的教学内容转化为妙趣横生的学习活动,课伊始让学生猜谜,课堂气氛一下子就活跃起来了,接着在认识中国地图的过程中,唤醒了学生最熟悉的生活经验,调动原有的知识储备。让原有基础知识(缩小的倍数不一样,所以地图有大有小)与现实问题建立联系,也自然的引出数学问题,激发了学生探究的欲望和兴趣。使学生在轻松、愉快的氛围中积极主动思考,提高了学习的'积极性。
二、自主探究新知
1、调动原有经验,初步感知新知
师:课下,同学们已经动手测量出我们教室地面长9米,宽6米。现在老师就请你们当一回小小设计师,将教室占地的平面图画在白纸上。”有信心当好这个设计师吗?
生自由画图。
汇报。
生:我把它缩小了比例,画成长是9厘米宽6厘米的图形。
师:他想的是把长和宽都同时缩小了100分之一。这个你们画的9厘米,6厘米在数学上咱们用一个词语:图上距离来表示,咱们在纸上画的长度就叫“图上距离”。那笑笑家具体的长9米,宽6米,咱们可以用个什么词来相容呢?
生:实际距离
师:同学们,现在你能用一个比来表示刚才你画的图上距离和实际距离的比吗?
生:1:100
2、揭示比例尺的意义
师:你们能理解下1:100是什么意思吗?在小组内,和你的伙伴说一说。
生:实际距离是图上距离的100倍,或者图上距离是实际距离的100分之一,图上距离是1厘米,实际距离是100厘米。
师:刚才同学们说了,当图上距离是1厘米,实际距离就是100厘米,我们也可以理解为当图上距离为1份的时候,实际距离为100份,我们还可以说图上距离是实际距离的100分之一,我们也可以说实际距离是图上距离的100倍。
师:刚才同学们画的是长9厘米,宽6厘米的图,还有没有人画的不一样的图?如果是我的话,我想画一个长是3厘米,宽是2厘米的长方形平面图来表示笑笑家可以吗?你们也能用一个比来表示图上距离和实际距离的关系吗?
生:可以用1:300来表示。
师:像刚才同学们的1:100,1:300都表示的是图上距离比实际距离。在数学上,我们把像这样图上距离和实际距离的比叫做比例尺。如果用文字来表示的话就是比例尺=图上距离:实际距离。
3、强化比例尺的概念
这个比例尺的尺是我们刚才画图的尺子吗?不是。对,尺子是用来量长度的,而咱们这里的比例尺是一个比。全班一起读一读。
【设计意图】层次性是安排教学活动的一个重要原则。这一环节中,首先调动学生原有经验,通过让学生设计教室的平面设计图,使学生意识到将教室实际的长和宽画出来已经不切实际,不能满足问题的解决,从而自主探求,引出新知(设计一定的比例尺);让学生在画图、思考中不知不觉地学习,接着让学生们说出图上距离和实际距离的比的意义,不仅充分体现了交流的价值,而且还在合作交流中进一步加深了比例尺意义的理解。最后教师揭示比例尺不是一把尺子,而是一个比,使学生对比例尺的理解达到了升华。纵观这整个教学环节,层层递进,学生的学习状态从旧有的生活经验转为主动探索新知。预计教学效果好,同时学生思维水平也得到了提高。
4、生活中的比例尺
师:其实我们的生活中还有许多比例尺的例子,我们一起去看看。
请生上来读一读:
房屋设计图1:50
世界地图:1:33002万
地球仪:1:40000000
师:其实生活中除了老师给你们看的模型外,还有很多很多关于比例尺。像刚刚同学们写在黑板上的,表示图上距离和实际距离的比在我们的生活中还有很多很多,现在跟你的同桌说一说,黑板上这三个比例尺的意思。
【设计意图】“数学来源于生活”,因此我们不仅选材密切联系学生生活实际,而且教学也必须从学生熟悉的生活情境和感兴趣的事物出发,因此这一环节展示大量生活中的比例尺的例子,使学生们有更多的机会从周围熟悉的事物中学习比例尺和理解数学,体会到数学应在身边,感受到数学的趣味和作用,体验到数学的魅力。
三、巩固练习
1、我们学校的校门宽8米,画在图纸上宽2米,你知道学校平面图的比例尺吗?
师:提醒学生,在求比例尺的时候,如果有单位不统一的时候,咱们要先统一单位,最后,写出比以后还要进行化简。
2、笑笑给我们制作了她家的平面图。
师:请仔细观察,在这幅图上,你得到了哪些有用的数学信息?
生:比例尺是1:100
师:现在你会用这个图中的比例尺来解决笑笑给我们提出的问题吗?笑笑卧室实际的长是多少米,宽是多少米,实际面积是多少平方米?
3、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来.
生独立完成
【设计意图】数学课堂上练习题是非常重要的。我秉承“一题一得”的原则,在这个环节共安排了三题。第一题主要让学生巩固对于比例尺意义的理解,能正确计算比例尺。第二题让学生在思考中,能通过比例尺和图上距离,求出实际距离。最后一题即会求出图上距离。三个习题环环相扣,这样的作业设计让学生多渠道地将新知理解透彻,学生的数学思维能力得到极大发展。
四、全课总结
师:通过本节课的学习。你对比例尺有了一定的认识和了解了吗?你觉得今天上课谁表现最棒?你想夸夸谁?
【设计意图】必要的课堂小结让学生学会自我总结,自我评价,养成自我反思的好习惯。
板书设计:
比例尺
(是一个比)
图上距离
9米 6米 比例尺= 图上距离:实际距离 或
实际距离
9厘米 6厘米 1 : 100
3厘米 2厘米 1 : 300
篇9:《比例尺》数学教学设计
【第一教时】
【片断一】
师:(出示一张中国政区图)我们祖国的国土面积有960万平方千米,哪位同学能在这幅地图上比划出我国的疆土?(生用手比划)
师:图上这一块有960万平方千米吗?(生思考)
师:在绘制地图或平面图时常把实际距离缩小一定的倍数画在图纸上,今天我们就来研究这样的问题。
【说明】出示地图,使学生对本节课所要研究的知识有个感性的认识,同时初步了解了“图上距离”和“实际距离”的意义,为学生活动的开展扫清认知障碍,并有效渗透国情教育。
【片断二】
师出示课本“游泳池”的平面图,生在课本上量出图上的长和宽,并计算图上长相当于实际长的( / ),图上宽相当于实际宽的( / )。
师:1/1000是什么意思? 生1:表示图上长是实际长的1/1000。
生2:把实际长缩小1000倍为图上距离的长。
生3:图上的长与实际的长的比是1︰1000。 …… 师:我们把图上距离与实际距离的这种比的关系叫做这幅地图的比例尺。谁能说说什么是比例尺?
【说明】此环节紧紧抓住1/1000让学生反复说意义,为归纳比例尺的意义做感性积累,这也本节课的重点所在。
【片断三】 师:谁能从这幅中国地图上找出比例尺?
一生上来指1︰6000000,另一生又上来指 师: 第二位同学指的 是不是比例尺呢?如果是,又 表示 什么意思?请同学们自学课本第35页的一段文字,再来解释。(生自学后汇报) 它表示图上1厘米为实际的60千米。 生2:它表示图上距离是实际距离的.1/6000000。
生3:它表示实际距离是图上距离的6000000倍。
【说明】仅借助传统的教具——挂图来组织教学,让学生在观察、思考、自学中主动获取知识,这要比老师给予有用的多。教学的实际效果并不在于是否使用了先进的教学媒体,只要能达到教学目标,最简洁最经济的就是最好的。
【第二教时】
【片断一】
师:请大家在地图上找出比例尺。(生找出后板书)
师:如果要知道徐州到首都北京的实际距离,那么还需要知道什么呢?
生:(齐说)徐州到北京的图上距离。
师:怎么办?
生:量一量。
师:请一位同学量出徐州到北京的图上距离,再找几位同学量出任意两地间的图上距离,将测量的结果写在黑板上。(生测量后汇报) 生1:徐州——北京10.5厘米 生2:嘉峪关——山海关31厘米,因为这两地是长城的两端,所以我量了它。
生3:我量了广州——香港的图上距离为2.5厘米。
生4:现在是春天了,我想到了“春风不度玉门关”一句诗,所以就量了北京到玉门关的图上距离是27厘米。
生5:重庆是山城,又是最年轻的直辖市,我量了重庆到成都的铁路线的长 为6厘米。 ……
师:谁能将自己量的过程给大家叙述或演示一下? 生1:用尺子对准两点测出直线距离。 生2:我是用线量的。在地图上重庆到成都的铁路是弯曲的,如果也用直尺去量就不够精确,所以,我先用线沿铁路量一量,再把线拉直了。
【说明】《数学课程标准》的首要理念就是“实现人人学有价值的数学”。什么是有价值的数学呢?本节课 的教学实践使我认识到,只要学生感兴趣的、对学生的一生发展有奠基意义的数学才是有价值的。解决问题的能力是所有能力中最为关键的一项,上面一个层次就是让学生自由测量两地间的距离,选择权回归学生,既是学生主体性的明显体现,又使得课堂教学的内容丰富多彩,避免了单调统一的学习内容造成学生的厌学情绪。此外,在测量方法上体现了解决问题策略的多样性和合理化。
【片断二】
师:请大家以小组为单位,选择其中的一个或两个图上距离交流讨论如何求出相对应的实际距离。(学生交流汇报。)(下面仅以求徐州至北京的实际距离为例) 生1:根据线段比例尺,图上1厘米表示实际的60千米,可以算出从徐州到北京的实际距离为60×10.5=630(千米)。
生2:实际距离=图上距离÷比例尺,所以,10.5÷1/6000000=10.5×6000000=63000000厘米=63 0千米。 生3:我们这样想,实际距离是图上距离的6000000倍,所以,实际距离为10.5×6000000=63000000厘米=63 0千米。
生4:我们这样想,1/6000000=10.5/X(X为实际距离)。
师:刚才大家用不同的方法求出了实际距离,下面请大家用自己喜欢的方法再从中选出1至2个图上距离求出相应的实际距离,在计算过程中认真思考自己的想法。
【说明】本课时专门训练根据比例尺和图上距离求实际距离,其主要特点就在于打破了传统应用题的教学模式,变封闭为开放;变枯燥的解答为有趣的活动;变被动接受为主动探究。摒弃教材的例题,让学生学习自己喜欢的数学——自己去量任意两地间的距离,自己的伙伴一起讨论解法,用自己喜欢的方法解决实际问题,一切的活动都尊重学生的选择,在方法上不做统一要求,但在目标上仍是一致的——学会读图、用图。
篇10: 数学《比例尺》教学设计
教学目的:
1、在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。
2、在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。
教学重点:
理解比例尺的意义
教学难点:
把线段比例转换成数值比例尺
教学过程:
一、激发兴趣,引入比例尺
脑筋急转弯
师:坐公共汽车从沙市红星路到荆州火车站,一共要用50分钟,但有只蚂蚁从沙市红星路爬到荆州火车站却只用了40秒钟。你知道是怎么回事吗?
生猜:蚂蚁可能在地图上爬。
师:对了。蚂蚁爬的是从沙市红星路至荆州火车站的图上距离,而人们坐车所行的是从沙市红星路到荆州火车站的实际距离。
师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。
二、动手操作,认识比例尺
1、操作计算。
师:你们喜欢画画吗?那我们来个最简单的――画线段游戏。我说物品的长度,你用线段画出它的长,行吗?
①橡皮长5厘米
②圆规长11厘米
③米尺长1米
师:咦?怎么不画了?
生:画不下。
师:那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?
生:可以把1米缩小若干倍后画在纸上。
师:这个办法不错。就用这种方法画吧。
学生画完,集体交流。
师:你是用图上几厘米的线段来表示实际1米的呢?
教师有选择的板书:
师:像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。
师:你能用比表示出图上距离与实际距离的关系吗?
教师指名回答,并板书计算过程。
2、揭示比例尺的意义。
(1)初步理解比例尺的意义
师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容―比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)
师:下面每位同学算出自己的比例尺。
(生独立计算后汇报结果,师板书)
师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)
师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗?原来坐车是从沙市红星路到荆州的火车站实际距离约是18千米,而蚂蚁行的是30厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?
(学生做前先交流)
师:大家交流一下,谁能告诉大家首先要做什么事情?
师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一起来,最后化简比。(板书1、写出比。2、单位统一。3、化简比)
学生汇报计算结果
让能说说求一幅图的比例尺的方法是怎样的?
对应练习:
完成课本第49页“做一做”
(2)联系生活,进一步理解比例尺
师:你还在哪里见过比例尺?
生1:大型建筑。
生2:房屋装修。
师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?
(让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)
三、认真比较,深刻理解
1、比较比例尺,揭示数值比例尺的意义。
师:像1:1000000这样的比例尺是数值比例尺。它也可以写成1/1000000你。能说说比例尺1:100000000所表示的意思吗?
生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。
师:你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。
2、认识线段比例尺。
师:把上面的线段比例尺改写成数值比例尺。
1厘米:60千米
=1厘米:6000000厘米
=1:6000000
小结:
线段比例尺和数值比例尺是比例尺的两种基本形式。它们之间可以进行转换。把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了。
3、认识把实际距离放大后的比例尺
同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)
(出示三年级科学书中蚂蚁图)
师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?
(学生尝试算出这幅图的比例尺,指名板演)
出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。
纵观这节课所认识的比例尺,思考下列问题:
1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?
2、求比例尺时,通常要做什么?
3、化简后的比例尺,它的前项和后项一般是什么形式?
四、巩固练习,灵活运用
1、小结看书。
2、练习:
(一)填一填
(1)在比例尺是1:的地图上,图上距离1厘米表示实际距离
(2)在比例尺是1:4000000的地图上,图上距离是实际距离的(),实际距离是图上距离的()倍。
(3)出示一个线段比例尺表示图上1厘米相当于实际距离()米,把这个比例尺改写成数值比例尺是()。
(二)判断
(1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1U2。
(2)某机器零件设计图纸所用的比例尺为1U1,说明了该零件的实际长度与图上是一样的。
(3)一幅图的比例尺是6U1,这幅图所表示的实际距离大于图上距离、
五、谈学后体会。
这节课你学到了什么?
篇11:《比例尺》数学教学反思
课始,课件出示一张中华人民共和国地图,让学生观看并思考:为什么我国960万平方公里的辽阔土地却能画在这张小小的地图之上呢?学生根据已有的生活经验很快得出:是按一定的比例画在图上的。然后引入:对,是按一定的比例画在图上的。今天我们就来学习这方面的知识——比例尺。
这一个环节,简约,将学生直接引入了学习状态。
接着出示例题,通过让学生写出图上距离与实际距离的比,点明这个比就是今天要学的比例尺,这样的教学引导让学生用已有的数学知识“缩小几倍,比的意义”为纽带,进行正迁移。
在教学中,求比例尺时,学生出现了不同求法,如图上距离5厘米,实际距离50米,有学生将5厘米化成0.05米(常规的做法是将50米化成5000厘米),我就循着学生的思路展开教学,我和学生在认真倾听学生讲解的同时,对不同的方法加以肯定与评价,得出求比例尺的基本方法,并且说明,学生可以有自己不一样的'解法,但要注意书里的规范与完整。
对于比例尺的意义,着力引导学生小组合作中说一说、辨一辩。
感悟:只要遵循学生学习认知规律,正视学生的现有知识水平,让学生在不断的体验和感悟中总结和调整自己的学习、掌握知识,学生的学习能力和学习兴趣就会显著提高。
篇12:比例尺22(北师大版一年级教案设计)
教学内容:P54 – 56
教学目标:
使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。
教学难点:
由于图上距离和实际距离习惯使用的单位不同,因此方程的解应使用哪个长度单位是个难点。
教学过程:
一、引入:
同学们,你们会画长方形吗?
现在请大家在本子上画一个长20米,宽8米的长方形你能吗?
怎么办?
我们在绘制地图和其它平面图形的时候,城要把实际距离缩小(或扩大)一定的倍数后再画到纸上,这时就要涉及到一种新的知识--比例尺。
二、教学新课:
1、出示例1。
⑴、根据题意,写出比。
⑵、单位不同,要化成相同单位以后,再化简比。
12厘米 :240米
= 12厘米 :24000厘米
= 12:24000
= 1:
⑶、图上距离和实际距离的比,叫做比例尺。
2、揭示比例尺的意义。
⑴、图上距离和实际距离的比,叫做比例尺。
图上距离 :实际距离 = 比例尺
或: 图上距离 实际距离 = 比例尺
为了计算方便,通常把比例尺写成前项(或后项)是1的比。
上题中的比例尺可以写为: 1 600
由上面关系式,已知其中两个条件,能否求出第三个关系式?(请学生说出其它两个关系式)
3、教学例2。
在比例尺是1:30000000的地图上量得上海到北京的距离是3.5厘米,上海到北京的实际距离大约是多少千米?
思考: 怎样根据比例尺的数量关系求出实际距离。
请学生试一试,有几种不同的方法?如不用方程解可怎么做?
4、试一试。
P55
三、巩固练习:
1、一幅地图,图上20厘米表示实际距离10千米。求这幅地图的比例尺。
2、P56 1
先量一量,再算一算。
四、小结;
1、这节课我们学习了什么?
2、划出书中概念。
3、熟记三个数量关系。
五、作业 P56 2~4 (3、4两种方法)
求图上距离和线段比例尺
教学内容:P56 – 58
教学目标:
1、使学生进一步理解比例尺的意义,掌握比例尺的关系式,并能正确地计算图上距离。
2、使学生了解数值比例尺和线段比例尺的概念,能看懂并应用线段比例尺,计算实际距离。
教学过程:
一、复习:
1、概念复习。
2、在一幅平面图上,用4厘米的线段表示实际距离16米,求比例尺。
3、根据比与除法的关系,你能推导出已知实际距离和比例尺,计算图上距离的方法吗?
二、新授:
1、教学例。
一座地面是长方形的厂房,长45米,宽25米。把它画在比例尺是 1 200 的设计图上,长、宽各是多少厘米?
列算式解:
45米 = 4500厘米
25米 = 2500厘米
长:4500× 1 200 = 45 2 =22.5(厘米)
宽:2500× 1 200 = 25 2 =12.5(厘米)
列方程解:
解:设厂房设计图长x厘米,宽y厘米。
x 4500 = 1 200 y 2500 = 1 200
x = 4500× 1 200 y = 2500× 1 200
x = 22.5 y =12.5
答:长是22.5厘米,宽是12.5厘米。
2、试一试。
P57
3、介绍线段比例尺。
线段比例尺是在图附有一条注有数目的线段,用来表示和地面上相对应的实际距离。如例的比例尺, 1 200 的数值比例尺,可换成如下的线段比例尺:
表示图上1厘米的线段,相当于地面上的距离是2米。
想一想:一幅地图上附有如下的线段比值尺,图上1厘米的线段相当于地面上实际距离是( )。
三、巩固练习:
1、P58 – 1 。
2、P58 – 5 量一量、算一算。
四、小结:
这节课我们学习了什么?
一、作业:
P58 –2~4
练习八
教学内容: P58 – 60
教学目标:
使学生进一步理解、掌握比例尺的意义,能正确根据数据值比例尺计算图上距离或实际距离,提高解决实际问题的能力。
教学过程:
一、基本练习:
把数值比例尺1 :4000000改写成线段比例尺拓附有这样的线段比例尺的地图上,两地距离是4. 2厘米,实际距离是多少千米?
二、操作练习:
1、实验室是一个长方形,长8米,宽6米,用 1 200 的比例尺画一幅平面图。
长:8米 = 800厘米
宽:6米 = 600厘米
分析:要画平面图,先要算出图上距离;
再画图。
2、P59 – 5
先量一量,再画一画。
3、P59 – 6
先量图上距离,再求实际距离。
三、小结:
你还有什么不懂的地方?
四、作业:
P58-59 1、2、4(格式指导)
五、思考题辅导:
先量出上底、下底及高的图上距离,然后根据比例尺求出实际距离,再根据公式算出梯形的面积。
想一想:能不能先求出图上梯形的面积,再根据比例尺算出梯形的实际面积?
比例的意义和性质
教学内容:P66 – 68
教学目标:
使学生理解和掌握比例的意义的基本性质。
教学过程:
一、复习:
在下面各比中,把比值相等的比用线连起来:
5 :8 1.5 :2.5
4 :6 5 12 : 2 3
12 :10 1 :1 1 2
10 :25 0.6 :1.5
二、新授:
1、比例的意义。
教学例1,先让学生看书
提问:
⑴、判断两个比能不能组成比例,关键看什么?(表示两个比的比值是否相等)
⑵、如果不能很快看出两个比的比值是否相等,怎么办?(化简比)
⑶、比和比例有什么区别?(比是表示两个数相除,有两个项;而比例则是表示两个比相等的式了,有四个项。)
⑷、用3、5、240、400,能组成比例吗?能组成哪些比例?
接着以例1为例,讲比例的各部分名称,并用文字注明。
240 :3 = 400 :5
2、比例的基本性质。
⑴、在这个比例里,两个外项的积是240×5=1200
两个内项的积是3×400=1200
所以,3×400 = 240×5
如果把比例写成分数形式,就是等号两边两个比的前后项交叉相乘。
30 600 = 500 600
⑵、引导发现:在比例里,两个外项的积等于两个内项的积。
⑶、试一试:P67
三、巩固练习:
1、下面几组中的两个可以组成比例吗?把能组成比例的写出来。
P67
2、从1、2、4、8、24中选出四个数组成比例,并验证是否正确。
3、根据3×12 = 4×9,至少写出两比例式。
四、小结
这节课你学会了什么?
1、什么叫比例?
2、什么叫比例的项、外项和内项?
3、什么是比例的基本性质?
五、作业:
1、用4、6、10、15四个数组成不同的比例。
2、写出两个比值是3的比,并组成比例。
解比例
教学内容:P69 – 70
教学目标:
1、进一步理解、掌握比例的意义和基本性质;
2、能运用比例的基本性质解比例。
教学过程:
一、复习:
1、什么叫比例?
2、什么是比例的基本性质?
3、怎样检查两个比是否成比例?
二、新授:
1、先请学生心里想好一个比例(数目简单些),如2 :3 = 4 :6,只告诉其他同学其中的三项,让大家猜一猜还有一个数字是什么?
2、根据比例的基本性质,如已知比例中的任何三项,就可以求出另一个未知项。
3、求比例中的未知项,叫做解比例。
4、例2 解比例:
5、例3 解比例
①、请学生独立尝试;
②、注意格式;
③、反馈练习。
三、巩固练习:
1、解比例:
5 7 = X 4 3.5 0.8 = 2.5 X 5 :X = 1 3 : 3 4 2.5 8 = 2 X
2、P70练习 1
四、小结:
这节课学习了什么?
五、提高练习:
1、已知一个比例的三项是2 、1.5 、3,另外一项可能是几?
2、根据4×5 = 2×10,写出四个不同的比例。
六、作业:
P70 – 1 解比例
P70 – 2 解比例
正比例
教学内容:P702– 75
教学目标:
1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;
2、培养学生仔细审题,认真思考,探索规律的良好习惯。
教学重难点:
理解正比例的意义和性质。
教学过程:
一、复习引入:
我们已学了一些常见的数量关系,谁能来说一说:
1、路程、速度、时间;
2、单价、数量、总量;
3、工作效率、工作时间、工作总量;
……
二、先观察、后概括:
1、例1:一列火车行驶的时间和路如下表:
时间(小时) 1 2 3 4 5 6 ……
路程(千米) 60 120 180 240 300 360 ……
观察上表,回答下列问题:
⑴、表中有哪两个量是相关联的?
⑵、路程是怎样随着行车时间的变化而变化的?
⑶、相对应的路程和时间的比分别是多少?比值是多少?
从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。
写成关系式是: 路程 时间 = 速度(一定)
2、新改例2:一种铅笔,支数与总价如下表:
支 数) 1 2 3 4 5 6 ……
总价(元) 0.3 0.6 0.9 1.2 1.5 1.8 ……
由上表可以发现什么特征?
(哪几个量是相关联的?这两个相关联的量之间有什么关系?)
写成关系式是: 总价 支数 = 单价(一定)
比较例1、例2,它们有什么共同点?
概括:
⑴、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。
⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:
Y X = K(一定)
(结合例1、例2说一说)
3、练一练 P75 NO.1
三、巩固练习:
1、P76 NO.1 看后判断,并连起来说 一说。
2、P76 – 2 先观察,再分析。
3、P76 – 3
四、小结:
要判断两个量是否成正比例,依据什么来判断?
1、两个相联的量?
2、一个量随着另一个量的变化而变化,并且它们的比值一定。
五、作业:
P76 3 4
练习十一
教学内容:P76 1– 5
教学目标:
1、使学生进一步理解、掌握正比例的意义和性质,并能正确判断成正比例的量;
2、培养学生观察、分析问题的能力。
教学过程:
一、观下图表,回答问题:
时间(时) 1 2 3 4 5 6 7
米 数 22 44 66 88 11 132 154
上表中( )和( )是两种相关联的量,( )随着( )的变化而变化的,( )一定,时间和米数是( )的量。
二、判断下面各题中的两种量是不是成正比例关系,并说理。
1、白糖单价一定,白糖数量和总价;
2、稻谷的出米率一定,碾成大米重量和稻谷重量;
3、一个人的身长和体重;
4、订《小学生世界》报份数和总价;
5、长方形的长一定,宽和面积;
5、长方形的面积一定,长和宽。
三、练习:
1、请举出成正比例关系的量。
⑴、圆周长与圆半径;
⑵、圆面积与圆半径;
⑶、正方形的周长与边长。
……
四、小结:
你还有什么不明白的地方?
五、作业:
P77 – 4
反比例
教学内容:P83– 85
教学目标:
1、使学生初步理解反比例的意义和性质,能够正确判断成反比例的量;
2、培养学生仔细审题,认真思考,探索规律的良好习惯。
教学重难点:
理解反比例的意义和性质。
教学过程:
一、复习
判断下列哪些是成正比例的量:
1、课桌单价、数量和总价;
2、汽车的载重量、运货次数和运货总量;
3、铺地面积、方砖面积和方砖块数;
4、速度、行驶路程和时间;
5、每小时织布数、织布总米数和时间;
6、跳高的高度和身高
二、新授:
1、例:面积相等的长方形,长和宽有如下关系:
宽(厘米) 1 2 3 4 5 6 ……
长(厘米) 30 15 10 7.5 6 5 ……
观察上表,回答下列问题:
⑴、表中有哪两个量是相关联的?
⑵、长是怎样随着宽变化而变化的?
⑶、长和宽相乘的积表示什么?它们是否相等?
从上表可以看出:长和宽是两种相关联的量,长是宽时间的变化而变化的,
宽扩大2倍、3倍……长反而缩小2倍、3倍……;宽缩小2倍、3倍……长反而扩大2倍、3倍……。并且长和宽的积总是一定的,这个积30实际上就是长方形的面积。
写成关系式是: 长×宽=长方形的面积(一定)
2、例2:加工一批零件,每小时加工的个数和所需的时间如下表:
第小时加工个数 60 30 20 15 12 ……
加工时间(小时) 5 10 15 20 25 ……
由上表可以发现什么特征?
哪几个量是相关联的?
这两个相关联的量之间有什么关系?
写成关系式是什么?
比较例1、例2,它们有什么共同点?
概括:
⑶、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着缩小(或扩大)几倍,这两种叫做成反比例的量,它们之间的关系叫做反比例关系。
⑷、两种量成反比例关系,那么这两种量中相对应的两个数的积一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:
X × Y= K(一定)
(结合例1、例2说一说)
3、练一练 P86 1
三、巩固练习:
1、P86 – 2 看后真空,并连起来说一说。
2、P86 – 3 先观察,再说理。
四、小结:
要判断两个量是否成反比例,依据什么来判断?
3、两个相联的量?
4、一个量随着另一个量的变化而变化,并且它们的积一定。
五、作业:
P86 – 87 3-----5
练习拓展课
教学内容: P87– 88
教学目标:
1、使学生进一步理解和掌握反比例的意义和性质,并能正确判断成反比例的量;
2、培养学生观察分析问题的能力。
教学过程:
一、基本练习:
1、从甲城到乙城,速度和时间有如下关系:
速度(千米/时) 6 15 20 30 60
时间(时) 10 4 3 2 1
上表中,( )和( )是两种相关联的量,( )随着( )的变化而变化的,它们的( )一定,速度和时间是( )的量。
2、王老师带的钱可以买25元一只的排球6只或30元一只的小足球5只。
⑴、算出王老师一共带了多少钱?
⑵、总价一定,数量和单价有什么关系?
⑶、把球的单价和买的只数用等式表示出来?
二、判断练习:
判断下面各题中的两种量是不是成比例关系,是成什么比例关系?
⑴、书本的单价一定,本数和总价;
⑵、小明从家里步行到学校,步行的速度的时间;
⑶、前进的路程一定,四轮的直径和滚动的转数;
⑷、化肥的数量一定,每公顷的施用量和施肥的公顷数;
⑸、每人的工作效率一定,工作时间和工作量;
⑹、被减数一定,减数和差;
⑺、总产量一定,单位面积产量和种植面积;
说一说判断,并说理。
三、举例:
1、反比例的例子。
2、A、B、C、三种量的关系是B×C = A。
如A一定,那么B、C成( )比例关系;
如B一定,那么A、C成( )比例关系;
如C一定,那么A、B成( )比例关系;
四、小结:
你还有什么不懂的地方?
五、作业:
P89–1----5
用反比例方法解应用题
教学内容:P91 – 92
教学目标:
1、使学生掌握用反比例的方法解应用题的步骤,并能正确地解答;
2、使学生进一步明确比例解法的优越性。
教学过程:
一、复习准备:
1、三角形面积一定,底和高成什么比例?为什么?
2、甲、乙两种量,只要它们相对应的数的积一定,这两种量一定成反比例,对吗?举例说明?
二、新授:
1、教学例4 。
例2:一艘轮船每小时航行20千米,6小时可以到达目的地。如果要5小时到达,每小时航行多少千米?
观察:
⑴、题中有哪几个量?
⑵、从题中可见哪个数量是一定的?
分析:
想:因为速度 ×时间 = 路程,由于6小时与5小时航行路程相同,可确定行驶的速度与时间成反比例,所以两次航行与时间的乘积相等。
解:设每小时需航行X千米。
5X = 20×6
X = 120 5
X = 24
(检验)
答:每小时需盘航行24千米。
2、改条件:“5小时到达”为“每小时行32千米”,应怎样列式?
3、试一试。
甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?
分析:⑴、从已知数量可知,哪个量是一定的?
⑵、可利用比例解题,也可利用一般方法解题?
三、巩固练习:
张诚读一本故事书,每天读12页,13天可以读完;如果每天读26页,几天可以读完?(多种方法解)
四、小结:
今天学习了什么?
五、作业:
P92 – 1-2 3~5(5两种方法)
练习十三
教学内容: P92– 93
教学目标:
1、使学生进一不掌握用比例解应用题的步骤,并能正确解答;
2、通过练习,引导总结,用比例解的一般步骤。
教学过程:
一、基本练习:
判断成什么比例关系?
1、生产的洗衣机总台数一定,每天生产的台数和所用的天数。
2、每天生产洗衣机的台数一定,生产总台数与天数。
3、小明从校到家走路的速度和所需的时间。
4、《小星星报》单价一定,份数和总价。
二、练习:
1、一只手表3.5小时慢2.1秒,照这样计算,每昼夜要慢多少秒?
⑴、照这样算“什么意思”,意味着什么一定?
⑵、用比例方法解?
⑶、用一般方法怎样?
2、一种钢丝,20米重5千米,称同样的一捆钢丝重113千克,这捆钢丝长多少千米?
分析:用比例解:
⑴、观察哪个数量是一定?
⑵、用正比例解还是反比例解?
列出不同方法解。
3、把2 米长的竹竿立在地上,量得它的影子长是1.8米。同时量得附近电线杆的影长是5.4米,这根电线杆长是多少米?(用比例解)
⑴、先判断哪个量成比例;
⑵、成什么比例;
⑶、列出比例式(或称方程)。
上题用比例方法怎样解?有几种不同的列式法,为什么?
三、提高练习:
1、煤厂有煤600吨,运输队4次共运走120吨,照这样算,运17次后还剩多少吨?
分析:你有几种不同的解题思路?
⑴、用比例方法: 确定不变量
① 、解:设17次后还剩X吨。(每次运的吨数不变)
120 4 = 600-X 17
②、解:设17天运了X吨。(每次运的吨数不变)
120 4 = X 17
⑵、用一般方法解:
①、600 – 120÷4×17
②、600 – 120×(17÷4)
2、P93 –2---5
想一想:有什么不同的方法解题?板演,并分析.
四、作业:
P93 – 6----8
练习(二)
教学内容: P94 – 95
教学目标:
1、使学生掌握按比例分配应用题的特征和解答方法,能正确进行解答;
2、培养解决实际问题的能力。
教学过程:
一、基本练习:
你可以想到什么?
1、某班男、女生人数比是5 :4;
2、柳树、杨树棵数比是1 :6;
3、科技书和故事书比是5 :4。
三、练习:
1、学校有故事书80本,故事书和科技书的本数之比是2 :3,科技书有多少本?
2、学校图书馆故事书80本,故事书、科技书和连环画的本数之比是2:3:4,科技书有多少本?
3、改编1题中的故事书80本为科技书有80本。
4、改编1题中的故事书80本为故事书比科技书少16本。
分析:每题有多种不同的解法,想想你能列出几种不同的解法?
三、思考并分析P9412---14,分析后由学生选择练习,并相互校对.
四、作业:
P94 – 15
思考题:
练习课
教学内容:根据学生练习反馈情况确定
教学目标:
使学生进一步掌握比例应用题的特征和解答方法,并能正确解答。
教学过程:
一、根据关键句联想:
1、人体血液的体重的比是1 :13;
2、药与水的比是1 :200;
3、黄瓜与青菜的种植面积的比是5 :8。
二、基本练习:
一种药水重3003千克,药与水的比重是1:1000,需水和药各多少千克?(改药与药水的比重是1:1001)
三、提高练习:
1、甲乙两队共修一条长1500米的路,甲队有35人,乙队有15人,按各队的人数据分配任务,问两队各应修多少米?
想:按人数分配,考虑人数比:35 :15 = 7 :3。
把全长1500米按7 :3 的比例进行分配。
2、有50个人支修路,一条路长750米,另一条路长500米,如果按路的长度进行分配人数,这两条路各应分配几人?
想:按路的长度分配,就是按750 :500 = 3 :2的比例进行分配。
四、综合练习:
思考题:(求出发数的最小公倍数,再看每人中的发数) (315发)
五、作业:
综合练习部分
复习(一)
教学内容: P95 – 96
教学目标:
1、通过复习,使学生进一步理解和掌握比和比例以及正比例、反比例的意义和性质,并级正确应用于解答有关的问题;
2、培养学生仔细审题,认真解答的良好习惯。
教学过程:
一、知识整理:
这一单元我们学习了哪些基本内容?
1、比的意义、性质;
2、比例的意义、性质;
3、怎样判断两量是否成正、反比例;
4、正、反比例应用题和按比例分配的应用题。
二、练习:
1、求下面各比的比值。
P95 –1 (前两列)
说说求比值的方法,
说说比的各部分名称
说说比与分数、除法的关系。
2、化简下面的比。
P96 – 2(前两列)
3、写出下面各最简整数比。
P96 – 3 填空
4、解比例。
P96 – 5(3题)
说说解比例的依据是什么?
三、正、反比例练习:
1、P96 – 7
⑴、是否成比例?
⑵、成什么比例?
⑶、为什么?
①、总量一定(积一定),成反比例;
②、高一定(商一定),面积与底边长成正比例;
③、正方体体积 = 棱长×棱长×棱长
体积与棱长的比(商)是棱长的平方,这个商随着棱长的大小要发生变化,不是一定的,所以体积与棱长不成比例?
2、判断:P97– 7
说说为什么?
四、比例尺:
1、有一幅地图,比例尺为1 :3000000,已知两地之间的实际距离为2500千米,在地嵊上量出应是多少厘米?
2、甲乙两地实际距离为1500千米,地图上量出距离12厘米,问这幅地图的比例尺是多少?
五、小结:
六、作业:
P97 8,9
复习(二)
教学内容: P97– 98
教学目标:
使学生进一步掌握正、反比例的意义及性质,并能解答一些实际的比例应用题。
教学过程:
一、正反比例的意义及性质:
1、( )一定,路程与速度成( )比例。
( )一定,速度与时间成( )比例。
2、3 :甲 = 4 :乙
说说各部分名称。
甲 :乙 =( ) :( )
甲和乙成( )比例关系。
3、X ÷Y = Z(X、Y、Z均不为0)
当Z一定,( )和( )成( )比例;
当Y一定,( )和( )成( )比例;
当X一定,( )和( )成( )比例;
二、应用题:
1、一台织布机8小时可以织布200米,照这样计算,3小时可织布多少米?(用两种以上方法解)
2、甲城到乙城,骑自行车速度每小时是18千米,需 1 3 小时,步行需1.2小时,步行每小时行多少千米?
3、学校图书馆共有480体故事书,六年级借走了 1 3 后,剩下的按5 :3的比例借给四、五年级学生阅读,四、五年级各可借到多少本故事书?
四、小结:
这个单元你还有什么不懂的地方吗?
五、作业:
P98 – 11~15
篇13:数学教案设计
数学教案设计
亿以内数的写法的练习教学内容:练习二的:8~11题
教学目标:
1、进一步掌握亿以内数的写法。
2、熟练地写含有两级的数。
教具准备:小黑板、投影片、数位表
教学过程:
一、基础训练
1、小黑板出示:写出下列各数十二万 三百零五万四千零六万五千
2、这些数你是先写哪一级的?再写哪一级?
3、请你回忆一下数位表,你能说出数位表在写数时能给你什么帮助?
4、学生写数:十二万写作:120000三百零五万写作:3050000四千零六万五千写作40065000
5、学生回忆亿以内数的.写法。
6、学生自由说一说。
二、课堂练习
1、投影出示:写出由下列各数组成的数。
(1)四百万 八十万 五万和三千
(2)六千万、九万和五百
(3)八千万和四十反馈:这些数的最高位是什么数?怎样写出这些数?
2、写出下列各数:四千二百万、四千零七万五千七百、十二万五千、一百七十万、四十九万一千三百
3、学生写数(3人上黑板写)学生说一说万级和个级上的数是怎样确定的。
4、学生写数后大家评议。
三、游戏:同桌两人在零、个、十、百、千、万、十万、百万、千万、亿插入一些数字,请同桌写出这个数。看谁会写?
四、作业:
练习二: 10、11
篇14:六年级数学《比例尺》教学反思
《比例尺》是小学数学六年级下册第三单元中的教学内容。这一知识是在学生已经掌握了化简比以及比例的知识的基础上进行教学的。这一部分内容对学生来说比较陌生、抽象,难以理解,因此我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。
在引入阶段,我选取了学生们非常熟悉的典型的感知材料(中国地图和螺丝钉的平面图),让学生观察这些平面图“什么变了,什么没变?”进而抓住比例尺的特性:图形的大小可以随意改变,但形状不能改变。在学生认识了比例尺后,我让学生通过查找地图的比例尺知道生活中还有另外一种比例尺:线段比例尺,提高学生的数学意识和能力。接着又设计了这样一个环节:让学生抓住1:6000000、1:150000000、60:1。进一步认识比例尺有放大功能,也有缩小功能,让学生打开思路,不拘一格的从多角度来思考比例尺的意义。结合实际培养学生用数学的眼光观察生活。
本节课在教学时,也有一些处理不够恰当的地方:首先,没有能够充分利用我所设计的导入情景,学生们对越来越小的中国地图的平面图很感兴趣。在这里,我应该组织学生深入讨论,这是什么原因导致的呢?从而初步引出比例尺的概念。在出示几幅图片后还应该让学生在日常生活中找一些实际的物体缩小或扩大一定的倍数画成平面图的例子,以丰富学生的感性认识。第二,在让学生总结比例尺的意义时,过于匆忙,应该让学生们通过观察、比较,逐步总结出比例尺的意义,加深对概念的理解。第三,对比例尺的放大讲得不够透彻。第四,学生的参与热情不够高。这主要是比例尺的意义比较抽象,难以理解,我也没能很好地调动起学生的学习情绪。
篇15:六年级数学比例尺的课件
教学目标:
1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。
2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。
3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。
教学重点:理解比例尺的意义。
教学难点:能熟练解答比例尺的有关问题。
教学准备:多媒体课件、直尺、地图
教学过程:
一、情景引入,激发兴趣
师:北京是我国的首都,同学们,北京奥运会取得了巨大成功,中国的悠久历史,灿烂文化,众多的名胜古迹,感受一下我们祖国的美丽!
师:今天老师把我们的祖国和首都北京搬进了课堂。(课件出示:数值比例尺为1:100000000的中国地图和线段比例尺为 的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?
生:把它缩小。
师:老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?请出题考考老师。
生1:我想知道北京到上海之间的实际距离
生2:我想知道我们合肥到北京的实际距离
(师用地图量出地图中北京到上海、合肥到北京的图上距离,很快回答学生的问题)
师:同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?
(设计意图:数学应该来源于生活,我在创设情景时把中国和北京搬进课堂,激发了学生的好奇心,又调动了学生探究新知的积极性)
二、揭示课题,提出疑问
师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。
今天这节课我们就来认识比例尺。(板书:认识比例尺)
师:关于比例尺,你想了解什么呢?
生1:什么叫比例尺?
生2:怎样求比例尺?
生3:比例尺是尺吗?
生4:比例尺有几种形式?
(设计意图:揭示本节课题,让处于对新知好奇的学生提出自己的疑问,带着问题有目的性地学习)
三、实验对比,得出概念
师:为了解决同学们提出的疑问,我们来做一个实验。
师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。
展示学生的画图结果。
小组的同学互相讨论自己是怎么画的。
生1:我用1厘米表示实际3米。
生2:我用3厘米表示实际3米。
师:图上画的1厘米,3厘米叫“图上距离”,3米叫“实际距离”。
(设计意图:把3米长的线段画在本子上,让学生在动手实践过程中初步感受到比例尺的意义,为后面理解与把握“比例尺”的意义奠定基础)
师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。
展示学生求的比。
师:这些比的前项代表什么?后项又代表什么呢?
生:前项代表图上距离,后项代表实际距离。
师:谁能说说1:300 和 1:100表示什么意思?
生答
师:像这样的比叫做比例尺,课件出示比例尺的定义。
师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)
生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺
师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?
小组的同学互相讨论。
用1:300 或1/300 和 1:100或1/100 等比的形式表示的比例尺叫数值比例尺。它们也可以表示成 和
课件出示:中国地图上“比例尺1:100000000”表示的意义是什么?
师:你们发现1:100 1:300 1:100000000这些比例尺都是把实际距
离怎么样?
生:缩小
师:老师这儿有一个机器上的.小零件,你们觉得它怎么样?
生:很小
师:这么小的零件如何把它画在图纸上。
生:把它放大
师:很好!课件出示机器零件的放大图纸。
师:你知道图中2:1表示什么吗?
生:图中2厘米表示实际的1厘米。
师:你们发现这些数值比例尺有什么相同和不同的地方吗?
相同点:
生1:前项表示图上距离,后项表示实际距离。
生2:比的前项或后项为1
不同点: 新 课标 第 一网x kb 1、com
生:1:100 1:300 1:100000000是把实际距离缩小,2:1是把实际距离放大
师:为了计算方便,通常把比例尺写成前项或后项为1的比。
出示课本第49页的“做一做”,指名板演,集体订正。
(设计意图:学生通过独立思考、讨论与交流得出比例尺的意义,并学会了怎样求比例尺,从中体会探索的乐趣)
四、探讨数值比例尺和线段比例尺的互化
呈现北京市地图让生找出“比例尺 ”
师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。
师:如何把这幅地图的线段比例尺改成数值比例尺?
小组的同学互相讨论尝试改写。师板书例1、
师:谁能说说改写时要注意什么?
师生共同小结。课件出示:(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0(2)比例尺是一个比,不带单位名称(3)比的前项为1
师:怎样把数值比例尺改写成线段比例尺呢?
呈现课本第53页的第1题。学生独立做,集体订正。师强调实际距离的单位要改写成所要求的单位。
(设计意图:将数值比例尺与线段比例尺的互化安排在一起教学,便于学生比较,让学生在尝试性地改写、练习中理解并掌握。)
五、巩固练习,深化概念
1、我会判断
(1)比例尺是一种测量长度的尺子 ( )
(2)一副图的比例尺是80:1,表示把实际距离扩大80倍 ( )
(3)比例尺的后项一定比前项大 ( )
(4)把线段比例尺 改写成数值比例尺是1:8000000 ( )
2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。
3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。
(设计意图:这些练习,既巩固新知,又让学生体验思维的乐趣,既沟通数学与生活的联系,又培养了学生应用数学知识的能力,充分调动了学生学习的积极性)
六、课堂小结
通过这节课的学习,你有什么收获?你认为自己的表现如何?给自己打打分。
七、布置学生填质疑卡
八、作业 课本练习八的第2、3题
篇16:六年级数学比例尺的课件
教学目标
1、使学生理解比例尺的意义,能正确说明比例尺所表示的具体意义。
2、认识数值比例尺和线段比例尺,能将线段比例尺改写成数值比例尺以及将数值比例尺改写成线段比例尺。
3、能根据实际距离和图上距离求出一幅图的比例尺。能熟练地求出比例尺,图上距离和实际距离,会用比例尺的知识解决一些简单的实际问题。
4、通过合作探究,运用方程解决比例尺一些实际问题,提高解决问题的能力。
5、结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重难点
教学重点:理解比例尺的意义。能够根据给定的比例尺解决生活中的实际问题。
教学难点:利用比例尺的知识解决实际问题。
教学工具
ppt课件
教学过程
一、激趣导入
1、复习(口答长度单位间的进率)
2、出示蜗牛爬行图------这只蜗牛从上海爬到北京只用了二分钟,为什么?
动手画一画 ----- 如果我们的教室长是9m,宽是6m,你能画出教室的占地平面图吗? (随笔www.suibi.Com.cn随笔网整理分享)
3、导入:什么是比例尺?它是比还是尺?这节课我们就来研究它。老师板书课题。
二、新授
1、学生自学P53例1上面的内容,了解比例尺的意义。
课件出示自学提纲,之后讨论交流。明确:⑴什么叫做比例尺?⑵比例尺产生的原因是什么?(有时按照实际尺寸无法绘制平面图,这就产生了把实际距离按一定的比缩小(或扩大)的需求,因此就产生了比例尺。)⑶比例尺有什么作用?(放大和缩小两方面作用)⑷比例尺是比还是尺?(是比,不是尺)⑸比例尺的文字表达式是什么?(图上距离:实际距离=比例尺)
2、观察实物地图(一副地图的比例尺是1:00000000,另一幅地图的比例尺是0∣__∣50km ,了解比例尺的两种形式。)第一个比例尺是数值比例尺,表示图上距离是实际距离的1/100000000。第二个是线段比例尺,表示图上1cm距离相当于地面上50km的实际距离。(老师引导学生理解:一小格表示图上距离1cm,0后面第一个数表示图上距离1cm代表的实际距离是多少,单位看最后那个单位。两小个表示图上距离2cm,0后面第二个数表示图上距离2cm代表的实际距离是多少,单位看最后那个单位,以此类推)
3、学习把线段比例尺改写成数值比例尺的方法。
你能把上面的线段比例尺改写成数值比例尺吗?先让学生独立改写,再指名板演:
图上距离:实际距离
=1cm:50km
=1cm:5000000cm
=1:5000000
结合学生板演,归纳改写的方法。
4、课件出示机器零件图,认识放大比例尺。
⑴观察机器零件图,思考:这副图的比例尺是多少?表示什么?这幅图的比例尺与我们之前接触的比例尺有什么明显的不同?(比例尺是2:1,表示图上2cm相对于实际距离1cm,之前接触的比例尺,比的前项为1,这幅图的比例尺比的后项为1)
⑵小结:在绘制比较精细的零件图时,经常需要把零件的尺寸按照一定的比放大,我们刚才学习的就是放大比例尺,放大比例尺通常后项为1。
5、自学例1,知道怎样求比例尺。
⑴学生独立阅读例1后思考:求比例尺需要知道哪些已知条件?求比例尺要用哪个公式?求比例尺应注意什么问题?
⑵交流汇报,提炼方法。
⑶小结:已知图上距离和实际距离,求出它们的比值就是比例尺,求比例尺之前,单位一定要统一。
6.P53做一做,学生独立完成,老师巡视指导,最后指名汇报。
7.教学例2,根据比例尺求出实际距离或图上距离。
课件出示例2,读题后审题,找出已知条件和所求问题。思考交流,如何求从苹果园站至四惠东站的实际长度?(根据比例尺的意义,设实际距离为xcm,用解比例的方法求出实际距离是多少厘米;根据比例的意义,直接用图上距离7.8米乘比例尺中的400000,求出实际距离是多少厘米。)使学生明确:为什么设的实际长度要以“cm”为单位?(因为图上距离的单位是cm,只有图上距离的单位和实际距离的单位统一了,才能计算出正确的结果。)列比例尺的依据是什么?(图上距离/实际距离=比例尺)400000表示什么?(实际距离400000cm)。
之后让学生独立用解比例的方法解决问题,再指名学生板演:
解:设从苹果园站至四惠东站的实际长度是xcm。
7.8/x=1/400000
x=7.8×400000
x=310
3120000cm=31、2km
答:从苹果园站至四惠东站的实际长度大约是31、2千米。
巩固拓展:如果在比例尺为1:400000的规划图上,地铁1号线上的某两地之间的距离是1千米,那么这两地之间的图上距离是多少?
1千米=100000厘米
解:设这两地之间的图上距离是xcm。
x/100000=1/400000
x=100000÷400000
x=0.25
答:这两地之间的图上距离为0.25cm。
三、随堂演练
在一幅比例尺是1:5000000的地图上,量得上海到杭州的距离是3、4cm,上海到杭州的实际距离是多少?
先让学生独立改写,再指名板演:
四、巩固应用:
1、P57 5、学生独立完成后,交流需要注意的地方
2、P57 8.填写后,说出求图上距离和实际距离的方法
五、小结:通过本节课的学习,你有什么收获?在应用比例尺解决问题时,你认为需要注意什么?
六布置作业
作业:第56 、57页练习十,第3题、第4题、第5题。
篇17:数学六年级《比例尺》教学设计
教学目标:
1、让同学在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3、运用比例尺的有关知识,学会解决生活中的一些实际问题。
4、同学在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养同学用数学眼光观察生活的习惯。教学重点:正确理解比例尺的含义。
教学难点:运用比例尺的有关知识,学会解决生活中的一些实际问题。
一、激疑诱趣,引入新知:
很多同学都喜欢脑筋急转弯,现在老师给同学们一道脑筋急转弯的题目,让同学们猜猜:坐车从和平县县城到广州市,一共要用4小时,但有只蚂蚁从和平县县城爬到广州市却只用了5秒钟。你知道是怎么回事吗?(蚂蚁可能在地图上爬。)对了。蚂蚁爬的是从和平县县城到广州市的图上距离,而人们坐车所行的是从和平县县城到广州市的实际距离。那图上距离与实际距离之间有什么关系呢?
二、动手操作,认识比例尺:
1、操作计算。
(1)画线段。
让我们先来做个最简单的游戏——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?
①橡皮长5厘米
②铅笔长18厘米
③米尺长1米
咦?怎么不画了?(画不下。)那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?这个办法不错。就用这种方法画吧。
(2)学生画完,集体交流。
你是用图上几厘米的线段来表示实际1米的呢?像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。你能用比表示出图上距离与实际距离的关系吗?
教师指名回答,并板书计算过程。
2、揭示比例尺的意义
其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离(板书)?比例尺。实际距离
同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)
三、探讨比例尺的计算方法
同学们,你们还记得我们上课前所说的一道脑筋急转弯的题目吗?原来坐车是从和平县县城到广州市实际距离约是300千米,而蚂蚁行的是5厘米的图上距离,怪不得只要5秒呢!那么,你能求出这副地图的比例尺吗?(学生做前先交流)
小黑板出示:从和平县县城到广州市实际距离约是300千米,在一副地图上只画了5厘米,这幅图的比例尺是多少?
大家交流一下,谁能告诉大家首先要做什么事情?(先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先要把单位统一起来。)
学生汇报计算结果。
四、应用比例尺知识解决问题
1)和平县政府距我校直线距离约200米,可在和平县城的地图上只画了2厘米,这幅图的比例尺是多少?
评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?
从1﹕10000这一比例尺上,你能获取那些信息?(图上距离是实际距离的万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等)
2)填空并判别哪个是比例尺。
把一个长2米,宽1米的长方形画在图纸上,长画了10厘米,宽画了5厘米。
(1)图上的长和实际长的最简比为(1∶20)。
(2)图上宽和实际宽的最简比为(1∶20)。
(3)图上周长和实际周长的最简比为(1∶20)。
问:这幅图的比例尺是多少?
(4)图上面积和实际面积的最简比为(1∶400)。
预设:学生可能填1:20,引导交流为什么错,计算纠正。
追问:那这1:400是这幅图的比例尺吗?为什么?你发现了面积的比和比例尺有什么关系?
学生独立计算、回答。
强调:比例尺是图上距离:实际距离,不是图上面积:实际面积,这幅图的比例尺是多少?
五、介绍线段比例尺:
像前面这些比例尺是用数值来表示图上距离和实际距离关系的比例尺,我们把它们叫做数值比例尺(板书),而像这样的比例尺,是用线段来表示图上距离和实际距离关系,我们把这样的比例尺叫线段比例尺(板书)你能把它改成数值比例尺吗?
六、拓展延伸:认识精密比例尺
画一个物品,如果用1:10(缩小了)1:1(相同)2:1(放大了)画的图和实际的图比较结果怎样?(设计意图:让学生抓住1:1000、1:10、1:1、2:1??.进一步认识比例尺有大有小,让学生打开思路,不拘一格的从多角度来思考比例尺的意义。结合实际培养学生用数学的眼光观察生活。)
在实际的生活中有没有要用到这种放大比例尺的情况呢?你能猜出工程师是如何把直径5毫米的机器零件画在图纸上的吗?
七、讨论:
1)比例尺与一般的尺相同吗?化简后的比例尺带不带单位?
2)求比例尺时,通常要做什么?
3)化简后的比例尺,它的前项和后项一般是什么形式?
八、巩固练习
1、直径5毫米的机器零件,画在图纸上的直径是10厘米。它的比例尺是多少?
2、判断下面的说法是否正确:
下面是小聪学习了比例尺后写的一段数学日记:
今天我们学习了比例尺,我知道了图上距离比实际距离就等于比例尺。老师叫我们找找比例尺的例子。我想:这岂不是小儿科吗。你瞧,我一口气就能说出几个来:图上长和实际长的比是1:100;图上长和宽的比是1:5;图上宽和实际宽的比是1:2分米;实际距离和图上距离的比是20:1.哈哈,原来比例尺就是这么简单!
九、自我反思,总结评价
这节课你有收获吗?有什么收获呢?我们学会了比例尺的概念,比例尺的关系式、书写形式、比例尺的种类及转换、求比例尺的方法等,谁能来说一下?
同学们的收获的确很大,这节课同学们的表现都很出色,谢谢大家!
十、课堂作业
(一)填一填
1、图上距离与实际距离的比叫做___。比例尺=___:___
2、比例尺分为两种,一种是___,另一种是___
3、为了计算简便,通常把比例尺写成___的比
4、一幅图上用10厘米表示实际距离200千米,这幅图的比例尺是___
5、一幅地图的比例尺是1:20000,它表示实际距离是图上距离的___倍,图上距离是实际距离的.___;它还表示图上1厘米代表实际___米
6、如上图1厘米表示实际距离___千米,化为数值比例尺是___,实际距离是图上距离的___倍,图上距离是实际距离的___
(二)判断
1、比例尺是一种测量的工具。___
2、小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。___
3、某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。___
4、一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离.___
5、一个小型零件长5毫米,画在图上5厘米。这幅图的比例尺为1:10___
篇18:人教版数学比例尺教学反思
一、在教学比例尺的过程中,针对课本上出现的两种问题。
1、一类是已知比例尺和图上距离求实际距离,
2、另一类是已知比例尺和实际距离求图上距离。
二、而且在教学的过程中,方法也有不同,学生很容易混淆。
1、一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。
2、二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让学生理解这种方法的原理很重要,从学生的课堂和课后情况来看,很多学生其实并没有从根本上理解这种解法的原理,只是在一样的画葫芦罢了。
三、据学生的这一情况,今天又对比例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的理解比例尺的概念。
1、如:比例尺1:500000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程。这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。
2、第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:500000表示的图上距离是实际距离的1/500000,实际距离是图上距离的500000倍,图上的1厘米实际是5千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。
篇19:人教版数学比例尺教学反思
认识比例尺是在学习比和比例的意义及其基本性质的基础上进行教学的。通过本课的学习,让学生理解比例尺的意义,学会求平面图的比例尺。本课的重点是让学生理解比例尺的意义,学会求比例尺。
教学本课时从学生已有的生活经验导入新课,有效地调动学生学习的积极性,而且在不知不觉中让学生体验到比例尺的意义。实践出真知!让学生在白纸上画出教室的占地平面图,让学生“分分类、分析画得像不像”使学生真真切切地感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。比例尺是一个实用性很强的知识点,我在帮助学生理解比例尺意义时,把教室的占地平面图中的图上距离实例和实际距离组成一个比,并求出比值,从而引导学生认识比例尺。让学生“说一说”、“算一算”、“想一想”,口脑并用,从多角度多方位理解比例尺的实际含义,为后面学习计算实际距离、图上距离打下知识准备。本节课的教学经过两次听、评课后进行了修改,反思整个教学,感觉比较清晰、流畅,知识点也都落实到位,学生参与的热情比较高。也仍存在一些问题 :
教师讲解过多,学生主体地位体现不够。本节课进行了两次探究,第一次探究比例尺的意义,第二次探究比例尺的实际应用。第一次探究时间比较充分,而第二次探究的时间比较紧张,学生虽基本完成了这个问题,但来不及反馈,导致数学基础知识和基本技能的落实还不够扎实。另外在预设课堂的生成,预设应设置一定的空间,给予一定的弹性,也就是驾驭课堂的能力和应变能力方面,我还要自我加压,不断磨练,提高课堂教学水平。
篇20:六年级数学比例尺教学反思
六年级数学比例尺教学反思
《比例尺》是小学数学六年级下册的教学内容,这一知识是在学生已经掌握了化简比以及比例的知识的基础上进行学习的,反思整个学习过程,我认为成功的关键有以下几点:
1、预习前置。前一天晚上,我给了学生充足的预习时间,学生的预习为展示环节奠定了坚实的基础,预习是展示之本,展示是学习之魂。
2、导入简洁。为学生学习新课内容腾出了一定的时间。
3、展示充分。我比较注重培养学生的自学能力,课堂上大胆放手让学生自己学习,自己思考,自己与其他学生交流,在交流中获得新的知识,学生在自主预习和合作探究以后,把比例尺的内容展示的淋漓尽致,有些小组的展示内容甚至出乎我的.意料,着实让我有点儿始料不及。
3、效果明显。学生的学习效果从达标测试可知,95%的学生知识掌握情况良好,目标达成情况很好,可以说,学生能应用所学知识解决生活中的简单的实际问题,收到了明显的学习效果。
诚然,这节课中也存在许多瑕疵,主要表现在:
1、参与展示的人数相对较少,没有达到人人参与的目标。
2、展示的孩子追求尽善尽美,时间分配不够合理,影响了练习的总量,直接造成了不能按时下课的不良后果。
3、学习内容有点儿多,学生的学习显得紧紧张张,忙忙碌碌,似乎学习过程不是特别轻松愉快。
课改正在全力推进,我一定努力做得更好!
文档为doc格式