下面是小编整理的质数与合数说课稿教案,本文共13篇,欢迎您阅读,希望对您有所帮助。
篇1:质数与合数说课稿
一、说教材
1、课时教学内容的地位、作用和意义
“质数和合数”是一节概念教学课,是“因数和倍数”这个单元教学的难点和重点。它是在学习了因数和倍数以及2、3、5倍数的特征的基础上进行教学的,是下半学期学习求最大公因数和求最小公倍数以及约分、通分的重要基础。
2、教学目标
⑴ 知识与技能目标:使学生理解质数和合数的意义,知道它们之间的联系和区别,能根据它们的意义判断哪些数是质数,哪些数是合数。熟悉50以内的质数。
⑵ 过程与方法目标:通过求因数—找规律—探究归纳—验证等数学活动,学习观察、比较、分析、归纳、推理等数学策略。
⑶ 情感、态度、价值观目标:培养学生认真观察,仔细比较,合理分类和归纳概括的能力,培养学生优秀的数学意识和数学品质。
3、教学重、难点: 掌握质数、合数的概念,能准确判断一个数是质数还是合数。
二、说教法
数学来源于生活又应用于生活是新课程一个重要的理念。让学生学会用数学知识、方法去思考分析身边的事物是数学课堂教学的一个重要任务。根据本节知识特点和小学生的年龄特点及认知规律,结合新课程标准精神,我采用了探究发现、启发式教学、开心游戏活动等教学方法。
三、说学法
教师的任务不仅要使学生学会,更重要的是要使学生会学。结合本节课的知识特点我让学生通过观察比较、分类归纳、讨论交流等学习方法掌握本节课的学习内容。
四、说教学过程
(一)、复习引入
1:在算式“3×4=12”中,谁是谁的因数?谁是谁的倍数?
2:自然数按照是否2的倍数可分成几类?
设计意图:有研究表明小学生注意力能集中时间是15—20分钟,复习引入的时间不能太多。所以复习必须坚持精练的原则,复习内容必须是和新知识有密切联系的已有知识和经验,习题要生动有趣,使学生的注意力从上课开始就被吸引住,既从知识上起到迁移、铺垫的作用,又为学习新知识创造了良好的认知环境。
(二)、学习新课
1:学习质数、合数的概念
(1)、要求学生写出自己座号的所有因数,请1——12号的同学说出自己座号的所有因数。
(2)、要求学生观察1——12这十二个自然数的因数个数,四人小组讨论交流根据因数的个数可以把这十二个自然数分成几类?
(3)、结合学生的汇报,揭示质数和合数的概念(板书课题)。
设计意图:我运用了引导学生探究发现的教学方法,学生采用观察比较、分类归纳、讨论交流的学习方法。因为“质数和合数”是学生在学习了因数和倍数的基础上进行学习的。因此我抓住新旧知识的连接点,让学生找自己座号的因数,从学生身边熟悉的事物入手,唤起学生亲切的情感,激发他们学习的兴趣。学生是学习的主体,只有让学生参与知识的形成过程,数学知识才会内化学生自己的东西,四人小组讨论交流就是让学生在探讨中提高学习的能力。
2、引导学生深入理解质数、合数的概念。
质数和合数这两个概念关键在于因数的个数,“只有……两个……”是质数概念的关键词。“除了……还有……”是合数概念的关键词。我针对这两个概念的关键处,设计以下问题引导学生观察、思考和讨论:
(1)、观察自然数2、3、5、7、11的因数,这些自然数的因数有什么特征?
(2)、自然数4、6、8、9、10、12的因数也有1和它本身,为什么它们不是质数?
(3)、1是质数还是合数?为什么?
(4)、非0自然数按因数个数多少可分成几类?(师板书)
设计意图:我运用了质疑问难、启发式的教学方法,学生采用观察比较,自主探究的学习方法。因为学生在不断的新的问题面前,对概念已有的理解与新的问题产生了表面上的矛盾,于是通过积极思考,寻求解决问题的途径,主动找出概念的本质关键,从而较深刻地理解了质数和合数的概念。
3、学习例1(找出50以内的质数,做一张质数表)
(1)让全班50个同学判断自己的座号是否质数,座号是质数的同学举起座号卡片到讲台前集合。
(2)台下同学检查,纠正台上站错的同学并说出根据。
(3)了解最小的质数和最小的合数。
设计意图:我运用了快乐游戏活动的教学方法,学生采用观察思考、自主操作的学习方法。因为学生经过前半节课的学习,无论注意力还是思维,都已经比较疲劳。要让学生在短时间之内找齐50以内的质数又不使学生觉得是个负担,适宜采用轻松活泼的形式。所以,我设计了这个全体学生参与的游戏。这样的游戏既检查了全体学生能否根据概念快速准确地判断出质数还是合数,又能调动起课堂气氛和学生的注意力。
篇2:质数与合数说课稿
一、教学分析
《质数与合数》是本册教材第二单元最后一个知识。它是在学生已经掌握了因数和倍数的意义,了解了2、5、3倍数的特征之后学习的又一重要内容,为学习求最大公因数和最小公倍数以及约分,通分打下基础,在本章教学内容中起着承前启后的重要作用。Internet网上有关质数与合数的相关资源非常丰富也非常有吸引力,这就使本节课与信息技术进行整合成为可能。同时,我校是全国现代信息技术实验学校,五年级学生早已具有网上搜索、交流的能力,为此我设计了《质数与合数》的专题网站,将网络中散落的资源进行整合与集中,便于学生查阅。
二、教学目标及重难点
根据本课的具体内容、《数学课程标准》的有关要求和学生实际,我确定了以下三个教学目标:
1、知识与技能目标:
掌握质数与合数的概念,并能根据概念正确判断一个数是质数还是合数。
2、过程与学习方法目标:
通过自主探索、观察、比较,经历对自然数的分类和概念揭示,体验数学问题的研究过程。
3、情感与态度目标:
在学习过程中,让学生感受现代信息技术的优越性,增进合作交流意识。
教学重点:
质数与合数的概念。
教学难点:
正确判断质数和合数。
三、教学过程及整合点分析
《数学课程标准》指出:“教师要引导学生投入到探索与交流的学习活动中”。根据本课特点以及维果茨基的“最近发展区”理论,我采用自主探索的学习方法,引导学生充分利用网络进行合作探究,自主学习,从而培养学生主动获取知识的能力。基于此,我设计了以下四个教学环节。
(一):情景设疑,激发兴趣
爱因斯坦曾经说过:“兴趣是最好的老师”。我利用学生的好奇心,从生活实际出发创设情景:如果我们把教室里的孩子分一分类,可以怎样分呢?一石激起千层浪,学生们思维活跃,很快找到了各种不同的分类,在此基础上我引导学生通过思考得出:分类的标准不同,分类的情况也就不同。这样的设计充分调动了学生的学习积极性,激发了学生的学习动机,学生主动学习的氛围得到了良好的营造。这时引入我们要研究的课题“质数与合数”已是水到渠成。
(二):网上交流,自主探究
为了给自然数的分类作好准备,我顺势提出要求:请找出你们学号的因数,并发到论坛上。这样利用论坛使每个单一的信息迅速汇集到一起,大大增加了信息量,便于学生从丰富的信息中观察因数个数的特点。这样设计不仅提高了课堂的效率,而且通过多媒体教室的转播,学生的演示,更有利于生生之间和师生之间的交流,学生能利用论坛相互了解自己的.不同发现,感受思维的多样性,使课堂上的探究真正落到实处。
接下来,根据学生自己的观察、思考和发现,教师提出:你认为自然数按照约数个数的多少可以分成几类?学生立即在网上进行投票,教师通过网络能收到及时准确的信息反馈,了解每个同学的不同意见。最大限度的尊重了学生学习的差异性。教师马上提出:“那数学家按照这个标准是怎样分类的呢?”学生通过看书自学,迅速知道了自然数的另一种分类,理解了质数与合数的概念。学生立即运用概念对自己与他人的学号进行判断。这样的设计,让学生轻松愉快的掌握了质数与合数的概念,不仅突出了本课的重点,而且学生主动学习的能力也得到了培养和提升。
此时,我没有让学生直接学习“筛法”,而是对教材进行了大胆的处理,教材的编排比较抽象、枯燥,学生不易理解,也要花费大量的学习时间,不利于提高课堂效率。我把“筛法”在网站上动态的展示出来。声音、文字、图象的感官刺激,化抽象为具体,正符合学生的心理。使学习化被动为主动,学生能轻松的理解知识,从而切实激发学生发自内心的学习兴趣,激活思维,真正达到“快乐学习”的目的。利用网站有效的突破了本课的难点。
(三):网上练习,分层巩固
专题网站设计了“学习天地”“考考你”“智力快车”等练习,按照教学要求和进度安排不同层次的学习和训练。在学习和交互练习中,人机交互可以是有快有慢的、有难有易的。学生可以得到网络及时评价,因而既可充分照顾学生的个别差异性,又最大限度地调动了学生的学习兴趣与积极性。学生因需要而学习,达到了因材施教的目的。
(四):回顾总结,拓展延伸
最后全课总结。这对于帮助学生理清脉络,巩固知识,加深记忆,活跃思维、发展兴趣都具有重要作用。
四、教学效果
总之,本课利用计算机网络资源进行学习,增加了信息量,扩大了学习活动的自由空间,落实了因材施教,不仅高效地完成了本节课的学习任务,而且同学们的信息素养的到了培养。他们不但掌握了质数和合数的概念,还能用多种方法进行判断。网络环境给数学教学带来前所未有的生机与活力。
篇3:质数与合数说课稿
今天我说课的课题是《质数和合数》,它是人教版小学五年级下册第二单元第三课时的教学内容。
一、教学目标:
1、通过学习,使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别;
2、通过自主探索,使学生掌握2、5、3、的倍数的特征;
3、通过在学习数学概念的基础上,逐步培养学生的数学抽象能力;
4、通过学习,使学生进一步体会数学知识之间的内在联系,进一步增强探索数学知识和规律的能力,感受数学知识和方法的应用价值,激发学习数学的兴趣,提高学好数学的自信心。
二、教材分析:
这部分内容主要是教学质数和合数,教材一共安排了一个知识点、一道例题和一个练习。知识点呈现的1-20这些自然数。教材首先让学生找出1-20各数的全部因数,然后按照每个数的因数的个数进行分类。在此基础上给出质数和合数的概念。同时说明1既不是质数,也不是合,以加深学生对某些特殊数的认识。
随后的例1让学生运用质数的概念和学生知道合数的概念找出100以内的所有质数。学生通过此例题可以学会找质数的一般方法“筛选”,即划掉每个质数的所有倍数(它本身除外),剩下的都是质数。
本节课的知识点:
1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生依据1-20各数因数的个数分类上,理解质数和合数的概念,并能正确找出100以内的所有质数。
2、在探索过程中,培养学生比较、归纳与概括的能力和用数学语言进行表述交流的能力。培养学生观察、筛选、验证结果的科学探究的良好习惯。
3、使学生体验学习过程是不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,激发学生勇于攀登科学高峰。
4、让学生自己去经历观察、实验、猜想、证明等数学活动的过程,发展合情推理能力,初步的演绎思维能力及解决问题的能力。
教学重点:
通过学生理解掌握质数、合数的概念。初步学会准确判断一个数是质数还是合数。培养学生自主探索的能力,即独立获取知识的能力。
教学难点:
通过学生理解掌握质数、合数的概念的基础上,正确判断一个大于1的自然数是质数还是合数。并区分奇数、质数、偶数、合数,会把自然数按因数的个数进行分类。
三、学情分析
《质数和合数》是在学生学习了因数、倍数、奇数、偶数概念的基础上进行教学的。五年级的学生己有了一定的知识经验和转化类推能力,也有了一定的观察、猜测、验证结果的科学学习数学的学习习惯和合作、探究、迁移、类推的能力。本节课主要使学生会根据因数的分类学习质数和合数的概念,并通过主动探索,培养学生的合作能力和迁移、类推能力,理解并掌握100以内的质数表,能正确进行区分质数和合数。并能通过学习,使学生进一步体会数学知识之间的内在联系,进一步增强探索数学知识和规律的能力,感受数学知识和方法的应用价值,激发学习数学的兴趣,提高学好数学的自信心。
四、教学设想;
1、在《数学新课程标准》中,强调要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程。因此教学中根据儿童的认知规律,创设情境,激发学生的学习兴趣和强烈的求知欲望,引导学生积极思维,主动获取知识,使学生在自主学习、探索、交流中要学数学,会学数学和乐学数学,力求体现“以学生发展为本”的指导思想。
2、本节课在设计中从学生已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会,让学生动手设计,在亲身实践中自己经过分类学习质数和合数,激发学生学习兴趣和学习动机,使学生在具体、直观的操作中自己发现质数和合数的本质特征,从而能主动、大胆地提出和参与讨论有关数学知识和问题的行为。充分体现让学生自主的去探索、去发现,自豪的成为知识的探索者和发现者,另一方面很自然的突破了本课的教学难点。
3、本节课采取小组(同桌)合作与独立探索相结合的学习方式,充分利用学生间的交流、互动活动,互相碰撞、启发,获得有顺序地、全面地思考的数学方法
4、充分发挥习题的功能,采用分层训练,形式多样,力求在练习过程中即巩固新知,又发展学生的数学思维。注重知识拓展,向学生呈现歌德巴赫猜想,让学生感受数学的严谨及数学结论的确定性,体会数学的美感,激发学生勇于攀登科学高峰。
五、教学方法设计
教学方法:讲解法、观察法、列举法、归纳法
教学手段:
利用学生已有的知识经验,以数学活动为主,通过观察、试验、归纳获得数学猜想,进一步准确地理解质数和合数的概念。
紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、运用”这一循环过程中,自然地发现“质数和合数的概念和区别质数和合数的方法”。
1、以学生为主体,发展学生的自主学习能力与思维能力。
数学课堂教学要注重发展学生思维、提高学生能力,着眼于学生可持续发展能力的培养。为此,在课堂教学中,创设条件,积极营造学生自由学习的时间与空间,让学生在独立思考、自主探索、交流学习中来感悟、探究、发现质数和合数的概念,让学生经历对知识的再发现、再创造过程,从而培养学生的创新意识与创造能力。如课堂中首先出现的是将1-20这些数进行分类。教学过程要善于捕捉学生的闪光点,关注生成。如:通过以上学生知识形成的过程与经验,紧接着就探讨一个因数的个数问题,学生自主用已有的生活经验探索出质数和合数的概念。并在自主学习过程中学生自主生成,如何区分质数和合数,从而真正体现是学生迈过学习,自主获得知识的生成过程和计算方法。
2、正确把握教师主导与学生主体的关系。
本课力求在每一个环节的推进过程中都先让学生独立思考、独立探究,再让小组合作讨论探究,教师只起穿针引线的作用,给予学生应有的尊重与信任,提供其广阔的思考空间与交流机会,使其通过个体思考,小组或组际交流逐步得出自身认可的质数和合数的概念,充分体现学生是课堂学习的主人。比如:教材重点组织学生探索1-20这些数的分类,学生通过分类认识了质数和合数概念。学生可以通过对质数和合数概念,通过筛选找出100以内所有的质数。
六、学习方法设计。
本节课力求培养学生主动探究新知的能力,在引入的过程中,教师问:“你能将1-20这些书进行分类吗?”使学生自己想出依据、进行分类,这样就使学生产生急于要弄明白分类目的求知心理,激起了探索的欲望与兴趣,为下一步的自主探究创造了良好的心理条件。
而且学生在独立将这些数分成三类,在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。运用规律来解决问题,让学生进一步感悟找质数的方法,获得方法。一方面可加深对概念的理解,提高对概念的感性认识,为归纳出质数和合数的概念打下基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。
“筛选”找到100以内的质数,具有较强的操作性,是对概念在操作层面上最简单的概括,对学生在筛选时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据因数来判断质数,还是合数。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。
七、教学流程
教学内容:
教材23-24页相关内容及例1、练习四
教学目标:
1、理解质数和合数的概念,知道它们之间的联系和区别。
2、找出100以内的所有质数,能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
3、经历质数和合数的认识和辨别过程,培养观察、比较、归纳概括的能力。
4、养成敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
通过学生理解掌握质数、合数的概念。初步学会准确判断一个数是质数还是合数。培养学生自主探索的能力,即独立获取知识的能力。
教学难点:
通过学生理解掌握质数、合数的概念的基础上,正确判断一个大于1的自然数是质数还是合数。并区分奇数、质数、偶数、合数,会把自然数按因数的个数进行分类。
教学用具:课件小卡片
教学过程:
一、复习导入:
1、找下面各数的因数。
2 15 51 57
2、把1-20这些自然数进行分类。
生:根据自然数能不能被2整除,可以分成奇数和偶数两类。
生:… …
板书:
奇数:1、3、5、7、9、
11、13、15、17、19
偶数:2、4、6、8、10、
12、14、16、18、20
师说明:这是一种有价值的分类方法,在以后的学习中很有用。
二、新授
1、质数和合数的概念
师:同桌合作先找出奇数和偶数的因数,再按要求填入表格。
生:同桌合作后汇报。
板书:
只有一个因数只有1和它本身两个除了1和它本身还有别的因数
奇数1 3、5、7、11、9、15
13、17、19
偶数2 4、6、8、10、12
14、16、18、20
师:自学课本(出示质数和合数的概念)
师:通过自学内容,你有什么收获?
生:质数的概念、合数的概念
1既不是质数,也不是合数
师:你还有什么困惑?1为什么既不是质数,也不是合数?
师明确:20以内的质数2、3、5、7、11、13、17、19
20以内的合数4、6、8、9、10、12、14、15、16、18、20
师:观察奇数和合数你有什么发现?观察偶数和质数你有什么发现?
生:奇数不一定是质数,偶数不一定是合数。
2、火眼金睛:
4 12 36 25 28 22 35将这些数按要求进行分类。
2的倍数:3的倍数:
5的倍数:7的倍数:
师:先观察这些质数的倍数都是什么数?这些数的倍数都是合数吗?
生:除2是质数,后面2的倍数都是合数.3、5、7都一样.
结论:(1)、一个质数的倍数,除它本身之外,都是合数。
(2)、偶数除了(0和2)之外,都是合数
3、找出100以内所有质数。
师:大家真聪明,大家能不能根据刚才的结论,利用“筛选”的方法很快找出100以内的质数。把质数用圆圈画出来。
生:同桌合作完成交流,的方法比较快。
师:出事完整100以内的质数表。
说明:判断一个数是不是质数可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对智力小测验的判断是否正确。
三、生活大拓展15’
大家学习这些知识,下面老师带领大家到生活中去解决实际问题?
1、开心智力判断,并解释理由
(1)所有奇数都是质数。
(2)所有偶数都是合数。()
(3)在自然数中,除了质数就是合数。()
(4)两个质数的和是偶数。()
2、智力找朋友
27、37、41、58、61、73、83、95、11、14、33、47、57、62、87
质数合数
4、开心游戏
师:请一位同学说出一个大于2的偶数,另找一个人找出和为此数的两个质数。
四、全课总结
你这节课都学到什么知识
五、布置作业(略)。
板书:
质数和合数
只有一个因数只有1和它本身两个因数除了1和它本身还有别的因数
奇数1、3、5、7、9 1 3、5、7、11、9、15
11、13、15、17、19 13、15、17、19
偶数2、4、6、8、10 2 4、6、8、10、12
14、16、18、20
质数合数
(1)、一个质数的倍数,除它本身之外,都是合数。
(2)、偶数除了(0和2)之外,都是合数。
八、教学媒体
本节课教师使用了多媒体作为教学手段,将1-20这些数以及质数和合数概念和课堂练习、例题思考过程等都通过屏幕展示给学生,利用多媒体强悍的呈现力和灵活的交互性,让课变的生动,提高了课堂效率。本课的重点利用纸条呈现在学生面前,增强学生的动手能力。而且小纸条能很好的让学生发现新知、探究新知。上出有特色的好课。
九、板书设计
质数和合数
只有一个因数只有1和它本身两个因数除了1和它本身还有别的因数
奇数1、3、5、7、9 1 3、5、7、11、9、15
11、13、15、17、19 13、15、17、19
偶数2、4、6、8、10 2 4、6、8、10、12
14、16、18、20
质数合数
(1)、一个质数的倍数,除它本身之外,都是合数。
(2)、偶数除了(0和2)之外,都是合数。
十、练习设计
1、开心智力判断,并解释理由
(1)所有奇数都是质数。()
(2)所有偶数都是合数。()
(3)在自然数中,除了质数就是合数。()
(4)两个质数的和是偶数。()
2、智力找朋友
27、37、41、58、61、73、83、95、11、14、33、47、57、62、87
质数合数
4、开心游戏
师:请一位同学说出一个大于2的偶数,另找一个人找出和为此数的两个质数。
十一、教学反思
本节课中教师本着以人的发展为本的教学理念,着眼于学生的可持续发展,注重教学目标的多元化,在价值目标取向上不仅仅局限于学生获得一般的解决知识技能,更重要的是让学生在数学学习过程中感受到数学自身的魅力,获得数学的基本思想,了解数学的价值,体验问题解决的过程。成功与快乐是学习的一种巨大的情绪力量,教师不失时机的积极鼓励,能使学生产生学好数学的强烈欲望.因此,教师要对学生任何成功的言行都要给予及时、明确和积极的强化。如微笑、点头、重复和阐述学生的正确答案。至于学生的一些错误反应,应该鼓励学生继续努力。可以对学生说:“有进步,谁能再补充一下?”在讲“质数、合数”这节课,教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。让学生感受数学的严谨及数学结论的确定性,体会数学的美感,激发学生勇于攀登科学高峰。
篇4:质数与合数五年级数学教案
在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。
学情分析
1、学生对于抽象概念的学习积极性不高,理解概念和适时判断的能力还不强;
2、学生观察1至20各数因数个数的规律还存在困难,对于概念的理解和判断会很模糊。
教学目标
1、帮助学生理解质数、合数的概念,熟记20以内的质数,能准确判断100以内的数是质数,还是合数。
2、组织学生通过观察分析、动手操作、合作交流等方式理解概念、感受数学。
3、活化抽象的概念,增进学生应用数学的意识,激发学生学习数学的热情。
教学重点和难点
1、质数、合数的意义。
2、质数、合数与奇数、偶数的区别。
篇5:质数与合数 教学教案设计
京里村中心小学常艳玲
数学课程标准中明确指出:“有效的数学学习活动不能单纯地依靠模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”而学生的参与和探究又主要依赖于下列几个方面的因素:
1.教师教学目标的制定是否是有价值的。这就要求教师在教学设计中,准确把握教学内容在数学知识体系中的价值和作用,同时还要清楚地掌握学生已有知识状况以及可能生成的问题。
2.根据学生和教材的情况教师要合理的创设问题情境。问题情境只要能使儿童产生认知的“不平衡”,引起他们的思维冲突,就能激起他们的好奇心、求知欲,就会使教学过程始终在动态平衡中前进,实现真正意义上的有效教学。“问题”可以来自数学系统外部,即现实生活;当然也可以来自数学知识内部。
3.课堂教学的实效性还体现在教学活动的过程之中。也就是每一个活动环节的设置是否真正有利于学生参与,是否具有研究的价值,同时还取决于是否有利于学生产生有效的思维碰撞。
4.注重把握数学教学的实效性与课堂教学密度的关系,因此教师应充分的发挥主导作用,从而确保在有限的教学时间内,达到最优的教学效果。既不可过松,让学生一味发挥,也不可敷衍了事走过场。
综上所述,我个人认为,数学课堂教学实效性的研究在教学设计中,教师应注意把握多方面的因素,这是一个多元化的问题,因加深了学生对概念的理解,同时启迪了学生进一步学习的欲望。
教学背景分析
(一)教学内容分析“质数与合数”一课选自北京版小学数学教材第十册,在学生认识了整除的概念,熟练掌握了2、3和5的整除特征,因数、倍数已经认识和掌握的基础上进行的。教材的编排思路是先借助对一些数因数情况的研究比较,在学生根据因数的情况进行分类的基础上,对质数和合数的概念进行定义的。并在此基础上,引导学生找出100以内的质数表。质数和合数的概念在整除这一个单元中意义非常重大,首先概念特征本身,不同于奇数和偶数的特征那么明显,相对隐性不易于学生的理解与感受。同时,对概念的认识,也为进一步研究分解质因数和解决公因数和公倍数的问题,奠定了基础。
(二)学生情况分析
在学习该知识前,绝大多数学生对质数与合数的概念相对陌生,但也有部分学生对通过不同的信息渠道对知识有了不同程度的认识。但是学生对概念的认识到底掌握到什么程度?因此在进行教学设计前,教师通过前测,了解学生的基本状况:
调研对象:五年级(4)班 43人
调研方法:
1.利用教学第一环节(用小正方形摆长正方形)提出三点质疑:即影响摆的方案的因素:数的大小;奇数、偶数;因数个数。
再由每个学生独立作出第二次选择。
出示数据:51、36、46、26、47、33
学生选择情况
51 36 26 46
选择人数(人) 4 13 1 25
所占百分比 9.3% 30.23% 2.3% 58.1%
2.学生对质数的了解情况。(访谈43人)
听说过质数的11人,但了解质数的5人。
针对上述调研情况,说明通过第一个环节的操作,学生对数与因数个数之间的内在联系缺乏清晰的认识,大部分学生不了解质数。
(三)教学方式与教学手段说明
1、教学层次的确定
基于绝大多数学生对概念并不了解,同时概念本身又相对抽象。因此,在教学设计中教师通过第一个教学实践的安排,让学生通过用小方块摆长方形或正方形初步感受数与约数个数间的隐性联系,适时地挖掘学生对概念的不同认识,引导学生通过第二次有选择的实践活动,亲身分离出数与因数个数间的内在联系,主动获取对概念的感知。由于第二次的实验是由学生在独立思考的基础上,自主地选择学具,并在活动中确立了因数个数与数的联系。排除了对概念的模糊认识,因此对概念的理解更加深刻,便于学生发现和归纳概念。在此基础上再回到第一组的实践活动中,数与因数个数之间的联系,从而确立质数与合数的概念。最后在学生掌握了概念的基础上,鼓励学生大胆提出想进一步研究的有关质数与合数的问题,激发学生进一步探索和研究的欲望。
2、数学文化的渗透
设计有学生提出感兴趣的问题和猜想,并沿着学生可能生成的问题,介绍古今中外人们对质数与合数的研究和探索,不仅激发了学生的求知欲望,同时也渗透了人类对有关质数问题探索情况。有利于渗透学生对数学文化的了解,提高学生探究数学的兴趣。
(四)技术准备
学具
(1)每组一袋装有小方砖的学具筐。
(2)每组方案表一张。
(3)可选择的装有小方砖的信封若干。
教具
(1)数形图。
(2)教学课件。
三、教学环节
(一)教学目标
1.通过学生的主动参与,在操作体验的基础上理解质数和合数的意义,明确质数与合数的内在特征,感受素数、合数和1与因数之间的关系。
2.引导学生经历操作,体验,再操作、再体验的数学活动过程,并在这一过程中深刻把握质数与合数的特征,发展学生的提出问题和研究解决问题的能力,帮助学生建构数的特征。
3.形结合的数学建构模式;使学生初步认识数学与人类生活的密切联系,体验学习活动充满着探索与创造,感受数学的严谨及数学结论的确定性。
(二)教学过程1.
课前谈话
引导学生欣赏参加军训的相片,引发排方阵的问题。
2.提出问题
(1)师:刚才我们提到了军训中的排方阵,今天李老师为每组都准备了一些小方块,你们能用上所有的小方块摆出长方形或正方形吗?(学生分成七组,每组的数量分别是4、5、7、9、11、12、24)
(2)学生:能
(3) 师:咱比一比哪一组的设计方案最多,并将设计好的方案记录在表格里。
记 录 单
总块数 每行的块数 行数
(4)学生分成七组研究并记录研究方案。
【设计意图】教师进行巡视,解答学生研究过程中的问题,并注意收集学生对方案多少产生的疑惑,为引导学生进一步研究做好准备。这一环节设计的目的主要是引导学生初步建立数与形之间的感性认识,为进一步的研究奠定基础。
3.交流并引发冲突
(1)引导学生分组汇报研究成果(教师帮助学生记录研究成果)
第一组:4=4×1=2×2
第二组:5=5×1
第三组:7=7×1
第四组:9=9×1=3×3
第五组:11=11×1
第六组:12=12×1=6×2=4×3
第七组:24=24×1=12×2=8×3=6×4
师:第七组太棒了!,你们真了不起,设计的方案最多。你们是今天当之无愧的冠军!(引发冲突)
生:不公平。
(2)教师收集学生的意见并记录下来
教师板书学生的质疑
(3)教师适时的评价,引发学生进一步研究
师:相信你们说的都有各自的道理,刚才我看到了每个组的同学都在想办法,想使方案尽可能多,但有些数摆完后,方案只有一种,有的就不止一种。我们一起来看一看。
【设计意图】教师引导学生将方案中只有一种和方案不止一种的数形图选出来,分别呈现在黑板上。
师:那么方案的多少到底与谁有关呢?刚才老师提供的学具不公平,如果让同学自己选你们愿意吗?
【设计意图】教师通过课堂评价有意制造矛盾冲突,由此引发学生进一步探索和研究的欲望。
4.再次尝试
(1)老师呈现再次可供选择的块数(46、25、59、32、36、51)
(2)各组学生分别派代表自主选择并进行研究。
(3)引导学生交流研究体验,发现因数的个数是影响方案多少的决定性因素。
师:通过刚才的研究对于影响的三种因素,你们有什么新的想法?(通过再次的体验,引导学生关注数与因数之间的关系)
5.比较归纳
(1)观察归纳
师:既然因数的个数是决定性因素,就让我们共同观察我们曾经研究过的数的因数。方案只有一种的这些数有什么特点?
【设计意图】引导学生从因数的特点、因数的个数和数形图不同的维度进行观察。
(2)引导学生归纳质数的概念
(3)在学生准确归纳质数的基础上归纳合数的概念
(4)判断练习每一个学生利用手中的数字牌,独立判断自己手中的数是质数还是合数,请判断是质数的同学到前排,是合数的同学们留在座位上。
请学生互相判断并提出质疑。
【设计意图】重点处理“2”和“1”的问题
6.引发思考
(1)过渡:从毕达哥拉斯、欧几里得和陈景润等数学家对质数和合数的探索,激发学生进一步探索和研究。
(2)对于质数和合数还有没有进一步想研究的问题?
【设计意图】引发学生提出对质数相关知识的已有了解,以及产生的问题。
7.课外拓展对质数和合数还想有更多的了解,可进一步查询有关的资料。认识概念并形成知识的建模。
以往的教学是通过找因数来认识质数与合数的特征的,今天,我们还把形与数紧密地结合起来,前者更加抽象,后者更加直观,两者相结合,便于学生能从形的角度理解质数与合数。
篇6:《质数与合数、分解质因数》的教案
教学目标:
1、能够理解质数与合数的意义。能正确判断一个数是质数还是合数。了解100以内的质数,熟悉20以内的质数。理解质因数、分解质因数的意义。会把一个合数分解质因数,掌握用短除式分解质因数。
2、培养学生观察、比较、概括和判断的能力,以及自主探索、独立思考、合作交流的能力。
3、在研究过程中体验成功带来的学习乐趣,感受数学文化的魅力,同时在教学中渗透对立统一的辩证唯物主义的观点。
教学重点:
1、理解质数和合数的意义,质因数和分解质因数的意义。
2、分解质因数的方法。
教学难点:
1、如何判断一个数是质数还是合数。
2、分清因数和质因数,质因数和分解质因数的'联系与区别。用短除法分解质因数。
重难点突破:
1、从研究团体操表演中各方阵人数的特点这一情境入手,抓住学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连。通过把每个数的因数罗列出来,思考:有两个以上因数的,都能排成方阵吗?进一步研究,验证,概况出质数和合数的定义。再出示几个数,让学生学会判断是质数还是合数,也可让学生自己写出几个质数和合数。给学生充分的时间交流、评判,以达到辨析概念的目的。
2、在认识质因数、分解质因数时,可让学生用自己的方法对合数进行分解,然后从学生中选择用塔式分解式的方法,进行交流,归纳质因数,分解质因数的意义;然后学会用塔式分解式分解质因数。学习短除法分解质因数时,教师可先让学生了解格式,然后学生自己试算,然后归纳步骤。
教学重点:
1、认识质数和合数。围绕排成各个方阵的人数,分别是24、25、40、35、32,这些数有什么特点呢这一问题,放手让学生寻找这些数的特点。教师在学生思考后可适当引导,看组成方阵的人数与它们的因数有关系吗,让学生观察因数的个数,初步得出这些数因数的个数都在两个以上的结论。再利用学具摆一摆,在感知的基础上,对列举的个数按因数的个数进行分类,得出非零自然数按照因数的个数分类可分成质数、合数和1。
2、分解质因数。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识的到质因数时一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,对分解步骤进行归纳这三步完成的。
篇7:《质数和合数》说课稿
一、说教材
“ 质数和合数”是九年义务教育小学数学五年级下册第二单元《因数和倍数》中的内容;是学生学习了因数和倍数的意义,了解了2、5、3倍数的特征之后的重要知识,在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。
根据新课标倡导的目标,本节教学目标定为:
知识与技能:
1、使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、会把自然数按因数的个数进行分类。
过程与方法:
1、采用探究式学习法,培养学生积极探究的意识。
2、通过自主学习、猜想、交流验证、归纳总结的学习过程,培养学生动手操作、观察和概括能力。
情感态度与价值观:
1、在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学的魅力。
2、培养学生勇于探索的科学精神。
本节的核心内容就是质数和合数,所以教学重点确定为:
理解掌握质数、合数的概念,正确判断一个数是质数还是合数。
由于本单元概念比较多,奇数、质数、偶数、合数的概念对于学生来说是难点,所以教学难点定为:
理解掌握质数、合数的概念的基础上,能区分奇数、质数、偶数、合数。
教学准具: 课件
课前准备:学生写出1――20的因数。
二、说教法
新课程标准要求转变学习方式,学生是学习的主人,教师要为学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法,获得广泛的数学活动经验。
根据本节知识特点和小学生的年龄特点及认知规律,遵照课标精神,我采取了以下的教学方法:
1.动手操作,引导探索,发现规律,培养分类归纳的数学意识和品质 。
2.寓学于乐,逐步提高。乐学环境的构建可以提高学生学习的效率和学习兴趣。
三、说学法
教师的任务不仅要使学生学会,更重要的是要使学生会学。通过本节教学内容,使学生掌握以下学习方法:
1.使学生通过观察、比较,学会分析、综合、整理的方法。
2.在思维活动的组织上,采取从个别到一般的概括方法,比较对照,区别异同的方法等。
四、说教学过程
教学思路拟订为“复习旧知,导入新课――自主学习,探究新知――联系实际,巩固新知――全课总结”四大模块,努力构建学生自主探索型的课堂教学模式。
一、复习旧知,导入新课 :
(新课标指出:有效的数学活动应当建立在学生现有认知水平和已有数学知识经验之上。新知教学需要旧知做铺垫,本节的新知质数和合数以因数为基础,课前复习关于因数的知识是必不可少的)。
同学们,前面我们已经学习了因数和倍数,也会求一个数的因数。关于因数你知道些什么?
这节课我们继续来研究因数的问题。
二、自主学习,探究新知
(一)质数和合数的概念
(秉着“努力营造学生在教学活动中的自主学习的时间和空间,使他们成为课堂教学中重要的参与者和创造者,落实学生的主体地位,促使学生的自主学习和探究”的指导思想,课堂上充分体现“以学生发展为本”的教育理念,让学生自主探究新知质数和合数的概念。)
1、师:拿出你所找的1――20的因数,我们一起来互对一下自己找的完整不完整?
出示课件,1――20的因数。
观察思考:
(1)这些数的因数的个数一样多吗?
(2)你能把这些数按因数的'个数进行分类吗?
按要求填入课本23页表格。
2、师:自学课本23页。
师:通过自学内容,你有什么收获?
生:质数的概念、合数的概念(板书课题)
1既不是质数,也不是合数
师明确:20以内的质数2、3、5、7、11、13、17、19
20以内的合数4、6、8、9、10、12、14、15、16、18、20
(针对“质数和合数的概念”这个教学教学重点,我设计了三个强化层次。)
其一,思考:
(1)判断一个数是质数还是合数,关键是什么?
(2)质数的因数有多少个? 合数的因数有多少个?
其二,从小到大各写出5个。
2的倍数:
5的倍数:
3的倍数:
师:先观察2、5、3的倍数都是什么数?这些数的倍数都是合数吗?
其三,举例
你能举一些质数的例子吗?你能举一些合数的例子吗?(学以致用)
(二)自然数分类
举例我们把教室里面的同学进行分类,可以怎么分?引出“分类标准”很关键;男女生分、左中右分。
1、按照是不是2的倍数这个标准,可以把自然数分为?
黑板上画集合圈。 sxsk/
2、按照因数的个数多少这个标准,自然数又可以分为哪几类?
黑板上版画集合圈。(把学生的思维导向于有意义的思考。)
3、观察质数里有奇数吗?有偶数吗?
观察合数里有奇数吗?有偶数吗?(此时学生已有质数和合数的概念,如何启用相关的知识经验,对比奇数、偶数、质数、合数, 建立起概念之间的联系,既巩固了新知识,又加强了知识之间的横向和纵向联系,从而突破本节的教学难点。)
三、联系实际,巩固新知
(从内容上围绕重点,巩固新知。从层次上逐层深化,拾级而上。可以检测学习情况和评价教学效果。)
1、开心智力判断,并解释理由
(1)所有奇数都是质数。
(2)所有偶数都是合数。()
(3)在自然数中,除了质数就是合数。( )
(4)两个质数的和是偶数。( )
2、智力找朋友
172229 35 37 87 93 96
质数合数
3.猜猜陈老师家的电话号码?
第①位是10以内最大的质数。
第②位是10以内最小的合数。
第③位是10以内最大的既是偶数又是合数。
第④位这个数既不是质数也不是合数。
第⑤位是10以内最小的质数。
第⑥位是10以内最小的既是质数又是奇数。
第⑦位是10以内最大的既是奇数又是合数。
四、全课总结
(课终之时,进行简明扼要地梳理,可以使教学内容系统化,还可以培养学生的抽象概括能力。)
师生共同小结:学习了哪些内容?怎样判断质数和合数?从中你学会了什么?
说教材完毕,谢谢大家!
篇8:《质数和合数》说课稿
《质数和合数》说课稿
一、说教材
1.课时教学内容的地位、作用和意义:
质数和合数是在学生已经掌握了约数和倍数的意义,了解了能被2,5,3整除的数的特征之后学习的又一重要内容,它是学生学习分解质因数,求最大公约数和最小公倍数的基础,在本章教学内容中起着承前启后的重要作用。
2.教学目标:
(1)知识和技能:
①掌握质数和合数的概念,会正确判断一个数是质数还是合数。
②知道自然数还可以分成质数、合数与1三类。
(2)过程和方法:通过100以内的质数表的制作,使学生学会合理选取学习材料的方法。
(3)情感、态度和价值观:通过学习,培养学生自主探索、独立思考、合作交流的能力。
二、说学情
《数的整除》这一单元,概念多,理解难,易混淆。学生通过对约数和倍数以及能被2,5,3整除的数的学习,有了一定的认知基础,本节课的教学内容是在学生已经掌握约数概念的基础上进行教学的。
三、说教法
新课程标准要求转变学习方式,学生是学习的主人,教师要为学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法,获得广泛的数学活动经验。根据本节知识特点和小学生的年龄特点及认知规律,遵照课标精神,我采取了动手操作,引导探索,发现规律,培养分类归纳的数学意识和品质的教学方法。
四、说学法
教师的任务不仅要使学生学会,更重要的是要使学生会学。因此,我在设计这个教学内容时分了这样几个层次。
第一层次:首先让学生从1到20中随意挑选5个数写出这5个数的约数,然后通过汇总整理归纳,使学生发现自然数还可以按约数的个数分成质数、合数与1。
第二层次:接着通过判断一些数是质数还是合数,让学生进一步理解质数与合数的概念以及掌握质数与合数的判断方法。
第三层次:要求学生通过小组合作的方法来制作一张质数表。
在这一教学环节中我就设计了4张数表,让学生通过对数表的选择,来感悟学习材料的选择对方法的应用是有影响的。从而使学生领悟到今后在研究问题时,要注意选择最方便自己解决问题的方法。
在找2到50中的质数这一环节,我给学生以充足的时间和空间,让学生独立思考,然后组内互相交换意见,这样学习方式就变得多样化了,同时也使学生感受到了合作交流的重要性,从而自发地掌握了学习方法。整个过程,从思维的形式上说,是有联系的,有序的,处于做数学的水平。促使学生学习和反思动脑的方法,真正学会学习。
第四层次:在制作完质数表后,我安排学生用质数表来判断质数和合数,使学生体会到质数表的优越性。
第五层次:最后安排了一个小游戏,用今天学到的知识和以前学到的知识来介绍自己的学号。游戏练习、符合小学生的兴趣,学生都乐于积极参与,在收到巩固的最佳效果的同时,又能培养学生思维的敏捷性。
说课二
您现在正在阅读的《质数和合数》说课稿(2篇)文章内容由收集!本站将为您提供更多的精品教学资源!《质数和合数》说课稿(2篇)一、说教材:
质数和合数是在约数和倍数以及能被2、5、3整除的数的特征的基础上进行教学的。质数和合数是求最大公约数、最小公倍数以及约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能记较快地看出常见数是质数还是合数。这一节内容中抽象概念较多,而且有些概念容易混淆,如:质数与奇数、合数与偶数等。
教学目标:
1.学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2.能初步弄清质数与奇数、合数与偶数等概念的区别及联系,提高学生对知识的把握水平。
3.让学生在活动中体验到学习数学的乐趣。
4.培养学生的观察、比较、归纳、概括能力。
教学重、难点:
1.掌握质数、合数的概念,准确判断一个数是质数还是合数。
2.奇数、偶数、质数、合数的`区别与联系。
二、说教法、学法:
首先,在学习准备中让学生根据以往的知识经验,对小组号码数字进行分类(按奇数、偶数分,按位数分等等)。对学生不同的分法老师都给予肯定,同时引导学生对非零自然数的另一种分法,即按一个数的约数的个数来分,从而引入新课。
其次,教师引导学生写出自己小组号码数的约数,并绘制成表,让学生观察表按约数的个数来分该怎样来分。通过观察、比较,发现这三类数的特点,归纳、概括出质数、合数的概念。然后教学例2:质数和合数的判断。教师指出还可以通过查质数表来判断一个数是质数还是合数,并引导学生制作质数表。从而使学生初步发现质数和奇数、合数和偶数等概念的区别及联系。
再次是一些练习题巩固所学知识,拓展学生思维。最后课堂小结布置作业。
三、说教学过程:
(一)学习准备:让学生根据以往的学习经验,对自己的小组号码数进行分类(按奇数、偶数分,按位数分等等),同时引导学生对非零自然数的另一种分法,即按一个数的约数的个数来分,从而引入新课。
(二)探究新知:
1. 建立质数、合数概念:
找约数进行分类、观察归纳出质数、合数概念。
2.教学例2:质数和合数的判断。
你认为怎样去判断一个数是质数还是合数?
告诉学生还可以通过查质数表来判断,并指导学生制作质数表,引导学生发现,初步弄清质数与奇数、合数与偶数等概念的区别及联系。
(三)巩固拓展应用:
1.填空 2.判断 3.思维训练
(四)全课小节:这节课我们学习了什么?你有哪些收获?还有什么问题?
(五)布置作业;练习十三的第2、3题。
篇9:质数与合数
教学目标
(一)准确地理解和掌握质数和合数的意义。
(二)会判断一个数是质数还是合数,会把自然数按约数个数进行分类。(三)培养学生观察比较、抽象概括和判断推理的能力。
教学重点和难点
(一)质数、合数的意义。
(二)质数、合数与奇数、偶数的区别。
教学用具
投影片,2~50的自然数表。
教学过程设计
(一)复习准备
1.判断下面各数,哪些是偶数?哪些是奇数?奇数和偶数是根据什么来分的?(投影片)2,3,4,9,14,15,101,187,235,561,740,927,839,456。
2.按照能否被2整除对自然数进行分类:(投影片)
3.请说出下面各数的所有约数:(投影片出题,学生口答老师板书。)
1的约数有________;2的约数有________;
3的约数有________;4的约数有________;
5的约数有________;6的约数有________;
7的约数有________;8的约数有________;
9的约数有________;10的约数有________;
11的.约数有________;12的约数有________。
教师:请观察板书,左边和右边的数各有什么特点?(左边是奇数,右边是偶数。)教师:我们已经学过按照能否被2整除对自然数进行分类。除了这种分法还有没有别的分法呢?这节课就研究这个问题。
(二)学习新课
篇10:《质数和合数》教案
教学目标:
1、创设情境,让学生经过探索理解质数和合数的概念,并能判断质数合数。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力
教学重难点:理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的'个数进行分类。
教学过程:
一、课前谈话
师:你们知道吗?数学在生活中真的是无处不在,如果把你们学号当成一个数,谁能试着用你学过的整除知识描述你的数?
二、教学过程:
(一)情境引入:
(1)把你的学号看成一个数,这个数是几,你手里就有多少个这样小正方形。(摆上正方形)就用他们拼出新的长正方形。因为拼起来很烦琐,所以把你想到的拼的结果画到方格纸上(摆方格纸)在图形中写上这个数,还要标上长宽或边长(举例)
教师提示:(同时演示)比如我的数是40,我就用40个小方格,可以拼出这样的85和58的长方形,别看摆法不同,但属于同一种的
(2)在3分钟内,我们比一比看谁拼得最多,谁就是冠军。
(3)学生反馈汇报:谁拼得多?还有更多的吗?
生反馈24号4种,并验证
(4)看来24号同学是这次比赛的冠军。是最聪明的,你们同意吗?找个代表说说理由。
(5)验证刚才总结出的结论
(二)揭示质数、合数
(1)为什么这些数只能拼出一种来,这些数有什么共同点
(2)拼出不只一种的都有谁, 为什么这些数拼出的不止一种呢?这些数又有什么共同点呢?
(3)投影概念读一读
(4)研究数字1
揭示:1既不是质数也不是合数(板书)读一读
(5)小练习:现在我可以说自然数中不是质数就是合数,对吗?
三、巩固练习,加深认识。
出示学生表
1、抢答练习:一些数快速判断质数合数
2.判断
3.猜学号认同学
4.自我介绍
2、出示哥德巴赫猜想
四、小结收获
板书设计:
质数合数
只有1和它本身没有其他约数叫质数
除了1和它本身还有其他约数叫合数
篇11:合数与质数练习题
合数与质数练习题
1.9999×7778+3333×6666
6-0.6×(x-0.6)=0.6
2.一个数只有两个因数,这个数叫做质数;一个数除了1和它本身外还有别的因数,这个数叫做()
3.最小的质数是(),它又是()数
4.既是奇数又是合数的数是(),既是偶数又是质数的数是()
5.42的因数有(),78的因数有(),它们的公因数是(),其中最大的一个是()。
6.填上合适的质数:
20=()+()
28=()+()
10=()+()=()×()=()—()
7.一个七位数,最高位上的数字是最小的合数,千位上的数字是最大的一位质数,个位上的数字既是偶数又是质数,其余各位上的.数字都是0,这个数读作()
8.几个质数连乘的积一定是()数
9.a、b、c都是质数,并且a+b=c,那么a×b×c的最小值是多少?
10..已知A是一个质数,而A+6,A+8,A+12,A+14都是质数,A最小是几?
11.中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前,求几小时后小轿车追上中巴车?
12.甲乙丙三数的和是78,甲数比乙数的2倍多4,乙数比丙数的3倍少2。求这三个数
篇12:“质数与合数”教学设计
【教学过程】
一、谈话导入
师:同学们,今天我们继续研究有关数的知识。
(出示数字卡片:把2、13、9、12、7、16、15贴在黑板上。)
师:看到这些数,你想到了什么?
生:2是12的因数,12是2的倍数,13、9、7、15是奇数,2、12、16是偶数……
师:9不仅是奇数,还有一个名字叫合数;2不仅是偶数,还有一个名字叫质数。2是质数,9是合数,那么其他的数是质数还是合数呢?
今天这节课,我们就一起来研究有关质数与合数的知识。(板书课题:质数与合数)
[通过复习,了解学生的知识储备,为下面的学习奠定基础。]
二、动手操作,探索新知
(一)操作,感悟
师:请两个同学商量一下你们想研究哪个数。
(学生商量研究的数。)
师(出示边长1厘米的正方形):今天,我们就借助这些小正方形帮助我们理解。
我来提出活动要求:
(1)你们研究哪个数,就从学具袋中取出几个正方形。
(2)用你们选好的正方形来拼摆长方形或正方形。能摆几种,就要摆出几种。
(3)将你摆的结果,填在表格中。
同时请你思考问题:
(1)你用几个小正方形拼出了你的长方形或正方形?
(2)你是怎样拼的?长方形的长、宽各是多少?或正方形的边长是多少?
(两个学生利用学具独立操作、拼摆。)
(学生依次汇报自己拼摆的结果,教师用电脑演示学生汇报的结果,并展示图形。)
[通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与长方形的长与宽之间的关系。学生通过动手操作得到了大量的学习资源,为后面的学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。]
(二)发现图形与算式的关系
师:你们看,拼成的长方形的长、宽与正方形的个数有什么关系?
(图形消失,出示乘法算式:7=7X1。)
生:长与宽相乘就得到了正方形的个数。
师:用XX个小正方形,可以拼出几个长方形?所以写出了几个乘法算式?
(学生根据自己拼摆的结果作出相应的回答。)
(三)发现算式与因数的关系
篇13:“质数与合数”教学设计
教学内容:
质数和合数,例1,例2
数学目标
1.理解质数和合数的意义。
2.会用质数表判断一个大于1的自然数是质数还是合数,熟记20以内的全部质数。
3.知道1既不是质数,也不是合数。
4.知道自然数按因数的个数分类可以分为质数、合数和1.
教学重难点:
1.掌握质数。合数的概念。
2.正确地判断一个数是质数还是合数。
教学过程:
一.复习旧知。
2. 找出1~20奇数,偶数。
1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20
3.分类:
师:自然数可以分为哪两类?是按照什么标准分的?(2的倍数分的)
二.探究新知。
a:1.导入课题:
师:自然数可以按照能被2整除分为奇数,偶数两类。
那么自然数还有没有其他的分法。今天这节课,我
们就一起来研究“质数与合数”(板书课题)
2.提问:
师:看了这一课题后,你们想通过这节课的学习学会些什么内容呢?
归纳问题(板书)
1) 怎样的数叫质数,怎样的数叫合数?
2) 自然数除了质数、合数外还有哪一类?
3) 用什么 方法判断一个数是质数还是合数?
b.学习质数,合数。
1.写出1~20各数的因数。(课件出示,学生完成表格)
1的因数1 6 1,2,3,6, 11 1,11, 16 1,2,4,8,16,
2 1,2, 7 1,7, 12 1,2,3,4,6,12, 17, 1,17,
3 1,3, 8 1,2,4,8, 13 1,13, 18 1,2,3,6,9,18,
4 1,2,4, 9, 1,3,9, 14 1,2,7,14, 19 1,19
5 1,5, 10, 1,2,5,10, 15 1,3,5,10 20 1,2,4,5,10,20
引导学生看因数(边回答,边看)
2.观察思考
师:这些书的因数的个数一样多吗?(生:不一样)
师:你能把这些数按因数的个数进行分类吗?
学生讨论,分类 (分为哪几类)
3.学
生12报结果(表格,学生完成)
只有一个因数 只有1和它本身两个因数 有两个以上因数的
1 2,3,5,7,11,13 4.,6,8,10,12
17,19 14,15,16,18,20
4. 观察比较,发现特点。归纳概念
质(1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数有什么
特点?(每个数的因数只有1和它本身二个)像这样数叫做质数?
生:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
(板书) (课件出示)
文档为doc格式