欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

第二单元因数和倍数1 教案教学设计(人教新课标五年级上册)

时间:2025-10-25 08:00:09 其他范文 收藏本文 下载本文

以下文章小编为您整理的第二单元因数和倍数1 教案教学设计(人教新课标五年级上册),本文共16篇,供大家阅读。

篇1:第二单元因数和倍数1 教案教学设计(人教新课标五年级上册)

课题:因数和倍数

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:掌握找一个数的因数和倍数的方法。

教学难点:能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数  倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是(   ),而最大的一定是(    )。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的?   (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报   3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数                 3的倍数                5的倍数

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)

三、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业:

完成练习二1~4题

教学反思:

第二课时

课题:2、5的倍数的特征

教学目标:

1、掌握 2 、 5 倍数的特征

2、理解并掌握奇数和偶数的概念。

3、能运用这些特征进行判断。

4、培养学生的概括能力。

教学重点和难点:

1、是2 、5 倍数的数的特征。

2、奇数和偶数的概念。

教学用具:投影片。

教学过程:

一、复习准备

1、提问。

① 说出 20 的全部因数。

② 说出 5 个 8 的倍数。

③ 26 的最小因数是几?最大因数是几?最小的倍数是几?

2、按要求在集合圈里填上数。

二、 学习新课:

(一)2 的倍数的特征。

1、教师:(练习 2) 右边集合圈里的数与左边圈里的数是什么关系?

教师:请观察右边圈里的数,它们的个位数有什么特点?

( 个位上是 0,2,4,6,8。)

教师:请再举出几个2的倍数,看看符不符合这个特点?

学生随口举例。

教师:谁能说一说是2的倍数的数的特征?

学生口答后老师板书:个位上是 0,2,4,6,8的数,都是2的倍数。

2、口答练习:(投影片)请把下面的数按要求填在圈内(是2的倍数,不是2的倍数)

1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

学生口答完后,老师介绍:奇数和偶数的定义

板书:上面两个集合圈上补写出 “ 偶数 ”,“ 奇数 ”。

教师:上面两个集合圈里该不该打省略号?为什么?

学生讨论后老师说明:

在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。

教师:奇数、偶数在我们日常生活中你遇到过吗?习惯上称它们为什么数? (单数、双数。)

3、练习:( 先分小组小说,再全班统一回答。)

① 说出5个2的倍数。(要求:两位数。)

② 说出3个不是2的倍数的三位数。

③ 说出 15 ~ 35 以内的偶数。

④ 50以内的偶数有多少个?奇数有多少个?

(二)5 的倍数的特征。

1、教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究2的倍数的特征的相同方法,找出 5 的倍数的特征?

学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。

教师:说一说5的倍数的特征?

教师:请举几个多位数验证。

教师:再说一说什么样的数是5的倍数。

板书:个位上是0或者5的数,都是5的倍数。

2、练习:

① 按从小到大的顺序,说出50以内5的倍数。

② (投影片)下面哪些数是5的倍数?

240,345,431,490,545,543,709,725,815,922,986,990。

③(投影片)从下面的数中挑出既是2的倍数,又是5的倍数的数。这些数有什么特点?

12,25,40,80,275,320,694,720,886,3100,3125,3004。

学生口答后教师板书:个位数字是 0 。

④ 教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。

三、巩固反馈:

1 、在1~100的自然数中,2的倍数有(   )个,5的倍数数有(    )个。

2 、比75小,比50大的奇数有(   )。

3 、个位是(   )的数同时是2和5的倍数。

4 、用 0 , 7 , 4 , 5 , 9 五个数字组成 2的倍数;5的倍数;同时是 2 和 5 的倍数的数。

四、全课总结:这节课你学会了什么?有什么收获?

教学反思:

篇2:第二单元 因数和倍数 教案教学设计(人教新课标五年级上册)

一、教学内容

1.因数和倍数

2. 2、5、3的倍数的特征

3.质数和合数

二、教学目标

1.掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

三、编排特点

1.精简概念,减轻学生记忆负担。

(1)不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

(2)不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

(3)公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2.注意体现数学的抽象性。

数学知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、学情分析与教学建议

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

第一课时:因数和倍数

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:掌握找一个数的因数和倍数的方法。

教学难点:能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数  倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是(   ),而最大的一定是(    )。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

1、2、3、6、9、18

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的?   (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报   3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数                 3的倍数              5的倍数

2、4、6、8……          3、6、9……            5、10、15……

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)

三、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业:

完成练习二1~4题

第二课时:2、5的倍数的特征

教学目标:

1、掌握 2、5 倍数的特征

2、理解并掌握奇数和偶数的概念。

3、能运用这些特征进行判断。

4、培养学生的概括能力。

教学重点和难点:

1、是2 、5 倍数的数的特征。

2、奇数和偶数的概念。

教学用具:投影片。

教学过程:

一、复习准备

1、提问。

① 说出 20 的全部因数。

② 说出 5 个 8 的倍数。

③ 26 的最小因数是几?最大因数是几?最小的倍数是几?

2、按要求在集合圈里填上数。

二、 学习新课:

(一)2 的倍数的特征。

1、教师:(练习 2) 右边集合圈里的数与左边圈里的数是什么关系?

教师:请观察右边圈里的数,它们的个位数有什么特点?

( 个位上是 0,2,4,6,8。)

教师:请再举出几个2的倍数,看看符不符合这个特点?

学生随口举例。

教师:谁能说一说是2的倍数的数的特征?

学生口答后老师板书:个位上是 0,2,4,6,8的数,都是2的倍数。

2、口答练习:(投影片)请把下面的数按要求填在圈内(是2的倍数,不是2的倍数)

1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

学生口答完后,老师介绍:奇数和偶数的定义

板书:上面两个集合圈上补写出 “ 偶数 ”,“ 奇数 ”。

教师:上面两个集合圈里该不该打省略号?为什么?

学生讨论后老师说明:

在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。

教师:奇数、偶数在我们日常生活中你遇到过吗?习惯上称它们为什么数? (单数、双数。)

3、练习:( 先分小组小说,再全班统一回答。)

① 说出5个2的倍数。(要求:两位数。)

② 说出3个不是2的倍数的三位数。

③ 说出 15 ~ 35 以内的偶数。

④ 50以内的偶数有多少个?奇数有多少个?

(二)5 的倍数的特征。

1、教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究2的倍数的特征的相同方法,找出 5 的倍数的特征?

学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。

教师:说一说5的倍数的特征?

教师:请举几个多位数验证。

教师:再说一说什么样的数是5的倍数。

板书:个位上是0或者5的数,都是5的倍数。

2、练习:

① 按从小到大的顺序,说出50以内5的倍数。

② (投影片)下面哪些数是5的倍数?

240,345,431,490,545,543,709,725,815,922,986,990。

③(投影片)从下面的数中挑出既是2的倍数,又是5的倍数的数。这些数有什么特点?

12,25,40,80,275,320,694,720,886,3100,3125,3004。

学生口答后教师板书:个位数字是 0 。

④ 教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。

三、巩固反馈:

1 、在1~100的自然数中,2的倍数有(   )个,5的倍数数有(    )个。

2 、比75小,比50大的奇数有(   )。

3 、个位是(   )的数同时是2和5的倍数。

4 、用 0 , 7 , 4 , 5 , 9 五个数字组2

的倍数;5的倍数;同时是 2 和 5 的倍数的数。

四、全课总结:这节课你学会了什么?有什么收获?

第三课时:3的倍数的特征

教学目标:

1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

教学重、难点:是3的倍数的数的特征。

教学过程:

一、提出课题,寻找3的特征。

师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?

生1:个位上是3、6、9的数是3的倍数。

生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)

师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

二、自主探索,总结3的特征师:

先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

学生同桌交流后,再组织全班交流。

生1:我发现10以内的数只有3、6、9是3的倍数。

生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。

师:个位上的数字没有什么规律,那么十位上的数有规律吗?

生:也没有规律,1~9这些数字都出现了。

师:其他同学还有什么发现吗?

生:我发现3的倍数按一条一条斜线排列很有规律。

师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

师:这是一个重大发现,其他斜线呢?

生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

师:现在谁能归纳一下3的倍数有什么特征呢?

生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

学生先自己写数并验证,然后小组交流,得出了同样的结论。

全班齐读书上的结论。

三、巩固练习:

完成p19做一做

四、课堂小结:

这节课你有什么收获?

第四课时:质数和合数

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2、培养学生自主探索、独立思考、合作交流的能力。

3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

教学重点:

1、理解掌握质数、合数的概念。

2、初步学会准确判断一个数是质数还是合数。

教学难点:区分奇数、质数、偶数、合数。

教学过程:

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

学生独立思考,然后全班交流。

2、师:这样的四个小正方形能拼出几个不同的长方形?

学生各自独立思考,想象后举手回答。

3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?

师:我看到许多同学不用画就已经知道了。(指名说一说)

4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数--,你觉得会怎么样?

学生几乎是异口同声地说:会越多。

师:确定吗?(引导学生展开讨论。)

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。

先让学生小组讨论,然后全班交流,师根据学生的回答板书。

师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?

学生独立思考后,在小组内进行交流,然后再全班交流。

引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)

6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。

7、师:那你们认为“1”是什么数?

让学生独立思考,后展开讨论。

二、动手操作,制质数表。

1、师出示:73。让学生思考着它是不是质数。

师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)

师:这表从哪来呢?

(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

2、让学生动手制作质数表。

3、集体交流方法。

三、练习巩固:

完成练习四第1、2题。

四、课堂小结:

这节课你在激烈的讨论中有什么收获?

五、课外作业:

第五课时:“因数和倍数”练习课

教学目标:

通过综合练习,使学生巩固倍数和因数意义的认识,进一步掌握2、5和3的倍数的特征的认识,能从不同角度加深对偶数、奇数的理解。

教学重点:掌握倍数、因数、偶数、奇数的意义。

教学难点:能根据特征判断2、5、3的倍数。

教学准备:自制课件

教学过程:

一、因数与倍数

师:我们每天要与数字打交道,下面请大家看小明同学写的一篇日记,请你轻声读一读,找一找,小明用到了哪些数字?(课件出示)

“我叫小明,今年12岁。3周岁时妈妈把我送进了幼儿园,后来又在琴湖小学读书,还有2年我将结束6年的小学学习生活,我爱我的学校,我的老师、同学。我也憧憬着未来的美好生活,等到我年满18周岁,我将长大成人啦!我盼望着自己快快长大,早日成才!”

学生交流看到的数字(课件出示这些数字:12   3    18    6   2 )

师:仔细观察,认真思考,你能把这些数字用乘法或除法算式表示,并用学到的知识说说这些数字之间的关系吗?

学生独立完成,同桌互说。

全班交流并板书:12÷6=2或2×6=12;18÷3=6或6×3=18;6÷3=2或2×3=6

交流时注意以下三点:

①    三种不同选择方法都要交流。

②    选择三个数后要列出不同的乘、除法算式。

③说说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。

师:生活就是课堂,我们要有一双善于捕捉生活的眼睛,去观察生活中的数学,去体会生活中的数学。在这些数字中,我们知道2、3、6都是18的因数;6、12、18都是3的倍数。如果给你一个数,你会既快又好地找出它的因数或倍数吗?请在作业本上完成(课件出示)

48的因数:

13的倍数:

根据学生回答,师板书。

师:请你向大家介绍介绍你的好方法。

二、2、3和5的倍数特征的练习。

师:生活中我们经常提到双数和单数,在数学上我们称是“偶数”和“奇数”,我们把是2的倍数的数叫做偶数,不是2的倍数的数叫奇数。你能找出下面这些数中哪些是2的倍数吗?(课件出示)根据学生回答在30、48、102上加圈。

27   30   48   65    102    147    345

师:那这些数中哪些数是奇数?

师:哪些数是5的倍数?你是怎样找到?(在数字30、65、345上加圈)

哪些数是3的倍数?说说你判断的理由?(在数字27、30、48、102、147、345上加圈)

既是2的倍数,又是5的倍数的数有哪些?它们有什么特征?

哪一个数同时是2、3和5的倍数?它有什么特征呢?

你会应用刚才的规律按要求填一填吗?

(1)48□,25□,是5的倍数又是2的倍数。

(2)24□,37□,是2的倍数又是3的倍数。

(3)10□,2□□,是5的倍数又是3的倍数。

交流时让学生说说是怎样想的。

三、实际应用

1、有一只小鸭往返于一条小河的左右两岸。如果最初小鸭在右岸,往返若干次之后,它回到了右岸。那么这只鸭子过河的次数是奇数还是偶数?(同桌可以画图或用手头的东西演示)(课件出示简单的图示)

2、三(2)班有48位学生,体育老师上课时把这个班的学生正好分成了人数相等的若干小组。如果每组不是1人,你认为可以怎样分?说说你的想法?(课件出示:48的因数:1、2、3、4、6、8、12、16、24、48)

3、一辆公共汽车每隔8分钟发一次车,另一辆公共汽车每隔12分钟发一次车。这两辆公共汽车上午九时同时出发,下次同时出发是什么时间呢?

(课件出示:8的倍数:8、16、24、32、40、48……

12的倍数:12、24、36、48……)

四、总结:“数学”两字中就有一个字是“数”,数学中有一大块只是就是专门研究数字的。今天我们只是研究了数字知识中非常浅显的一部分,著名的数学问题“哥德巴赫猜想”听说过吗?它就是研究数字的,被誉为“数学皇冠上的明珠”。下面我们就来了解这颗璀璨的明珠。(课件:你知道吗?)

五、课外作业:课后练习

板书:

因数与倍数练习课

第六课时:“质数和合数”练习课

教学目的:

1、使学生巩固质数和合数的含义。

2、能正确判断质数和合数。

3、在研究的过程中丰富对数学发展的认识,感受数学文化的魅力。

教学重点:理解质数和合数的含义。

教学难点:能正确判断质数和合数。

教学准备:电脑课件及卡片

教学过程:

一、问题引入,回顾再现。

1、师:我们上节课学习什么了,请大家回忆。

2、质数和合数有哪些特点?

3、怎样找质数。

二、分层练习,强化提高。

1、20以内的质数有(                             )。

2、判断

(1)所有的偶数一定是合数。(   )

(2)2是质数,同时也是因数。(    )

(3)区分质数和合数,是以一个数的因数的个数为标准的。(    )

3、分一分

1   3.4   12    19   54   87    417    13     398

奇数                 偶数              质数              合数

3、书Р25    3

三、自主检测,评价完善。

4、书P26    4

5、书P26   5

6、阅读书P26你知道吗?

7、观察例题1表中圈出所有的质数,并回答下列问题。

(1) 除了2、5两个质数外,其余的质数都分布在那些列中?

(2)在把两个最小的质数相乘,用他们的积去除其他的质数,看你能发现什么?

四、归纳小结,课外延伸。

通过这节课的学习你有哪些收获?

五、课外作业

练习四补充练习

板书:

“质数和合数”练习课

篇3:第二单元 因数和倍数 教案教学设计(人教新课标五年级下册)

一、教学内容

1.因数和倍数

2. 2、5、3的倍数的特征

3.质数和合数

二、教学目标

1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.使学生通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

三、编排特点

1.精简概念,减轻学生记忆负担。

三方面的调整:

A. 不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B. 不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C. 公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2.注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1.因数和倍数

因数和倍数的概念

过去:用 ÷ = 表示 能被 整除, ÷ = 表示 能被 整除。

现在:用 = 直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式 × = 归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)最大因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有最大的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2.2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――推翻猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3.质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

篇4:第一单元倍数与因数(在自然数(0除外)范围内研究倍数和因数。) 教案教学设计(人教新课标五年级上册)

1、像0、1、2、3、4、5、6……这样的数是自然数。

2、像-3、-2、-1、0、1、2、3……这样的数是整数。

3、※一个数只有1和它本身两个因数,这个数叫质数。

※一个数除了1和它本身以外还有别的因数,这个数叫合数。

※1既不是质数,也不是合数。

20以内的质数和合数:

质数:2、3、5、7、11、13、17、19

合数:4,6,8,10,12,14,15,16,18,20

1既不是质数也不是合数。

4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。

5、找倍数:从1倍开始有序的找。

6、一个数倍数的特点: ①一个数的倍数的个数是无限的;

②最小的倍数是它本身; ③没有最大的倍数。

7、找因数:找一个数的因数,一对一对有序的找较好。

8、一个数因数的特点: ①一个数的因数的个数是有限的;

②最小的因数是1;③最大的因数是它本身。

9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。

10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数

11、5的倍数的特征:个位是0或5的数是5的倍数。

12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。

13、既是2的倍数又是5的倍数的特征:个位是0的数。

既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;②各个数位上的数字的和是3的倍数

既是3的倍数又是5的倍数的特征:①个位是0或5的数;

②各个数位上的数字的和是3的倍数

既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数; ②各个数位上的数字的和是3的倍数

9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数。

14、按一个数的因数个数分,自然数可以分为三类:质数、合数和1。

第二单元  图形的面积(一)

1、         长方形周长=(长+宽)×2               C = 2 ( a + b )

2、        长方形面积=长×宽                        S = a b

3、         正方形周长=边长×4                       C = 4 a

4、         正方形面积=边长×边长                    S = a 2

5、         平行四边形面积=底×高                    S = a h

6、         平行四边形底=面积÷高                    a = S ÷ h

7、         平行四边形高=面积÷底                    h = S ÷ a

8、         三角形面积=底×高÷2            S = a h ÷ 2

9、         三角形底=面积×2÷高           a = 2 S ÷ h

10、      三角形高=面积×2÷底           h = 2 S ÷ a

11、    梯形面积=(上底+下底)×高÷2    S = ( a + b ) h ÷ 2

12、   梯形高=梯形面积×2÷(上底+下底)  h = 2 S ÷( a + b )

13、      梯形上底=梯形面积×2÷高-下底  a = 2 S ÷ h - b

14、      梯形下底=梯形面积×2÷高-上底  b = 2 S ÷ h - a

15、      1平方千米=100公顷=1000000平方米

16、      1公顷=10000平方米

17、      1平方米=100平方分米=10000平方厘米

第三单元  分数

1、分数:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。

3、真分数:分子小于分母的分数叫做真分数。真分数小于1。

4、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

5、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

6、 几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。用短除法求最大公因数。

7、 互质:两个数的公因数只有1,这两个数叫做互质。

互质的规律:

(1)    相邻的自然数互质;

(2)    相邻的奇数都是互质数;

(3)    1和任何数互质;

(4)    两个不同的质数互质

(5)    2和任何奇数互质。

质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

8、  几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。用短除法求最小公倍数。

9、

关系 最大公因数 最小公倍数

倍数关系 较小数 较大数

互质关系 1 他们的乘积

一般关系 短除法 短除法

10、  分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。

11、   约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。

12、   通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。

13、      如何比较分数的大小:

分母相同时,分子大的分数大;

分子相同时,分母小的分数大;

分子分母都不同时,通分再比。

14、  分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。

15、   的意义:①把单位“1”平均分成4份,表示这样的3份。②把3平均分成4份,表示这样的1份。

数学与交通:

1、    相遇问题:

基本公式:一个人走:速度×时间=路程

两个人同时相对而行:速度和×相遇时间=两人共走路程

甲走的路程+乙走的路程=两人共走的路程

2、       旅游费用:

①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择其中一种价格便宜的就行。

②租车问题: 两个原则:一是尽量多的使用更便宜的车;

二是空位越少越好。

3、  看图找关系:

①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。

②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行驶;线往下画,说明减速。

③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明原地不动;线往下画,说明又从终点回到某地。

第四单元  分数加减法

1、异分母分数加减法方法:先通分,化成同分母分数,再按照同分母分数加减法的方法进行计算。

2、分数加减法对计算结果的要求:能约分的要约分,一定要约成最简分数。

3、分数化成小数的方法:用分子除以分母,除不尽的,按题目要求保留一定位数的小数,没有要求时,一般保留三位小数。

4、小数化成分数的方法:看小数部分有几位,就在1后面加几个零做分母,去掉小数点做分子,能约分的要约分。

第五单元  图形的面积(二)

1、求组合图形面积的方法:

① 分割法:根据图形和所给的条件,将图形进行合理的分割,形成基本图形,基本图形面积的和就是组合图形面积。

② 添补法:将图形所缺部分进行添补,组成几个基本图形。基本图形面积-添补的图形面积=组合图形面积。

2、不规则图形面积的估计与计算:

①数格子的方法;

②根据不规则图形确定近似的基本图形,量出求基本图形的面积是所需要的条件算出面积。

鸡兔同笼:

方法:①列表法:一般采用取中间数列表的方法;

②画图法;

③假设法;

④列方程:根据关系式:“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解答。

点阵中的规律:

1、数与数之间的变化规律:根据已知数前后或上下之间的关系,找到其中的规律,得出相应的数。

2、图形与图形之间的变化规律:观察图形的变化,可以从图形的形状、数量、大小等方面入手,从中找到规律,推导出后面的图形。

第六单元  可能性大小

1、确定事件的表示方法:用1表示事件一定发生,用0表示事件一定不会发生。

2、可能出现的事件的表示方法:用分数表示可能性的大小,首先明确事件可能出现的所有情况作分母,其次把可能出现的结果做分子。

3、设计活动方案:充分认识用来表示可能性的分数的含意,即:事件可能出现的所有情况作分母,把可能出现的结果做分子。

铺地砖:

1、长方形的面积=长×宽,  正方形的面积=边长×边长

2、面积单位之间的关系:1平方米=100平方分米=10000平方厘米

1平方分米=100平方厘米

3、求地面铺地砖总块数的方法:

①用房间面积÷每块地砖的面积=所铺地砖的块数

②用每平方米所需的块数×房间总面积=所铺地砖的块数

③看长里有多少个地砖的边长,宽里有多少个地砖的边长,再用长里所需的块数乘以宽里所需的块数,

④用方程解

⑤所注意的问题:最后的结果不是整块数时,一定要用进一法却近似值,求出的钱数最后结果要自觉保留两位小数。

篇5:总复习(因数和倍数) 教案教学设计(人教新课标五年级上册)

第一课时

复习内容:因数和倍数。

复习目标:

1:通过整理复习,使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别,

2:掌握2 、5 、3 的倍数的特征,掌握求因数、倍数、最大公因数和最小公倍数的方法,逐步培养学生的抽象思维能力。

复习重点:自主梳理知识,形成自己的认知结构。

复习难点:辨析和理解知识间的区别和联系。

教学步骤

一、巩固相关概念,理解它们的区别与联系。

同学们回忆一下,有关因数与倍数我们学到了什么?介绍了哪些概念?

板书概念名称,并让学生说出每个概念及概念之间的区别与联系。引导学生深入理解相关概念,并形成相应的知识网络。

二、巩固练习

1、复习自然数、整数、奇数、偶数、质数、合数。

(1)在2、3、0、91、0.25、1、65和50中,是自然数,()是奇数,()是偶数,()是质数,()是合数。

(2)教材第138页第2题。

学生根据题目要求写出答案,并集体交流。

将其中的合数分解质因数。

问:质数与分解质因数有什么不同?

(3)师小结:自然数按能否被2整除分为奇数和偶数。自然数(0除外)按因数的个数分为1、质数和合数。

2、复习因数、倍数、最大公因数、最小公倍数和互质数。

判断。完成141页第1题(引导学生完成,教师订正)

补充:(1)一个数的倍数都比它的因数大。()

(2)4.2÷0.6=7,我们说4.2是0.6的倍数。

说明:“4.2是0.6的7倍”是对的,但几倍与倍数是有区别的。因数和倍数只在整数范围内研究。所以,我们不能说0.6是4.2的因数, 4.2是0.6的倍数。

(3)24÷6=4,我们说24是倍数,6是因数。()

(4)是互质数的两个数一定是质数。()

问:互质数与质数有什么不同?

(5)两个质数相乘的积一定是合数。()

(6)如果一个自然数是6的倍数,那么它一事实上是2的倍数。()

小结:一个数的因数个数是有限的,最小是1,最大是它本身。一个数的倍数的个数是无限的,最小是它本身,没有最大的倍数。

3复习2、3、5的倍数的特征。

做教材138页第1题

学生独立完成,说一说自己是怎样想的?

4、复习最大公因数和最小公倍数。

完成第141页第2题(让学生独立完成,集体订正)

小结:当两个数是互质数时,它们的最大公因数是1,最小公总人倍数数是它们的乘积。当较大数是较小数的倍数时,较小数是它们的最大公因数,较大数是它们的最小公倍数。

三、全课总结(略)

四、作业:

课后反思

复习课是根据学生的认知特点和规律,在学生学习数学知识的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决实际问题的能力为主要任务的一种课型。这与我们教研组以前提出的复习课要进行“知识梳理、查漏补缺、巩固提升”是基本一致的。本节课的流程也是“知识梳理、查漏补缺、巩固提升”这样三步骤。

一节课下来,通过讨论和自己的进一步思考,觉得还是有一些不足。

1.课堂不够开放。

开放的数学课堂已经成为当前数学课堂教学形式的主流。现在的数学课堂教学应充分关注学生的学习情感和学习体验。在复习课的教学中,应给学生提供充分的“自我回忆”、“自我整理”、“质疑问难”、“自我反思”的空间。这与传统的复习课中,教师将事先准备好的系统的知识结构图呈现在学生面前,供学生复习是有很大区别的。

这节课中,学生的自我知识的整理,还可以进一步放手。可以完全由学生自己来完成,一个人完成不了的,可以小组合作完成。只有通过真正的自我整理,学生才会形成清晰的知识结构。

在回忆了知识点之后,还可以设计这样一道开放题:请你从7、14、21、25、35这列数中找出与众不同的一个,并说明理由。这样可以充分激起学生的知识储备,灵活主动地运用知识解决问题。

2.学生的自我评价和反思还不够。

让学生对复习的结果进行评价与反馈。教育心理学十分重视教学评价与反馈,认为通过教学评价给予学生一种成功的体验或紧迫感,从而强化或激励学生好好学习,并进行及时的反馈和调控,改进学习方法。老师可以这样提问促进学生反思:你认为哪些地方是容易搞错的?或者说你需要提醒大家注意哪些问题?

篇6:第二单元小数除法 教案教学设计(人教新课标五年级上册)

1、小数除以整数(一)

--商大于1

教学内容:

P16例1、做一做,P19练习三第1、2题。

教学目的:

1、掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法。

2、培养学生的类推能力、发散思维能力、分析能力和抽象概括能力。

3、体验所学知识与现实生活的联系,能应用所学知识解决生活中的简单问题,从中获得价值体验。

教学重点:

理解并掌握小数除以整数的计算方法。

教学难点:

理解商的小数点要与被除数的小数点对齐的道理。

教学过程:

一、复习准备:

计算下面各题并说一说整数除法的计算方法.

224÷4= 416÷32= 1380÷15=

二、导入新课:

情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?

出示例1:王鹏坚持晨练。他计划4周跑步22.4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)

观察这道算式和前面学习的除法相比有什么不同?

板书课题:“小数除以整数”。

三.教学新课:

教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论情况:

(1)生: 22.4千米=22400米

22400÷4=5600米

5600米=5.6千米

(2)还可以列竖式计算。

教师:请同学们试着用竖式计算。计算完后,交流自己计算的方法。

教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?

追问:24表示什么?

商的小数点位置与被除数小数点的位置有什么关系?

引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点对齐”。

问:和前面准备题中的224除以4相比,224除以4和它有哪些相同的地方?有哪些不同的地方?

怎样计算小数除以整数?(按整数除法的方法除,计算时商的小数点要和被除数的小数点对齐)

教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析。

教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算。

四、巩固练习

完成“做一做”:25.2÷6       34.5÷15

五、课堂作业:练习三的第1、2题

板书设计:

小数除以整数(一)

--商大于1

例1:王鹏坚持晨练。他计划4周跑步22.4千米,平均每周应跑多少千米?

22.4÷4=5.6(千米)

5.6

4 ) 2 2.4

2 0

2 4

2 4

0

答:平均每周应跑5.6千米。

篇7:第二单元小数除法 教案教学设计(人教新课标五年级上册)

教材简介:

本单元的主要内容有:小数除以整数、一个数除以小数、商的近似值、循环小数、用计算器探索规律、解决问题。

教学目标

1、使学生掌握小数除法的计算方法。

2、使学生会用“四舍五入”法,结合实际情况用“进一”法和“去尾”法取商的近似数,初步认识循环小数、有限小数和无限小数。

3、使学生能借助计算器探索计算规律,能应用探索出的规律进行小数乘除法的计算。

4、使学生体会解决有关小数除法的简单实际问题,体会小数除法的应用价值。

教学建议:

1.抓住新旧知识的连接点,为小数除法的学习架设认知桥梁。

2.联系数的含义进行算理指导,帮助学生掌握小数除法的计算方法。

课时安排:

本单元可安排11课时进行教学。

第一课时  小数除以整数(一)

--商大于1

教学内容:P16例1、做一做,P19练习三第1、2题。

教学目的:

1、掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法。

2、培养学生的类推能力、发散思维能力、分析能力和抽象概括能力。

3、体验所学知识与现实生活的联系,能应用所学知识解决生活中的简单问题,从中获得价值体验。

教学重点:理解并掌握小数除以整数的计算方法。

教学难点:理解商的小数点要与被除数的小数点对齐的道理。

教学过程:

一、复习准备:

计算下面各题并说一说整数除法的计算方法.

224÷4= 416÷32= 1380÷15=

二、导入新课:

情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?

出示例1:王鹏坚持晨练。他计划4周跑步22.4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)

观察这道算式和前面学习的除法相比有什么不同?

板书课题:“小数除以整数”。

三.教学新课:

教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论情况:

(1)生:22.4千米=22400米   22400÷4=5600米   5600米=5.6千米

(2)还可以列竖式计算。

教师:请同学们试着用竖式计算。计算完后,交流自己计算的方法。

教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?

追问:24表示什么?

商的小数点位置与被除数小数点的位置有什么关系?

引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点对齐”.

问:和前面准备题中的224除以4相比,224除以4和它有哪些相同的地方?有哪些不同的地方?

怎样计算小数除以整数?(按整数除法的方法除,计算时商的小数点要和被除数的小数点对齐)

教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析.

教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算.

四、巩固练习

完成“做一做”:25.2÷6       34.5÷15

五、课堂作业:练习三的第1、2题

课后反思:

学生们在前一天的预习后共提出四个问题:

1,被除数是小数的除法怎样计算?(熊佳豪)

2,为什么在计算时先要扩大,    最后又要将结果缩小?(郑扬)

3,小数除以整数怎样确定小数点的位置?(梅家顺)

4,为什么小数点要打在被除数小数点的上面?

特别是第4个问题很有深度,  有研究的价值.  在这四个问题的带动下, 学生们一直精神饱满地投入到学习的全过程,  教学效果相当好.

第二课时  小数除以整数(二)

--商小于1

教学内容:P17例2、例3、做一做,P18例4、做一做,P19-20练习三第3-11题。

教学目的:

1、使学生学会除数是整数的小数除法的计算方法,进一步理解除数是整数的小数除法的意义。

2、使学生知道被除数比除数小时,不够商1,要先在商的个位上写0占位;理解被除数末位有余数时,可以在余数后面添0继续除。

3、理解除数是整数的小数除法的计算法则跟整数除法之间的关系,促进学习的迁移。

教学重点:能正确计算除数是整数的小数除法。

教学难点:正确掌握小数除以整数商小于1时,计算中比较特殊的两种情况。

教学过程:

一、复习:

教师出示复习题:

(1)22.4÷4          (2)21.45÷15

教师先提问:“除数是整数的小数除法,计算时应注意什么?”然后让学生独立完成。

二、新课

1、教学例2:

上节课我们知道王鹏平均每周跑5.6千米,  那他每天跑多少千米呢?这道题该如何列式?

问:你为什么要除以7,  题目里并没有出现“7”?

原来“7”这个条件隐藏在题目中,我们要仔细读题才能发现.

尝试用例1的方法进行计算,   在计算的过程中遇到了什么问题?(被除数的整数部分比除数小)

问:“被除数的整数部分比除数小,不够商1,那商几呢?为什么要商0?(在被除数个位的上面,也就是商的个位上写“0”,用0来占位。)

强调:点上小数点后接着算.

请同学们试着做一做。

2.4/3    7.2/9

学生做完后,教师问:在什么情况下,小数除法中商的最高位是0?

2、教学例3:

先让学生根据题意列出算式,再让学生用竖式计算。当学生计算到12除6时,教师提问:接下来怎么除?请同学们想一想。

引导学生说出:12除6可以根据小数末尾添上0以后小数大小不变的性质,在6的右面添上0看成60个十分之一再除。

请同学们自己动笔试试。

在计算中遇到被除数的末尾仍有余数时该怎么办?

在余数后面添0继续除的依据是什么?

3、做教科书第17页的做一做。

4、教学例4:想一想,前面几例小数除以整数是怎样计算的?在计算过程中应注意什么?整数部分不够商1怎么办?如果有余数怎么办?

引导学生总结小数除以整数的计算方法。(1)小数除以整数按照整数除法的方法去除,(2)商的小数点要和被除数的小数点对齐,(3)整数部分不够除,商0,点上小数点再除;(4)如果有余数,要添0再除。

师:怎样验算上面的小数除法呢?(用乘法验算)自己试一试。

5、P18做一做。

三、课堂小结:

1、说说除数是整数的小数除法的计算法则。

2、被除数比除数小时,计算要注意什么?

四、课堂作业:P19第4题,P20第8、11题。

五、作业:P19第3、5、6题,P20第7、9、10题。

课后小记:

本课新增知识点多,难度较大,特别是例3应引导学生去思考其计算依据。课堂中张子钊同学问到“为什么以往除法有余数时都是写商几余几,可今天却要在小数点后面添0继续除呢?”这反映出新知与学生原有知识产生了认知冲突,在此应帮助学生了解到知识的学习是分阶段的,逐步深入的。以往无法解决的问题在经过若干年后就可以通过新的方法、手段、途径来解决,从而引导其构建正确的知识体系。

学生归纳综合能力的培养在高年段显得尤为重要。虽然教材中并没有规范的计算法则,但作为教师有必要让学生经历将计算方法归纳概括并通过语言表述出来的过程,所以引导学生小结小数除法的计算法则,然后再由教师总结出规范简洁的法则是必不可少的教学环节。

作业应注意以下几方面错误:

1、整数除以整数,商是小数的计算题,学生容易遗忘商的小数点。

2、商中间有零的除法掌握情况不太好,需要及时弥补。对于极个别计算确有困难的同学建议用低段带方格的作业本打草稿,这样便于他们检查是否除到哪一位就将商写在那一位的上面。

篇8:第二单元分数乘法1 教案教学设计(人教新课标六年级上册)

1、分数乘法

第一课时     分数乘整数

教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

重难点、关键

分数乘整数的计算方法。

教学准备:电脑课件

教学过程: 一、旧知铺垫

1、计算下列各题

2/11  +2/11+2/11

过程要求

(1)  写出计算过程。

(2)  说一说分数加法的计算方法。

2、想一想,能不能把 2/11+2/11+2/11改写成乘法算式呢?

二、探索新知

1、教学例1

(1) 出示例题

根据题意,电脑课件呈现示意图。

(2) 根据题意列出解答算式:

2/11+ 2/11+2/11 = 2+2+2/11  =  6/11

2/11×3= 6/11

(3)探索分数乘整数的计算方法。

师:2/11×3= ,说一说你是怎么想的?

①   学生在小组交流各自的想法

②   小组讨论后反馈思维的过程和结果

教师板书:

③总结分数乘整数的计算方法。

A、学生口述分数乘整数的计算方法;

B、 教师整理并板书:

分数乘整数,整数与分子相乘的乘积作分子,分母不变。

2、教学例2

计算:3/8×6

(1)  学生独立计算。

(2)  交流计算方法和步骤。

(3)  比较计算过程,看一看哪一种更为简单

(3)归纳:能约分的要先约分,再计算。

三、巩固练习

1、  完成课本“做一做”。

(1) 学生独立完成,然后计算过程和结果。

(2)第3题,说一说你是怎样计算的?怎样想的?

一般要求学生列综合算式计算。如:

6/7×10×7==60(kg)

2、课本练习二第1、2题

四、课后作业设计

一、计算

7/8× 7     3/4×8     1/9×3  1/2×4

5/6×5      5/18×3    27× 2/3 3/8 16×

三、列式计算

1、3个5/8是多少?      2、2/3的6倍是多少?

3、5/14扩大7倍以后是多少?     4、5/6与24的积是多少?

课后反思:

第二课时   分数乘分数

教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

教学目标:

1、理解一个数乘分数就是求一个数的几分之几是多少。

2、掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键:

1、重难点:分数乘分数的计算方法。

2、  关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学准备:实物投影或者电脑课件。

教学过程:

一、创设情境引入新课

教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×4)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

板书课题:分数乘分数

二、操作探究计算算理

1笔Γ合旅嫖颐抢刺教址质乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到 (板书)。

三、迁移延伸,归纳法则

提出问题:3/4小时粉刷这面墙的几分之几?

师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?

交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到 (板书)

根据板书的两个计算算式讨论归纳计算方法。

通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

四、反馈提高,巩固计算

出示例4,读题。

师:怎样列式?依据什么列式?

由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。

让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

课堂总结:今天我们学习了什么?分数乘分数怎样计算?

课后反思:

篇9:第二单元分数乘法1 教案教学设计(人教新课标六年级上册)

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、分数乘法计算法则的推导。

第一课时 :分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、  引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则

教具准备:多媒体课件、

教学过程:

一、复习引入

1.课件出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?   9个11是多少?  8个6是多少?

(2)计算:

+ + =     + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二:新知探究

1.出示课题明确学习目标。

2.课件出示自学题纲,让学生自学课本。

(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?

(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?

(3)分数乘以整数的意义。

3、 课件出示例1

教师引导学生画出线段图。

学生根据线段图列出不同的算式,并解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的

”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?

2/11  + 2/11   + 2/11   =

2/11   × 3  =

(3).分数乘以整数的法则。

A.导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)

B.归纳法则。

通过以上计算,想一想分数乘以整数怎样计算呢?

师:比一比,看哪个组的同学总结的语言准确又简练。

小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

C.应用法则计算。

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

4、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、当堂测评(课件出示)

1.看图写算式

2.先说算式意义,再填空。

3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

四、学生课堂自评

1、这节课你有什么收获?

2、每个学生给自己在课堂上的表现进行评价。

板书设计

分数乘以整数

意义:求几个相同加数 和的简便运算。

法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

2/11 ×3

= 2×3/11

= 6/11

教学后记

篇10:第二单元分数乘分数1 教案教学设计(人教新课标六年级上册)

主备人:王娟娟

第一课时    分数乘以整数

教学内容:第1~2页内容。

教学目标:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。

重点难点:分数乘整数的计算方法

教学过程:

一、展示教学目标:1、理解分数乘以整数的意义2、掌握分数乘以整数的计算法则。

二、自学:计算下面各题:

思考: 有什么特点?应该怎样计算?

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

1、学生自学,教师巡视指导

2、两名学生用两种不同方法板演

3、用加法算: (块)

用乘法算:  (块)

学生思考:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,

都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)

三、巩固练习。

1.第2页做一做。

2.练习一

第二课时   分数乘法

教学内容:教材第10页例3,第11页例4以及“做一做”练习二中的第3、4题

教学目标:1.理解一个数乘分数就是求一个数的几分之几是多少。2.掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键1.重难点:分数乘分数的计算方法。

2.关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学过程:

一、旧知铺垫

1.计算下面各题。

12×3/4     5/16×32      15×3/5     3/8×12

2.说一说,分数乘法的计算方法、步骤。

(1)整数与分子相乘的乘积作分子,分母不变。

(2)能约分的要先约分,再计算.

3.根据题意列出算式。

(1)一袋大米,每天用去3/4千克,3天用去多少千克?

(2)某修路队,每天修路3/2千米,5天修多少千米?

(3)一辆汽车,每小时行驶全程的3/20,4小时行驶全程的几分之几?

二、探索新知

1.教学例3。

出示题目:(出示课文插图)

问题一:1/4小时粉刷这面墙的几分之几?

(1)你想怎样列式?

学生回答,教师板书。

1/5×1/4

(2)分数乘分数怎样计算?

①1/5×1/4 表示什么?

经过讨论,使学生理解1/5×1/4 ,就是求1/5的1/4是多少,也就是说把1/5平均分成4份,取其中的一份是多少?

②画示意图分析。

③从图上可以看出,这面墙的1/5的1/4,是哪一块?它占整面墙的几分之几?

通过观察得出:这面墙的1/5的1/4,是占整面墙的1/20。

板书:1/5×1/4=1/20

④发现分数乘分数的计算方法。

引导学生观察算式和结果,看一看其中的联系。

板书:1/5×1/4=(   )/(   )=1/20

想一想:应该是怎样的一个计算过程呢?

学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。

1/5×1/4=(1×1)/(5×4)=1/20

然后,联系以上的算式,让学生说一说计算方法。

学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。

问题二:3/4小时粉刷多少呢?

(1)引导学生列出算式

1/5×3/4

(2)你认为计算结果是多少?

学生回答,教师板书。

1/5×3/4=1×3/5×4=3/20

(3)画示意图加以验证。

注意:画示意图时,要紧密结合1/5×3/4的意义加以分析。

(4)总结分数乘分数的计算方法。

师生共同总结,教师板书:

分数乘分数,应该分子乘分子,分母乘分母。

2.教学例4

出示教材例题,学生简要了解蜂鸟。

(1)2/3分钟能飞行多少千米?

①列出算式

3/10×2/3

②学生尝试计算,教师巡视课堂了解学生计算情况。

完成后,选择两位不同计算过程的学生上台板演。

③强调:能约分的要先约分,再计算。

(2)5分钟能飞行多少千米?

①学生独立列式解答,请一位学生上台板演。

②教师出示算式,学生判断可以不可以。

③说明分数和整数相乘时约分的方法。

强调:整数约分后的结果要写在整数的上面,并与分子相乘。

三、巩固练习

1、完成例题后“做一做”

2、完成练习二第3、4题

篇11:第四单元简易方程1 教案教学设计(人教新课标五年级上册)

第一课时:用字母表示数(一)

教学内容:教材P44-P46例1-例3  做一做,练习十第1-3题

教学目的:1、使学生理解用字母表示数的意义和作用。

2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。

3、使学生能正确进行乘号的简写,略写。

教学重点:理解用字母表示数的意义和作用

教学难点:能正确进行乘号的简写,略写。

教学准备:投影仪

教学过程:

一、初步感知用字母表示数的意义

教学例1。

1、投影出示例1(1):

引导学生仔细观察两行图中,数的排列规律。

问:每行图中的数是按什么规律排列的?(指名口答)

2、学生自己看书解答例1的(2)、(3)小题

提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)

师:在数学中,我们经常用字母来表示数。

问:你还见过那些用符号或字母表示数的例子?

如:扑克牌,行程A、B两地,C大调…….

二、新授:

1、学习用字母表示运算定律和性质的意义和方法。

教学例2:

(1)学生用文字叙述自己印象最深的一个运算定律。

(2)如果用字母a、 b或 c表示几个数,请你用字母表示这个运算定律。

(3)当用字母表示数的时候,你有什么感觉?

看书45页“用字母表示………….”这一段。

(4)你还能用字母表示其它的运算定律和性质吗?

请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)

加法交换律:a+b=b+a    加法结合律:(a+b)+c=a+(b+c)

乘法交换律:a×b=b×a  乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

减法的性质:a-b-c=a-(b+c)

除法的性质:a÷b÷c=a÷(b×c)

2、教学字母与字母书写。

引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)

a×b=b×a            (a×b)×c=a×(b×c)

可以写成:ab=ba或ab=ba    (ab)c=a(bc)或(ab) c=a(bc)

(a+b)×c=a×c+b×c

可以写成:(a+b)c=ac+bc或(a+b)c=ac+bc

其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。

3、教学用字母表示计算公式的意义和方法。

教学例3(1):

师:字母不但可以表示运算定律还可以表示公式、及数量关系。

用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?

学生先自己试写,然后小组交流,看书讨论。

问:(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?

(2)字母和数字之间的乘号省略后,谁写在前面?

师强调:a  表示两个a相乘,读作a的平方;

省略数字和字母之间的乘号后,数字一定要写在字母的前面。

4、练习:省略乘号写出下面各式。

x×x     m×m     0.1×0.1    a×6     3×n    χ×8   a×c

教学例3(2):

学生自学并完成相关练习。两生板演。师强调书写格式。

三、巩固练习:

1、完成做一做1、2题。

要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。

2、练习十:第1-3题  先独立解答后,再集体评议。

四、总结:今天你学到什么知识,你体会到什么?(让学生自由畅谈)

板书:               用字母表示数(一)

乘法交换律:a×b=b×a             S=a×a      C=a×4

可以写成:  ab=ba或ab=ba     S =a2           C=4a

课后反思:

第二课时:用字母表示数(二)

教学内容:教材P47-P48例4  做一做,练习十第4-6题

教学目的:1、使学生进一步理解用字母表示数的意义和作用。

2、能正确运用字母表示常用数量关系。

3、能较熟练地利用公式、常用数量关系求值。

教学重、难点:能正确运用字母表示常用数量关系。

教学准备:投影仪

教学过程:

一、复习。

1、用字母表示数,有哪些好处?但要注意什么?

2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。

3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。

4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。

2×3   a×7    14+b    a÷7    a×a    5-x    0.6×0.6

二、新授。

1、教学例4(1):

(1)引导学生看书提问:从图、表中你了解到哪些信息?

A、爸爸比小红大30岁。 B、当小红1岁时,爸爸岁,……

师:这些式子,每个只能表示某一年爸爸的年龄。

(2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)

结合讨论情况师适时板书:

法1:小红的年龄+30岁=爸爸的年龄

法2:a+30

提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。

在式子a+30中,a表示什么?30表示什么?a+30表示什么?

(a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)

想一想:a可以是哪些数?a能是200吗?为什么?

(3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和

结果填在书上。

2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。

3、教学例4(2):

引导学生看书讨论:(可分成四人小组进行讨论)

(1)从图、表中你了解到哪些信息?

(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?

(3)式子中的字母可以表示哪些数?

(4)图中小朋友在月球上能举起的质量是多少?

请小组派代表回答以上问题。

4、总结:今天你学会了什么?有哪些收获?

三、巩固练习:

1、独立完成P48做一做 集体评议。

2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?

3、独立解答P49 第4题 做完后在投影仪上展示评议。(问问字母、式子表示的含义)

四、作业:1、独立完成P50 第5题

2、独立完成P50 第6题

解答第6题时可提问:u =            t =            让学生掌握三种量之间的数量关系。

注意巡视指导求式子值的书写格式。

即:S=ut=150×30=4500   (注:这里求出来的值不带单位名称)

板书:                     用字母表示数(二)

例4(1):                              例4(2):

法1: 小红的年龄+30岁=爸爸的年龄    人在月球上能举起的质量是:6a

法2: a+30                            小朋友在月球上能举起的质量是:

当a=11时,爸爸的年龄是:             6a=6×15=90

a=30=11+30=45

课后反思:

第三课时:用字母表示数(三)

教学内容:练习课,教材P51-P52  练习十第7-13题

教学目的:1、能较熟练的掌握用字母表示数的方法。

2、能正确运用字母表示常用数量关系、数量。。

3、会利用公式、常用数量关系求值。

教学重、难点:能熟炼地运用字母表示数。

教学准备:投影仪

教学过程:一、基本练习:

1、填空:(1)a+a=(  )      a×a=(   )

(2)当a=5时,2a=(   ),a的平方=(   )

2、同学们在操场上做操,五年级站了x列,平均每列20人,六年级有a人。说出下面各式所表示的意义:

(1) 30x   (2)30x+a     (3)a-30x

3、小结;用含有字母的式子不仅可以表示数量关系,也可以表示数量。

二、综合练习:

1、独立解答P51 第7题 师巡视指导个别学困生。

投影展示,集体评议,注意评讲求值的书写格式。

2、讨论口答P51 第8题  注意指导学生理解(3)小题,3x表示投中3分球得的总分数。

3、分小组完成P51 第9题 请几个小组派代表说说式子表示的含义。

4、独立完成P52 第10-12题  师注意巡视指导学困生。

三、全课总结:通过练习,你还有什么疑困?你觉得你掌握得比较好的知识是什么?有困难需要帮助的地方是什么?

四、发展练习:

1、讨论P52 第13题   请学生先独立思考,再集体讨论。

2、在下面算式中,a、b、c、s各代表什么数?

a b c s

×      9

s c b a

篇12:五年级上册第二单元小数除法备课 教案教学设计(人教新课标五年级上册)

淄川实验小学

张庄中心校

小数除法单元备课

(主备人:区实小 邓云峰 五年级上学期数学第2章)

(一)  教学目标

1.使学生掌握小数除法的计算方法,能正确地进行计算。

2.使学生会用“四舍五入法”截取商是小数的近似值,能结合实际情况用“进一法”和“去尾法” 截取商的近似值。初步认识循环小数、有限小数和无限小数。

3.使学生能用计算器探索计算规律,能应用探索出的规律进行一些小数乘除法的计算。

4.使学生会解决有关小数除法的简单实际问题,体会小数除法的应用价值。

(二)  教材说明

1.本单元的内容结构及地位作用。

本单元的主要内容有:小数除以整数、一个数除以小数、商的近似值、循环小数、用计算器探索规律、解决问题。

小数除法可以根据小数点处理方法不同,分成两种情况:一种是除数是整数的小数除法,另一种是除数是小数的小数除法。由于除数是小数的除法要通过商不变的性质转化成除数是整数的小数除法来计算,所以小数除以整数是学习小数除法计算的基础,一定要让学生弄清算理,切实掌握。除数是小数的除法是小数除法的重点内容,教材在编排时重点突出怎样把除数是小数的除法转化成除数是整数的除法。

商的近似值和循环小数都是进一步研究商,通过学习学生可以根据具体情况灵活地处理商,并认识循环小数等有关概念。

用计算器探索规律,既可使学生学习借助计算工具探索数学规律,又可激发学生的学习兴趣。

(三)  本单元教材的编写特点

(1)展示学生对小数除法计算方法的探究过程。

首先在小数除以整数中,教材让学生根据已有的知识经验对小数除以整数进行探究,呈现了把千米数改写成米数,将小数除以整数转化为整数除法来计算的方法,通过与小数除以整数的一般方法的对比,使学生看到两种方法的联系。其次组织学生对一些关键问题进行讨论,比如在除数和被除数同时扩大相同的倍数时,被除数位数不够怎么办?商的整数部分不够商“1”时,为什么要写“0”,通过对这些关键问题的探讨,帮助学生掌握小数除法的计算方法。第三是小数除法的计算方法都是引导学生自己进行归纳总结。

(2)计算内容紧密结合现实情景。

数学与生活有着密切的联系,计算内容更是如此,因此教材注意从现实情景中引出计算内容,在计算练习中,也尽可能选择贴近学生生活实际的内容,比如购物、乘车、计算用水量等,让学生体会计算的现实意义,同时提高解决实际问题的能力。

(3)适时引入计算器。

小数除法计算的步骤比较多,适宜使用计算器。教材把握时机,不仅在新授内容和练习中让学生适时使用计算器,而且还专门安排用计算器探索规律的内容。使学生通过亲身体验,感受到计算器的作用和优势,同时培养灵活选择计算方法和工具的意识。

(四) 教学建议

1.抓住新旧知识的连接点,为小数除法的学习架设认知桥梁。

本单元内容与旧知识联系十分紧密。小数除法的计算法则是以整数除法中被除数和除数同时乘上相同的数(0除外)商不变,以及小数点位置移动规律等知识为基础来说明的。小数除法的试商方法,除的步骤和整数除法基本相同,不同的只是小数点的处理问题。因此,要注意复习和运用整数除法的有关知识,为新知识的学习奠定好基础。

2.联系数的含义进行算理指导,帮助学生掌握小数除法的计算方法。

小数除法的重点是突出小数点的处理问题,而商的小数点为什么要和被除数的小数点对齐要涉及数的含义。

(五) 课时安排:

本单元可安排11课时进行教学。

(六)知识点整理

知识点 我的例子 提醒(注意)

除数是整数的除法

83.2÷26=      78÷65=

39.6÷48= 1、小数点怎么办?

2、被除数的末尾仍然有余数怎么办?

除数是小数的除法 51.3÷2.7=

91.2÷0.57= 1、小数点怎么移动?

2、商的小数点应该与移动后的还是与移动前的对齐?

商的近似数 写出下面各循环小数的近似值(保留三位小数)

0.3333……≈            13.67373……≈

8.534534……≈                4.888……≈     1、  保留两位小数(精确到百分位)--除到第三位

循环小数 举例子、 有限小数、 无限小数、

纯循环小数、混循环小数 、 循环节

※1.5÷7的商是循环小数,记作0.2142857142857……,这个循环小数的小数点后第40位上的数是(    )。

※1÷7的商是循环小数,记作0.14285171428517……,你知道这个循环小数的小数点后第20位上的数是几吗?第100位呢? 1、  区分纯循环小数和混循环小数

2、  循环小数和无限小数怎么读?

3、  小数的分类中包含与被包含的关系

1、一般的三步应用题

2、相遇应用题 1、  商店运来120千克水果,先用每箱装25千克的纸箱装了4箱,剩下的装在2个纸箱里,平均每个纸箱装多少千克?

2、  小青和小红同时从自己家走向学校。小青每分钟走60米,小红每分钟走65米。经过3分,两人在校门口相遇,他们两家相距多少米? 1、分析应用题的步骤

2、审题(划关键词语)

3、画线段图帮助分析

4、写思路或者数量关系

小数除以整数(一)

(主备人:区实小 邓云峰 五年级上学期数学第2章第1节 )

一、教学目标:

1.掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法.

2.培养学生的类推能力、发散思维能力、分析能力和抽象概括能力.

二、重点难点: 正确计算小数除法,提高计算的正确率。

三、教法学法: 教法:讲授法 情景教学法

学法:观察法 练习法

四、课前准备: 视频展示台

五、教学内容:

一、复习准备

出示224÷4,让学生明确,每次除的被除数和商是多少个百,多少个十。或多少个一。 (学生独立完成,再集体反馈。)

二、导入新课:

1、情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?

2、出示例1:王鹏坚持晨练。他计划4周跑步22.4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)板书课题:“小数除以整数”。

三.教学新课:

教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论情况:

(1) 生:22.4千米=22400米           22400÷4=5600米      5600米=5.6千米

(2) 还可以列竖式计算。

1、请同学们试着用竖式计算。计算完后,交流自己计算的方法。

2、指名学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?

3、学生思考:小数点位置与被除数小数点的位置有什么关系?

引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点”.

4、分小组讨论小数除以整数的计算方法,教师总结。

师:和我们前面复习题中的224÷4比,你发现22.4÷4与224÷4哪些地方相同?哪些地方不同?(把两道题的竖式放到一起便于学生比较)师:你觉得应该怎样计算小数除以整数?引导学生讨论出:a按整数除法的方法除;b计算时商的小数点和被除数的小数点对齐。(学生讨论回答:除的方法基本相同,不同的是在做22.4÷4时,商的小数点要和被除数的小数点对齐

四、巩固练习

完成“做一做”:25.2÷6       34.5÷15

五、课堂小结

六、课堂作业:练习三的第1、2题

七、板书设计:

小数除以整数(一)

22.4÷4=5.6(千米)

答:王鹏平均每周应跑5.6千米。

篇13:第二单元小数除法3 教案教学设计(人教新课标五年级上册)

课题十一: 解决问题(二)

教学内容:P33解决问题

教学目标:

1、通过组织学生讨论,充分让学生感受到在解决实际问题时,要根据实际情况取商的近似值。

2、培养学生灵活应用的意识。

教学过程:

一、引入新课。

谈话引入:生活中处处蕴含着数学问题。你能帮助小强的妈妈,王阿姨,解决她们遇到的问题吗?

(教师可根据实际情况,将例题创设为实际情景)。

二、组织学生辩论,以辩明理。

1、出示例12

①学生独立思考,解答,(展示可能出现的三种答案,6.25个、6个、7个)。

②组织学生进行辩论,鼓励学生说出自己的看法及理由,大胆地与同学进行交流。

同学们 充分 发表意见,明确瓶数取整数,6.25按四舍五入法应舍去25,但实际装油时,6个瓶子不够装,因此瓶数应比计算结果多1个。

2、再来看看王阿姨遇到的问题,如何解决?

①先独立思考。

②全班交流答案,组织学生讨论,强调以理服人,使学生明确,盒数取整数,16.66…计算结果按四舍五入法本应进1,但实际包装时,丝带不够包装第17个,因此个数应比计算结果少1。

3、生谈感受。

师小结:看来,四舍五入取近似值只适用于一般情况,在解决问题时,有时要根据实际情况取商的近似值,有时要多一点,有时要少一点。

4、生质疑

三、运用新知,解决问题。

1、P33“做一做”

如何处理的结果?为什么这样处理?

2、P35  6、7       生独立解答,全班交流。

课后反思:

课题十二: 解决问题(三)

教学内容:解决问题(三)  练习

教学目标:

1、进一步感受要根据实际需要求取商的近似值。

2、进一步培养学生的应用意识。

教学过程:

一、基础训练

完成P35  第8题

学生独立完成后交流分析过程,并讨论结果的处理?(为什么这样处理?)

二、巩固练习,判断这几题如何处理结果?

1、有110米的布,做儿童套装,每套用布2.3米,能做多少套?

2、有110吨的煤,用载重2.3吨的小车运,需运多少车?

3、P34  5     如何处理结果?组织学生讨论,鼓励他们说出理由,在交流中,自己发现不足校正。

4、P35  9     (先说出解题思路,再解答)同上

5、P35  10    学生独立解答,全班交流不同方法

6、小结,请学生说说感受。

三、拓展练习

教师可请学生编题,交换练习本解答。

课后反思:

课题十三: 整理和复习

教学内容:整理和复习P36-37

教学目标:

1、巩固小数除法的计算方法,循环小数的概念。

2、进一步培养学生归纳总结,主动建构知识的能力。

3、培养学生解决实际问题的能力及应用意识。

4、培养学生自我总结,反思,自主学习的习惯。

教学过程:

一、主动回忆,再现知识。

1、本单元我们学习了哪些知识?在组内先说说整理后再在全班汇报,互相补充。

2、小数除法有哪些类型?学生举例说说,你在解题中哪些地方容易出错,哪些地方需要提醒大家?

师根据本班情况,选择前面学习中易错题巩固。

3、什么是循环小数?请举例说明?如何将它保留一位、两位、三位小数?

4、我们还了解了一些需要用小数除法解决的实际问题,你会解决下面的问题吗?P36

①学生独立作答,再小组讨论分析解答过程,请小组代表汇报。

②试着提出数学问题,并解决问题。

二、自主选择,重点练习。

1、根据自己的实际,从课本P37   1-5中选择对自己有针对性的题目进行练习。(学生自主选择,组内讨论交流)。

2、讨论分析,解答第6题

A、学生独立解答,交流

B、如果大部分学生有困难,可将此题分层提问  解答。

先出示“商就是24.6,求除数?”

再和原题比数,让不同层次的学生有所得。

三、总结

注:教师留心学困生掌握情况,及时解决,可根据本班情况,配针对性的练习进一步训练。

篇14:第二单元小数除法2 教案教学设计(人教新课标五年级上册)

课题一:小数除以整数(一)

教学内容:教科书第16页例1和 “做一做”,练习三的第1~2题.

教学目的:  1.掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法.

2.培养学生的类推能力、发散思维能力、分析能力和抽象概括能力.

教具准备:视频展示台

教学过程:

一、复习准备

1. 计算下面各题。

┌115÷5=(    )

23×5=(    )-│

└115÷23=(    )

2.计算下面各题并说一说整数除法的计算方法.

2145÷15= 416÷32= 1380÷15=

二、导入新课:

情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?出示例1:王鹏坚持晨练。他计划4周跑步22.4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)板书课题:“小数除以整数”。

三.教学新课:

教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论情况:

(1) 生:22.4千米=22400米           22400÷4=5600米      5600米=5.6千米

(2) 还可以列竖式计算。

教师:请同学们试着用竖式计算。计算完后,交流自己计算的方法。

教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?

小数点位置与被除数小数点的位置有什么关系?

引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点”.

教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析.

教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算.

四、巩固练习

完成“做一做”:25.2÷6       34.5÷15

五、课堂小结(略)

六、课堂作业:练习三的第1、2题

课后反思:

课题二:小数除以整数(二)

教学内容:教科书16~17页的例2、例3和相应的“做一做”中的题目,练习四的第4~8题.

教学目的:1.使学生学会除数是整数的小数除法的计算方法.

2.理解除数是整数的小数除法的计算法则跟整数除法之间的关系,促进学习的迁移.

教学过程:

一、复习:

教师出示复习题:

(1)22.4÷4                      (2)21.45÷15

教师先提问:“除数是整数的小数除法,计算时应注意什么?”然后让学生独立完成。

二、新课

1、教学例2.师先让学生根据题意列出算式,再让学生观察被除数与除数有什么特点?(被除数的整数部分比除数小)

问:“被除数的整数部分比除数小,商会出现什么情况?我们在竖式中应该怎样写商?请同学们互相说一说。(在被除数个位的上面,也就是商的个位上写“0”,用0来占位。)

请同学们试着做一做。

学生做完后,教师问:在什么情况下,小数除法中商的最高位是0?

2、教学例3。师先让学生根据题意列出算式,再让学生用竖式计算。当学生计算到12除6时,教师提问:接下来怎么除?请同学们想一想。

引导学生说出:12除6可以根据小数末尾添上0以后小数大小不变的性质,在6的右面添上0看成60个十分之一再除。

请同学们自己动笔试试。

3、做教科书第17页的做一做。

4、教师:想一想,前面几例小数除以整数是怎样计算的?引导学生总结小数除以整数的计算方法。(除数是整数的小数除法要按照整数除法的方法去除,商的小数点要和被除数的小数点对齐,如果有余数,要添0再除。)

教师:怎样验算上面的小数除法呢?(用乘法验算)自己试一试。

5、做教科书第18页的做一做。

三、课堂小结(略)

四、课堂作业:

课后反思:

课题三:一个数除以小数

教学目标:1、 使学生初步掌握除数是小数的除法的计算法则。

2、 提高学生的知识迁移能力

3、 培养学生细心做题的好习惯。

复习旧知:

1.把下列各数的小数点去掉,原数扩大了多少倍?

13.8 4.67 0.725

2、除数扩大10倍,要使商不变,被除数应怎样怎样变化?

4、 把5.34扩大10倍,小数点应怎样移动?要扩大1000倍呢?

5、 学生填写括号里的数:

被除数      15      150    (   )

除数         5       50     500

商        (  )   (  )    3

学生小结运用了什么规律?(商不变的性质)

教学过程:

一、引入新课:

学生做43.5÷5=8.7

然后改题:4.35÷0.5猜一猜得数是多少?为什么?

二、新授:

1、出示例5

(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85

(2) 问:想一想,除数是小数怎么计算?(转化成除数是整数的除法来计算。)

(3)问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。

生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。

2、出示例6:12.6÷0.28

这道题又该怎样改写成除数是整数的除法呢?请同学们运用上一题讨论的方法进行改写,改写时注意比较一下,这道题和上一道题哪些地方相同?哪些地方不同?

学生边讨论边改写,改写完后指名学生到视频展示台上展示自己改写后的算式.并比较出两道题都是除数是小数的除法,这是它们的相同点;而不同点表现在前一道题被除数和除数的小数位数同样多,而这道题除数有三位小数,而被除数只有两位小数.

教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?

引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。

小结:学生说一说学到了什么?教师适当小结。

三、 巩固练习:

1、 书上第22页“做一做”

2、练习:判断并改错:

1.44÷1.8=8 11.7÷2.6=4.5 4.48÷3.2=1.4

3、练习:书上24页的作业

课后反思:

课题四:商的近似数

教学内容 :教科书第23页的例7和“做一做”中的题目。

教学目的 :1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.

2、提高学生的比较、分析、判断的能力。

教学过程 :一、复习

1. 按“四舍五入法”,将下列各数保留一位小数.

3.72 4.18 5.25 6.03 7.98

2.按“四舍五入”法,将下列各数保留两位小数.

1.483 5.347 8.785 2.864

7.602 4.003 5.897 3.996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

二、新课

1.教学例6.

教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)

教师问:保留一位小数,应该等于多少?表示计算到“角”。

教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

2.做第23页“做一做”中的题目.

教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

教师问:你解题时用了什么技巧?

三、巩固练习

1、求下面各数的近似数:

3.81÷7       32÷42       246.4÷13

2、书上的作业。

课后反思:

篇15:第二单元小数除法2 教案教学设计(人教新课标五年级上册)

课题五:练习课

教学内容:P25练习

教学目标: 1、根据商不变性质,沟通  整小数的除法。

2、运用小数除法解决实际问题。

3、让学生感受到计算的工具性,培养学生的应用意识。

教学过程:

一、基本练习

1、观察P25 ,第8题

师:你发现了什么?你能根据第一栏里的数,填出其它各栏里的数吗?并说说依据。学生独立思考,小组交流,全班校正。

小结:根据商不变性质,我们就可以把小数除法转化整数除法计算,一般只需把除数转化为整数。师出示题。

根据324÷24=13.5 填出下面各题的商。

3.24÷24=       3.24÷0.24=     3.24÷2.4=     0.324÷2.4=

请学生说说是怎样想的?

2、师:同学们能计算小数除法了,我们来解决生活中的问题,出示第6题能解决吗?

学生独立完成P25,第6题

二、重点练习,P25,第7题:你能提什么问题?会解决吗?

1、学生提问,教师板书。(可能有:①共有多少人?(含教师),共有多少学生?②每人车费(单程)是多少钱?③每人至少应带多少钱?…)

2、先同桌交流,再全班交流。

教师小结:相信同学们能在生活中发现更多的数学问题,并能很好的解决这些问题!

三、独立练习   P25   9   学生独立解答

四、挑战题   P26    思考题

先独立思考,再小组讨论,最后小组汇报。

课后反思:

课题六:练习课

教学内容:P26练习

教学目标:1、会根据需要,求出商的近似值。

2、培养学生数感和灵活应用意识。

教学过程:

一、基础练习

1、取P26,第10题,48÷2.3(保留一位小数) 3.81÷7(保留两位小数)审题。求商的近似值的方法是什么?(一般先除到比需要保留的小数位数多一位,然后按“四舍五入”法取舍。也可观察保留位的余数与除数的大小关系进行判断)。

独立完成,请生板演。

二、巩固练习。

1、独立完成P26  10  剩余的题

2、独立完成P26  11  再全班交流,如何比较。

3、P26  13  学生独立完成全班交流。如何处理结果?

小结:根据需要求商的近似值,求一个数是另一个数的几倍?一般保留整数。

你还能提什么数学问题?教师板书。

三、发展练习

1、P26  第12题

请学生说说是如何思考的?肯定多种策略解决问题。

2、教师根据日常教学情况进一步补充针对性的练习

课题七: 循环小数

教学内容:循环小数P27-P28

教学目标:1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。

2、理解有限小数,无限小数的意义,扩展数的范围。

3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。

教学过程:

一、自主探索,获取新知

1、师谈活引入新课:

我班男生400米谁跑得最快?成绩如何?和“王鹏”比比,(出示例题)。全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2、初步感受循环小数的特点。

观察竖式,你发现了什么?(组织学生小组内交流)

可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?(师板书)

3、总结概括循环小数的意义

出示:28÷18        78.6÷11

先计算,再说一说这些商的特点。(请生板演计算结果)

学生讨论后,指名汇报,教师抓住学生回答:如1、小数部分,位数无限(或者除不尽)。2、有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。

4、巩固练习:下列哪些是循环小数?

0.999…   52.52525…   4.1677…    3.212121…   3.1415926…

学生评议。

5、介绍简便记法

如5.333…还可以写作5.3、7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525…可能出现问题52.52  52.525  52.52,师生共同辨析)

6、看书P27-28第一自然段,及了解“你知道吗?”

7、理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师适时抛出有限小数,无限小数的概念,并板书,判断前面练习题中的小数哪些是有限小数?哪些是无限小数,使学生明确循环小数属于无限小数。

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、学生小结

三、巩固练习

全班练习:19÷11  1.08÷3.3  13.25÷10.6报名板演,说出商是什么小数,依据是什么?

课后反思:

课题八: 循环小数练习

教学内容:循环小数(二)P30

教学目的:1、学生进一步巩固对循环小数概念的理解。

2、能比较两个(含)循环小数的大小。

学具准备: 计算器

教学过程:

一、主动回顾,知识再现。上节课我们学习了什么知识?

二、单项训练,夯实基础。

1、进一步理解循环小数的概念。

完成P30.1

全班练,指名板演,哪些题的商是循环小数,如何判断的?

2、进一步掌握循环小数的写法,完成P30.2。

你如何表示商?(自己选择表示方法),全班交流校对。

3、求循环小数的近似值。完成P30.3。先请学生说说取近似值的方法,再让学生独立完成。

三、深化练习。完成P30.6先观察这些小数的特点,再试一试.

请学生说出判断大小的过程,教师适时评价。

1、想到把这些简便记法的循环小数还原。

2、2、1.23 O  1.233,只还原到第三位小数。

师小结:需要先观察,再比较,比较方法与以前比较小数的大小方法相 同。

四、独立练习 :P30  4、5

课后反思:

课题九: 用计算器探索规律

教学内容:用计算器探索规律P29

教学目标:1、能借助计算器探求简单的数学规律。

2、培养学生观察、归纳、概括、推理的数学能力。

3、让学生感受到信息化时代,计算器(或计算机)是探索数学知识的有力工具。

教学过程:

一、激发学生兴趣

1、使用计算器,小组合作

任意给出四个互不相同的数字,组成最大数和最小数,并用最大数减最小数,对所得结果的四个数字重复上述过程,你会发现什么呢?

2、小组汇报,展示过程,讨论发现。

3、采访学生,有什么感受。

师:仿佛掉进了数学黑洞,永远出不来,非常的神奇,今天,我们还将利用计算器去探索更多的有趣的神奇的数学规律,有兴趣吗?let’s  go!

二、自主探索

1、出示例10  独立操作,你发现了什么规律?

①商是循环小数      ②下一题结果是上一题的2倍…

不计算,用发现的规律直接写出后几题的商。

2、用计算器验证。

小结:一旦发现规律,就可以运用规律解决问题。

3、独立完成“做一做”,你发现什么规律?先小组交流,再全班交流校对。

三、请学生总结,也可质疑。

教师激励:肯定学生去探索规律后的秘密的探索精神,鼓励他们继续努力;希望学生在生活中,学习研究中去发现探索更多的规律。

四、独立练习   P31 7-9

课后反思:

课题十: 解决问题(一)

教学内容:解决问题

教学目标:1、会解决有关小数除法的简单实际问题。

2、能探索出解决问题的有效方法,并试图寻找其他方法,能表达解决问题的过程。

教学过程:

一、引入新课:前面我们学习了小数除法的计算,那么你会解决下面的问题吗?(板书课题)

二、自主探索(出示例11)

1、先独立思考解答。

2、小组内交流,可以先算什么?

3、小组汇报,全班交流,说说不同的思路。再指名说说。

三、巩固练习

1、“做一做”

独立完成,全班交流。再指名说说不同的解题思路。

2、完成P34  3

师:你从此题中收集到了哪些信息?要解决什么问题?如何思考?

生先独立思考,再小组交流,汇报分析过程。

师小结,解答问题时要找准有直接关系的条件或信息。

3、独立完成P34  1、2、4,教师巡视,辅导学困生。

四、学生总结

课后反思:

篇16:第一单元图形的变换1 教案教学设计(人教新课标五年级上册)

第一课时

课题:轴对称

教学内容:教材第3~4页例1和例2。

教学目标:

1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;

2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴

3.培养和发展学生的实验操作能力,发现美和创造美的能力。

重点难点:会利用轴对称的知识画对称图形。

教学准备:幻灯片、课件。

教学过程:

一、复习引入:

(1)欣赏下面的图形,并找出各个图形的对称轴。

(2)学生相互交流

你们还见过哪些轴对称图形?

(3)轴对称图形的概念:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

(4)通过例题探究轴对称图形的性质:

例题1:

同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。

学生交流

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

二、课内练习。

1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。

2.

三、教学画对称图形。

例题2:

(1)引导学生思考:

A、怎样画?先画什么?再画什么?

B、每条线段都应该画多长?

(2) 在研究的基础上,让学生用铅笔试画。

(3) 通过课件演示画的全过程,帮助学生纠正不足。

四、练习:

1、课内练习一 -----第1、2题。

2、课外作业:

板书设计:

轴 对 称

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

教学反思:

第二课时

课题:旋  转

教学内容:教材第5~5页例3和例题4。

教学目标:

1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象 。

2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

3、初步渗透变换的数学思想方法。

重点难点:能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

教学准备:幻灯片、课件。

教学过程:

一、导入

课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。

游乐园里各种游乐项目的运动变化相同吗?

你能根据他们不同的运动变化分分类吗?

在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。

而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。

今天我们就一起来学习“旋转”。板书课题。

二、学习新课

1、生活中的平移。

平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。

在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。

说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。

你们想亲身体验一下平移吗?

全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?

2、生活中的旋转:

你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)

旋转就是物体绕着某一个点或轴运动。

“你见过哪些旋转现象?”先说给同桌听听,然后汇报。

像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。

同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!

3.学习例题3:

(1)与学生共同完成其中的一道题,余下的由学生独立完成。

(2)对于有错误的学生,在全班进行讲评。

4.学习例题4:

(1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。

(2)先让学生说一说画图的步骤,再来画图。

(3)让学生学会先选择几个点,把位置定下来,再来画图。

(4)课件演示画图过程,并帮助学生订正。

5.课内练习:

2.第6页2题。

3.第9页4题、

课后作业:

板书设计:

旋    转

平移和旋转都是物体或图形的位置变化。

平移就是物体沿直线移动。

旋转就是物体绕着某一个点或轴运动

教学反思:

小学数学下册教案第二单元因数与倍数 (人教新课标五年级下册)

因数和倍数教案

因数和倍数1的教学反思

第二单元分数乘分数1 教案教学设计(人教新课标六年级上册)

《因数和倍数》教学反思

倍数和因数教学反思

因数和倍数教学课件

因数和倍数教学反思

五年级数学因数和倍数教学设计

 五年级下册因数和倍数数学教案

《第二单元因数和倍数1 教案教学设计(人教新课标五年级上册)(精选16篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档