欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

人教版九年级数学投影知识点

时间:2025-11-21 08:13:40 其他范文 收藏本文 下载本文

下面是小编为大家整理的人教版九年级数学投影知识点,本文共4篇,仅供大家参考借鉴,希望大家喜欢!

篇1:人教版九年级数学投影知识点

人教版九年级数学投影知识点

1、投影

(1)投影:

用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影:

有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影(parallel projection)。

(3)中心投影:

由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。

(4)正投影:

投影线垂直于投影面产生的投影叫做正投影。

注:物体正投影的形状、大小与它相对于投影面的位置有关。

2、三视图

(1)三视图:

是指观测者从三个不同位置观察同一个空间几何体而画出的图形。将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。

(2)特点:

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的`结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从加速度我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

数学的学习思维方法

逻辑法

逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

逆向思维法

逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

初中数学数据的分析知识点

1.算术平均数:

2.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

6. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流

7.平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

篇2:人教版九年级数学知识点

二次函数

一、二次函数

1、一般地,如果是常数,,那么叫做的二次函数。是自变量。其中,a是二次项系数;b一次项系数;c是常数项。

2、二次函数由特殊到一般,可分为以下几种形式:

①;②;③;④;⑤。

3、二次函数的图象:是常数,,的图像是抛物线。抛物线与它的对称轴的交点叫抛物线的顶点。顶点是抛物线的最高点或最低点。

4、求抛物线顶点(最大或最小值)和对称轴的方法

(1)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。

(2)公式:,∴顶点是,对称轴是直线。

5、二次函数的图象的特点:

(1)抛物线的顶点是坐标原点,对称轴是轴;

(2)抛物线的顶点是(h,k),对称轴是x=h;

(3)抛物线的顶点是,对称轴是;

①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点。|a|越大,开口越小。|a|越小,开口越大。

(4)几种特殊的二次函数的图像特征

二、二次函数与二元一次方程的关系

篇3:人教版九年级数学知识点

锐角三角函数

一、锐角三角函数

1.正弦:在Rt△ABC中,锐角∠A的对边a与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边=a/c;

2.余弦:在Rt△ABC中,锐角∠A的邻边b与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边=b/c;

3.正切:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边=a/b。

①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。

4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A的对边=b/a;

5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:

若∠A 为锐角,则①sinA = cos(90°?∠A)等等。

6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。

7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。0≤sinα≤1,0≤cosα≤1。

同角的三角函数间的关系:tanα·cotα=1,tanα=sinα/cosα,

cotα=cosα/sinα,sin2α+cos2α=1

二、解直角三角形

1.解直角三角形: 在直角三角形中,由已知元素求未知元素的过程。

2.在解直角三角形的过程中用到的关系:(在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,)

(1)三边之间的关系:a2+b2=c2;(勾股定理)

(2)两锐角的关系:∠A+∠B=90°;

(3)边与角之间的关系:

sinA =a/c;(a= c sinA)

cosA =b/c;(b= c cosA)

tanA=a/b。

sinA= cosB cosA =sinB sinA= cos(90°-A)

sin2α+cos2α=1

篇4:人教版九年级数学知识点

相似

一、图形的相似

1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:∽)

性质:相似多边形的对应角相等,对应边的比相等。

2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。

3.相似比:相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形全等。

二、相似三角形

1.性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

2.判定.①如果两个三角形的三组对应边的比相等,那么这两个三角形相似。②如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。③如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(①三边对应成比例②两个三角形的两个角对应相等;③两边对应成比例,且夹角相等;④相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。)

3.相似三角形应用

视点:眼睛的位置;仰角:视线与水平线的夹角;盲区:看不到的区域。

4.相似三角形的周长与面积:①相似三角形周长的比等于相似比。②相似多边形周长的比等于相似比。③相似三角形面积的比等于相似比的平方。④相似多边形面积的比等于相似比的平方。

三、位似

1.位似图形:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

2.性质:在平面直角体系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形的对应点的坐标的比等于k或-k。

注意

1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;

2、两个位似图形的位似中心只有一个;

3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;

4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;

5.位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。位似多边形的对应边平行或共线。位似可以将一个图形放大或缩小。位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。

6.根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。

鲁教版九年级数学知识点

人教数学九年级下册教案

人教九年级英语教案

九年级数学课本知识点

九年级数学上册知识点

九年级数学圆的知识点

部教版九年级下册政治知识点

泸教版九年级化学上册知识点

九年级上册数学知识点二次函数

初一数学知识点鲁教版

《人教版九年级数学投影知识点(通用4篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档