以下是小编为大家准备的利用ASSP实现成本节约,加速产品上市进程,本文共3篇,欢迎大家前来参阅。

篇1:利用ASSP实现成本节约,加速产品上市进程
利用ASSP实现成本节约,加速产品上市进程
美国得克萨斯州达拉斯,德州仪器公司总部负责全球市场营销及应用的经理 Mark Buccini
在许多嵌入式混合信号应用中,为了在同一系统中同时满足高性能模拟以及低成本数字逻辑这对相互冲突的要求,手工 (handcrafted) 专用集成电路(ASIC)常常是唯一实际可用的设计选择。该概念旨在将作为ASIC的复杂特定用途应用模拟从系统的数字商品部分分离开来。将模拟提取并整合到特定ASIC能够优化复杂特性,并将系统的通用特性进行商品化。
尽管会出现非重复设计(NRE)本以及较长的生产间隔时间等问题,但将模拟与数字分开在许多情况下还是有其经济意义的。不过随着如今现代芯片制造技术已经达到或低于0.5um的程度,最低批量达10万套时,通常完全定制的模拟电路其NRE为50多万美元。此外,经济与额外的设计风险以及缩短产品上市进程的压力使手工解决方案几乎一点都不现实。
当今潮流是采用专用标准产品 (ASSP) 在单个系统中平衡高性能模拟、低成本数字以及缩短产品上市时间。这些 ASSP 可提供专用混合信号模拟特性作为优化外设,同时实施的器件可在许多平台上共享可重复使用的功能。快闪微控制器 (MCU) 是最佳的共享功能解决方案选择。设计人员不再需要集中其资源进行风险极大的定制硬件实施,而是开发具有灵活性的、可编程的功能以便能迅速将其投入市场。
电子电表解决方案
ASSP能很好发挥作用的嵌入式混合信号应用的一个常见实例是电子电表。电子电表要求电路系统在广泛的动态范围内具备精确的电压与电流转换、可编程的快速MCU、计时功能、非易失存储,以及灵活的显示与通信特性。图1显示了常见的第一代电子电表的构造块。
执行能量转换功能需要具备可编程增益放大器(PGA)的独立模数转换器(ADC)。被转换的`线电压和电流信号可进行数字处理,提供能量和线路时段测量、负电流动显示、峰值电压与电流等。数字信号处理器(DSP)可执行必要的计算以提供准确的活动能量、RMS电压、电流以及波形采样。
嵌入式信号处理器
就简化的系统设计方法而言,诸如MSP430FE42x“电表芯片”等混合信号ASSP集成了测量功能,作为随时可用的嵌入式信号处理器 (ESP)。可将ESP看作是一种固定功能外设,是专门为电子电表应用而量身定制。ESP作为一种外设可提供所有测量功能,如图2所示。我们使用具备同时采样和保持的三个独立的16位Δ-Σ ADC-PGA 对。其中一个ADC用作电流测量,一个用作电压测量,第三个则用作火线与零线 (line-to-neutral) 电流比较,以进行窜改检测。
我们可对嵌入式16位DSP进行编程,该器件采用优化的CPU、硬件乘法器、RAM以及ROM。也集成了精确的电压参考与温度感应器,用以减少外部组件。对设计工程师而言,ESP可方便地初始化,而无需应用软件。与主要的16位CPU的通信是通过现有的存储器和数据地址总线作为可读写邮箱寄存器完成的。数字校准在制造过程中执行,无需其它的软件支持。
为了满足严格的准确性要求,测量功能可在1000至1的动态电流范围内提供精确到 0.1% 的能量测量,大大超过了典型机械电表 2% 的
[1] [2] [3]
篇2:利用ASSP实现成本节约,加速产品上市进程
利用ASSP实现成本节约,加速产品上市进程
美国得克萨斯州达拉斯,德州仪器公司总部负责全球市场营销及应用的经理 Mark Buccini
在许多嵌入式混合信号应用中,为了在同一系统中同时满足高性能模拟以及低成本数字逻辑这对相互冲突的要求,手工 (handcrafted) 专用集成电路(ASIC)常常是唯一实际可用的设计选择。该概念旨在将作为ASIC的复杂特定用途应用模拟从系统的数字商品部分分离开来。将模拟提取并整合到特定ASIC能够优化复杂特性,并将系统的通用特性进行商品化。
尽管会出现非重复设计(NRE)本以及较长的生产间隔时间等问题,但将模拟与数字分开在许多情况下还是有其经济意义的。不过随着如今现代芯片制造技术已经达到或低于0.5um的程度,最低批量达10万套时,通常完全定制的模拟电路其NRE为50多万美元。此外,经济与额外的设计风险以及缩短产品上市进程的压力使手工解决方案几乎一点都不现实。
当今潮流是采用专用标准产品 (ASSP) 在单个系统中平衡高性能模拟、低成本数字以及缩短产品上市时间。这些 ASSP 可提供专用混合信号模拟特性作为优化外设,同时实施的器件可在许多平台上共享可重复使用的功能。快闪微控制器 (MCU) 是最佳的共享功能解决方案选择。设计人员不再需要集中其资源进行风险极大的定制硬件实施,而是开发具有灵活性的、可编程的功能以便能迅速将其投入市场。
电子电表解决方案
ASSP能很好发挥作用的嵌入式混合信号应用的一个常见实例是电子电表。电子电表要求电路系统在广泛的动态范围内具备精确的电压与电流转换、可编程的快速MCU、计时功能、非易失存储,以及灵活的显示与通信特性。图1显示了常见的第一代电子电表的构造块。
(本网网收集整理)
执行能量转换功能需要具备可编程增益放大器(PGA)的独立模数转换器(ADC)。被转换的线电压和电流信号可进行数字处理,提供能量和线路时段测量、负电流动显示、峰值电压与电流等。数字信号处理器(DSP)可执行必要的计算以提供准确的活动能量、RMS电压、电流以及波形采样。
嵌入式信号处理器
就简化的系统设计方法而言,诸如MSP430FE42x“电表芯片”等混合信号ASSP集成了测量功能,作为随时可用的嵌入式信号处理器 (ESP)。可将ESP看作是一种固定功能外设,是专门为电子电表应用而量身定制。ESP作为一种外设可提供所有测量功能,如图2所示。我们使用具备同时采样和保持的三个独立的16位Δ-Σ ADC-PGA 对。其中一个ADC用作电流测量,一个用作电压测量,第三个则用作火线与零线 (line-to-neutral) 电流比较,以进行窜改检测。
我们可对嵌入式16位DSP进行编程,该器件采用优化的CPU、硬件乘法器、RAM以及ROM。也集成了精确的电压参考与温度感应器,用以减少外部组件。对设计工程师而言,ESP可方便地初始化,而无需应用软件。与主要的16位CPU的通信是通过现有的存储器和数据地址总线作为可读写邮箱寄存器完成的。数字校准在制造过程中执行,无需其它的软件支持。
为了满足严格的准确性要求,测量功能可在1000至1的动态电流范围内提供精确到 0.1% 的能量测量,大大超过了典型机械电表 2% 的一般精确度。由于具备每秒4096的高采样率,可以以数字的方式去除第20阶的50或60Hz市电电源谐波,特别是在快速开关瞬变负载环境中实现了更高的精确度。由于完全通过ESP管理关键的能量计算,用户可以使用MCU来实施独特的特性,如显示和自动读表(AMR)。
单片方法
从芯片角度看,除了专用ESP之外,ASSP的主要吸引力还在于将所有其他功能可作为通用外设提供。在电表芯片实例中,主CPU可以完全访问32kB系统内部可编程 (isp) 闪存和1kB RAM,以开发应用特性。凭借ISP,一般用作校准和单元识别序列号的外部非易失存储器可以取消,而代之以保存在正常的闪存中。周期性消耗数据也可记录在ISP闪存中。
图3显示了完整的片上电表。两款业界标准的16位计时器、USART串行通讯接口以及LCD驱动器可为每个应用实施独特的'特性。作为业界标准的外设,一般软件库可重复使用,从而减少了总体项目开发时间。
就长期可靠性而言,系统中发生故障的最常见的项目之一就是晶体 (crystal),其本质上是一种机械元素。因此,电表ASSP只使用单个低频率的32 kHz 表面晶体 (watch crystal) 作为计时之需,并能在断电情况下进入超低功耗的睡眠模式。高速系统时钟独立于晶体在片上进行数字生成,如果发生外部晶体故障,它可提供故障安全模式,以允许MCU在最小级别上继续工作。对于诸如电表等应用而言,可靠性是最优考虑的因素,因为这需要部署数十年之久。
与离散解决方案相比,电表ASSP将芯片数从五片降至了一片。芯片数的降低不仅节约了成本,而且还优化了制造,改善了长期可靠性。
合而为一
如今,开发基于嵌入式 MCU、能快速投入市场、具有紧密封装以及更高精确度模拟的 ASSP 要求富有全新的思维方式。一流的 MCU 式线上电路模拟器 (ICE) 被嵌入式模拟所取代。小型嵌入式模拟逻辑内核驻留在实际的 ASSP 自身上,通过业界标准的 JTAG 接口可对其进行不间断访问。嵌入式模拟对高性能混合信号系统变得日益重要,这些系统必须保持微伏模拟信号(如电子电表)的完整性。笨重的 ICE 几
乎不可能实现信号完整性,它对连线干扰非常敏感。
从开发一开始,固件工程师就在默默地开发实际的生产系统并进行调试。将ISP闪存的卓越灵活性与普通的嵌入式模拟相结合,使设计一开始就实现了系统级开发,从而减少了反复开发工作与时间。如果需要的话,还可在生产系统中进行最后一分钟软件升级,并不管在是否经过远程计划安排的情况下都可进行更新。
作者简介
Mark Buccin是 MSP430的全球产品线经理,负责应用与战略市场营销。在TI的模拟、DSP、ASIC和MSP430等领域的实际设计和应用方面拥有 的丰富经验。除了负责产品线而外,他还撰写了大量应用报告、论文以及四份年度全球研讨会系列材料。他拥有奥克兰大学(密歇根州Rochester)的电子工程学士学位。
篇3:低功耗混合信号ASSP(专用标准产品)实现便携式消费电子的低成本和高性能
低功耗混合信号ASSP(专用标准产品)实现便携式消费电子的低成本和高性能
摘 要:本文主要介绍全新高速安全微控制器的结构特征与优势,并从中指出它的发展与应用前景
关键词:高速微控制器;嵌入式系统;非易失存储器;
加密密钥要在大量的消费类应用中同时实现高性能与低成本,全定制的模拟前端 (AFE) 与普通的数字信息处理器相结合是唯一的选择。为了在同一系统中同时满足高性能模拟与低成本数字控制这两个相互矛盾的需求,当今的发展趋势是利用专用标准产品 (ASSP)。ASSP 的优势是用一个可重复使用的低成本系统提供高性能模拟、低成本数字控制以及缩短上市进程。这些 ASSP 提供可配置的混合信号模拟功能作为优化的外设模块,器件的其余部分作为许多平台共享可重复使用的模块。快闪微控制器 (MCU) 是实现共享功能的晶核 (host)。单个 ASSP 除了全部补充有计时器与串行端口等数字外设之外,现在还可集成高精度模数转换器 (ADC)、数模转换器 (DAC)、运算放大器 (OA)、电源电压监控器 (SVS) 以及液晶显示驱动器。在图 1 中我们用 MSP430FG43x 显示了混合信号快闪 MCU 的集成性能。
---凭借基于 ASSP 的混合信号快闪 MCU,设计工程师就不必将他们的资源集中到风险大的全定制硬件实施上,从而可以开发出能够快速投放市场的灵活的可编程功能。
混合信号 ASSP MCU 解决方案
---ASSP 非常适用于便携式医疗设备。一台典型的设备需要一个精密传感器接口电路、通信功能、实时时钟功能、患者数据的非易失性存储器、较长的电池使用寿命以及在应用中可对快闪 MCU 进行编程的灵活性。图 2 显示了单芯片葡萄糖测量仪的结构图。
---用一个生物催化剂试验片来测量一小份血样的葡萄糖含量。当血样加到试验片上时,将产生 μA (微安)级的小电流,而且与葡萄糖成比例。然后由快闪 MCU 内部的一个 12 位 DAC 向试验片提供偏置电压。我们利用以一个集成快闪 MCU 的运算放大器实施的互阻抗放大器,将生物催化剂产生的电流转化为电压。我们利用一个可编程反馈电阻阵列将运算放大器的输出调到可通过嵌入式 12 位 ADC 进行测量的范围,该可编程反馈电阻阵列可由快闪 MCU 从内部提供,不再需要外部组件。
---生物催化剂对温度很敏感,由于测量周期可能持续达 30 秒,使得这一情况更为复杂。例如,测量周期可能从用户室内等暖和的环境开始,而转换结果却在寒冬的室外环境中完成。为此,我们用内部温度来衡量测量周期开始与结束时的温度,如果二者之间的温差过大,读数将弃用,并向用户报警。
---随后通常将记录并传送患者的测量数据,供用户或者医师进行分析。由于快闪 MCU 存储器是系统内可编程的 (ISP) ,因此一部分快闪被直接分配用于数据记录。使用 MCU 存储器的一部分来进行记录,就不需要外部数据存储器了。现代嵌入式快闪可擦除与改编程序多达 10 万次,高于仪器的工作寿命。
功率监控 (Power Aware) 的应用
---为了延长工作寿命,工程师在设计电池供电仪器时必须认识到功率问题。正常的运行模式必须是省电的低功耗待机模式。为了节电,必须对整个系统进行分析,只运行必需的任务。不必要的任务会浪费功率,应彻底删除。不用的外设模块必须禁用。利用 ASSP,所有的外设模块均嵌入快闪 MCU 中,并且完全采用软件控制,易于操作。禁用电路被简化为软件操作,只需在外设控制寄存器中设定位即可。
---除最低功耗之外,随选性能以及操作状态间的快速切换能力通常都是必需的。系统的计时必须具有足够的灵活性,以满足下列相互矛盾的需要:
---● 精确时基所需的稳定性
---● 延长电池寿命所需的低功耗
---● 高性能所需的速度
---● 对事件做出快速反应的灵敏性
---最佳的时钟解决方案是以下两种计时方式的结合:一种是采用外部32kHz 表面晶体作为辅助时钟 (ACLK),实现低功耗与稳定性;另一种是采用快速启动、高速片上数控振荡器 (DCO) 作为系统的主时钟 (MCLK)。ACLK 始终保持开启状态,只对一个 LCD 驱动器以及一个用于实时中断的计时器进行计时。高速 MCLK 对 CPU 以及高速外设进行计时,以增强处理能力及对事件的快速反应能力。DCO 是一种接近“零时延”的低 Q、RC 型振荡器,可在不到 6μs 的时间内启动。
---为了实现 DCO 时钟稳定的输出,不随温度和电压而改变,我们使用了一个锁频环 (FLL)。FLL是一个连续的频率积分器 (frequency integrator),始终在后台将 DCO 频率调整为一个稳定的参考 ACLK的分数。将经过调整的 DCO 与ACLK 进行比较,反馈至一个上/下计数器,该计数器可自动增加或者减少 DCO 的输出,使DCO 的频率与 ACLK 的频率相匹配。这与将 DCO 频率增加到 ACLK 频率的效果相同。图 3 显示了 DCO/FLL 组合。
---DCO/FLL 的.结合勾画出功率监控超低功耗活动的轮廓,在节电待机模式下可延长使用时间而且还不影响性能。当事件驱动中断需要系统服务时,DCO 自动启用,CPU 激活。高速 DCO 时钟系统将尽快满足需求,然后返回待机状
态。
---始终开启的 ACLK 时钟计时器提供了便捷的嵌入式实时计时功能。利用 32 kHz 表面晶体进行计时,计时器将信号源以 2^15 分隔,正好每秒触发一次中断。因为此时根本没有为 CPU 和软件计时 DCO 的启动时间,所以嵌入式实时计时功能可作为一次简单的中断而得以实现,对整体性能毫无影响。基本实时计时功能所需的 CPU 周期应低于 100。如果以额定的 1MHz 频率对 CPU 进行计时,则实时计时功能的工作时间为每秒钟 100μs(即百分比为 0.0001)。假如处于工作状态的 CPU 电流为 250μA,实时计时功能使整个系统功耗预算的增加不到 25nA。
混合信号的灵活性
---在集成方面混合信号快闪 MCU 的性能令人赞叹,但是几乎没有应用会牺牲集成度来获得模拟性能以及设计的灵活性。应用空间广阔的产品可获得更高的投资回报,从芯片制造商的角度看是最理想的。为了解决灵活性问题,混合信号快闪 MCU 利用内在的可编程性,提供了对应于固定功能的可配置软件模拟外设。
---嵌入式 ADC 实现对输入渠道、采样时间、采样速率以及电压基准源的完全控制。利用软件选择所需的专用功能。DAC 提供了选择输出格式、触发源、多个 DAC 分组的功能,还提供了配置模拟输出缓冲器实现功率与驱动最佳平衡的功能。OA 通常是任何设计中最特殊也是最关键的模拟组件之一,它有数个寄存器,实现包括建立时间、轨至轨输入以及反馈电阻在内的完全可编程性。利用多个嵌入式 OA,可以很容易地实现差分放大器与仪器放大器等复杂电路。
---借助基于快闪 MCU 的 ASSP,可以为所有模拟与数字外设模块进行软件配置,这样可以不断增强应用直至最终产品出厂。不仅不会发生较长的 ASIC 供货周期这样令人头痛的事情,而且也不会产生重新设计的成本。此外,利用基于快闪的配置,相同的硬件可重复用于数种最终产品。例如,可能会将一种产品提供给要求不同用户接口的数个不同地区。利用快闪存储器,可以嵌入特定区域配置。基于快闪的产品还可提供现场升级功能,可在以后对其进行编程。
更优的性能表现
---将混合信号外设特性直接嵌入基于快闪 MCU 的 ASSP 中可以消除分离外接器件间接口所需的开销,从而提高系统性能。例如,外部数据转换器与 MCU之间的共用接口就是一个同步外设接口 (SPI) 总线。SPI 至少要占用板级空间,并需要带有四个信号引脚的 MCU 串行端口,这些信号引脚是:芯片选择、时钟、数据输入、数据输出。更高成本在于为 SPI 中断服务子程序提供服务的软件开销,通常在中断开销及存储接收与发送数据所需的50个系统 CPU 周期范围内。在 100ksps 的 ADC 采样率与每样本 50 个周期的软件开销情况下,MCU 必须保留 500 万个周期或 MIPS。利用嵌入式数据转换器,软件服务就如同读取单个寄存器,然后将读取结果传送至存储器中一样简单,从而将系统周期缩短 50%,也可将功耗进一步降低 50% 以上。
---为了进一步提高性能,同时降低功耗,诸如 MSP430FG43x 等新型 ASSP 均包括了直接内存存取 (DMA) 控制器。DMA可在嵌入式混合信号外设之间提供最佳结合 (ultimate glue),从而实现全面可配置的自动化无 CPU 参与数据传输。采用诸如数据转换器这样的外设可以显著增强 DMA 的性能,这些转换器可以周而复始地将数据从存储表中移进移出。利用DMA,每次传输仅要求两个系统周期,与连接外部器件的系统相比,系统开销降低了 25 倍。利用 DMA,可将新的可用系统资源重新分配给更高级的细分功能,或用于实现显著延长的待机时间间隔,降低延长电池使用寿命所需的功耗。
总结
---如今,开发基于混合信号快闪 MCU、能快速投入市场、具有紧密封装以及更高精确度模拟的 ASSP 要求富有全新的思维方式。一流的 MCU 式线上电路模拟器 (ICE) 被嵌入式模拟所取代。小型嵌入式模拟逻辑内核驻留在实际的 ASSP 自身上,通过业界标准的 JTAG 接口可对其进行访问。嵌入式模拟对高性能混合信号系统变得日益重要,这些系统必须保持微伏模拟信号的完整性。笨重的 ICE 几乎不可能实现高精度信号的完整性,它对连线干扰非常敏感。
---借助嵌入式模拟技术,从开发一开始,硬件工程师即可潜心开发实际的生产系统并进行调试。将 ISP 快闪存储器的卓越灵活性与普通的嵌入式模拟相结合,使设计一开始就能够实现当今混合信号 ASSP 真正的系统级开发,从而不仅可降低成本而且还能进一步简化开发工作,加速开发进程。
文档为doc格式