<” jgtlt=“j;)><” jj--gtlt=“j)j--;><” k=“=i)return” left=“left;” leftint=“left,int” len=“strlen(s);” lengtlt=“len;)><” main=“main(){” mapgtlt=“map><” memsetf0sizeoff=“memset(f,0,sizeof(f));” memsetx0sizeofx=“memset(x,0,sizeof(x));” namespace=“namespace” nkint=“n,k;int” p=“right;” pgtlt=“p><” pre=“” queuegtlt=“queue><” read=“read;” return=“” right=“right){” s22000006int=“s[22000006];int” stackgtlt=“stack><” stdint=“std;int” tmp=“x[i];” v=“(v<<3)+(v<<1)+s[i]-48);” vectorgtlt=“vector><” whilescanfddnk=“while(~scanf(%d%d,&n,&k))” write=“write” x2000006f2000char=“x[2000006],f[2000];char”>
篇2:《求小数的近似值》的评课稿
《求小数的近似值》的评课稿
今天,听了赵老师执教的《求小数的近似值》,感受整节课娓娓道来,环节清晰明郎,自然朴实,比上学期有了可喜的进步。
本节课从生活的需要而产生求商的近似值的需求,进而探讨求商的近似值的方法,从而总结求商的近似值的方法与求积的近似值方法的异同。
本节课最大的优点:
一、关注细节。
细节论成败。通过一学期与学生的沟通交流,师生配合较默契,赵老师很冷静,很沉稳的采取一系列的小细节:如伸手指的个数,代表你想到问题的'个数,边伸手指,边思考......这样,很容易了解学生对知识的反馈情况;又如语言的暗示——师:看谁求得商快;师:想好了再算,否则会吃亏......这些小细节很巧妙的促进了学生的思维,提示学生边思变做,不要做一台“计算器”。再如:画龙点睛的板书“约”和(保留一位小数),突出知识点。
二、注重学习方法的培养,关注知识的形成过程。
在学习探讨求商的近似值的方法时,采用了“举例——归纳的方法”让学生经历、参与、总结方法。先有具体的有形的题目:如计算43÷13 ≈ (商保留整数),18.9 ÷ 2.3 ≈ (商保留两位小数),在具体的计算中加以对比,在对比中并不急于揭示方法,而是调动广大学生的积极性,都参与到思考中,达到“无疑处有疑,”“教是为了不教”的效果,从而优化学习方法。
三、会灵活动用评价语言激励学生,语言丰富多彩
赵老师年青好学且教学低子较扎实,在相互交流学习中我对她提出的意见,在本节课中改进了许多,因此教学课堂也较生动起来。
对本节课的建议:
如果在开始练习几道求小数近似值的题目,如3.156 ≈ (保留整数、一位小数、两位小数)等不同的要求,进而回顾总结求小数近似数的方法——(看保留位数后一位上的数来决定四舍还是五入),从而在学习求商的近似值的方法时,可先运用“猜测——验证”的学习方法,避免学生出现“劳而无功”的现象。
篇3:求小数的近似数说课稿
一、教学内容的说明:(教材分析)
本单元是在学生对小数和分数有了初步认识的基础上进行学习的。这部分内容是学生系统学习小数知识的开始,同时又是学习小数四则计算的基础。
信息窗呈现了三个同学用游标卡尺测量绿毛龟蛋长径和宽径的情境,通过学生质疑测量同一个蛋的长度,为什么两人读数不一样的问题,引入对小数的近似数知识的学习。
二、教学目标:
依据《数学课程标准》的要求,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求,根据本节课的具体内容,我制定了以下教学目标:
知识与能力目标:
掌握把一个较大的数改写成用万或亿作单位的数后再求它的近似值。能正确区分改写和保留的要求以及各自的方法。
掌握用四舍五入法求小数的近似值的方法。使学生理解保留的位数越多,精确度就越高。
过程与方法目标:
通过情境图引出怎样求小数的近似数,学生在教师 的指导下探索求小数近似数的方法,并在此基础上学习和区分改写和保留的不同要求和方法。
对所学知识进行拓展,迁移到新知,培养学生知识迁移能力,和利用已掌握知识探索新知识的能力。
情感态度与价值观目标:
让学生体会知识间的紧密联系,体验获取新知的乐趣。
基于以上的分析我确定本节课的教学重点是:
会利用四舍五入法求小数的近似值;理解保留位数越多,精确度就越高。
教学难点是:
理解保留和精确之间的区别与联系以及保留位数越多,精确度越高。
三、教学方法
为了突出重难点,使学生达到本节课设定的目标,我准备采用以下教学方法:
教法:教学充分以学生为主体,调动学生的学习积极性,通过学生发现问题、提出问题、小组合作讨论解决问题,挖掘学生的潜力,培养学生的能力,提高学生的素质。
学法:为了更好地突出、突破重难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在观察比较概括应用的学习过程中掌握知识。激发每一个学生的学习兴趣,同时让学生获得成功体验!
四、教学过程的设计:
为了全面、准确地引导学生探索发现求小数近似数的方法,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了复习旧知,探索新知,巩固练习,课堂小结,四个环节。
第一个环节:复习导入
这一环节我设置了两个习题:
1、把下面各数省略万后面的尾数,求出它们的近似数。
986534 58741 32100 398210
2、下面的里可以填上哪些数?
32( )64532万 47( )05047万
在此环节重点让学生说一说自己是怎么想的,四舍五入是什么意思,为后面的学习做好知识迁移的准备。
第二个环节:探索新知
这一环节有两个知识点:求小数的近似数;把一个数改写成用万或亿作单位的数。
求小数的近似数:我先出示课本的情境图,引导学生观察情境图,从图中能获得哪些信息?你能提出哪些有价值的数学问题?
根据学生的回答,引出问题,为什么小华、小明两个人说的不一样?教师可以说明由于两个学生对测量结果要求的精确程度不同,就会出现同一个小数的不同近似数,然后引导学生说一说小华说的是几位小数?小明说的是什么数?
通过学生的回答师作说明:近似数的结果是一位小数就是将原小数保留一位小数,结果是整数就是将原数保留整数
您现在正在阅读的小学数学《求小数的近似数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《求小数的近似数》说课稿从而引导学生仿照求整数近似数的.方法(四舍五入法)来求小数的近似数:
出示:3.94保留一位小数是多少?3.94保留整数是多少?
学生分组讨论,自主探索求小数近似数的方法,再通过学生的汇报,总结出:求小数的近似数和整数一样也可以用四舍五入法,进一步让学生明白:求近似数时,的数保留整数,表示精确到个位,保留一位小数,表示精确到十分位,保留两位小数,表示精确到百分位。
小组讨论:比较3.9和4与精确值3.94比较谁更接近3.94。总结出:保留的位数越多,精确度越高,保留的位数越少,精确度越低。
再出示:绿毛龟蛋(2.04厘米)的宽径是多少厘米?(保留一位小数)并让学生思考:末尾的0可不可以省略,进一步让学生体会求一个小数的近似数时保留位数不同,精确度也不同,而且0在这里也起到了占位的作用。为了巩固这一知识,我设计了一个动手测量课桌的活动,比一比谁的结果更精确,说明理由。
第二个知识点:把一个数改写成用万或亿作单位的数
出示课本71页材料,引导学生阅读材料,说一说能获得哪些信息,并提出相关问题。
(1)把1754000改写成用万作单位的数是什么?
先让学生尝试改写,根据学生的情况,如果有正确的改写可以先让学生讲解他的方法,如果没有,老师可作说明:改写时在万位后面点上小数点,写上万字,去掉小数末尾的0就可以了。
(2)全国禽蛋类产量约是多少亿千克呢?(保留整数)把28795000000改写成用亿
作单位的数,让同学们独自探索方法,同桌交流,在此基础上再引导学生用四舍五入法求出287.95亿的近似数。
第三个环节:巩固练习
在这一环节安排了自主练习的4个小题。
1-3题是用多种形式巩固求小数近似数的基本练习题,让学生独立完成,订正时关注有困难的学生,切实巩固求小数近似数的方法。
4题用把大数改写成用万或亿作单位的数。学生独立完成,交流时重点让学生说一说是如何改写的。
第四个环节:课堂小结
为了使学生对本节课所学的内容有一个整体的感知,我让学生共同回忆本节课研究了哪些问题?通过这些问题的解决你有哪些收获?自己在学习上有哪些提高?让学生在交流的过程中进一步深化求一个小数的近似数的方法,感受知识之间的内在联系,同时增强对迁移推理的数学思想的认识。
布置作业:
针对学生的差异布置适当的作业,既能使学生掌握知识,又能使有余力的学生得到提高。
板书设计:
板书作为课堂教学语言的另一种表现形式,它具有启发性、艺术性、实用性,所以本节课我注重发挥其引导功能,做了一下设计:
篇4:求一个小数的近似数
教学目标
(一)使学生能根据要求用四舍五入法求一个小数的近似数.
(二)使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
教学重点和难点
求一个小数的近似数及把较大数改写成以“万”或“亿”作单位的小数是教学重点.
把较大数改写成以“万”或“亿’作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点.
学习新课
(一)复习准备
我们已经学过求一个整数的近似数,请大家回忆一下:23956省略万后面的尾数约是多少?省略千后面的尾数约是多少?
启发学生说出:省略万后面的尾数,看千位上的数是3,根据“四舍五入”法要舍去,得出23956≈2万;省略千位后面的尾数,要看百位上的数是9,应该入上去,23956≈24千.
师:求一个整数的近似数用的是“四舍五入”法.在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了.例如,量得大新身高是1.625米,平常不需要说得那么准确,只说大约1.6米或1.63米.
求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近似数.
篇5:求一个小数的近似数
例1 2.953保留两位小数,一位小数和整数,它的近似数各是多少?
“四舍五入”法
2.953≈2.95 省略百分位后面的尾数
2.953≈3.0 省略十分位后面的尾数
2.953≈3 省略个位后面的尾数
例2 1992年我国生产洗衣机7127000台,把这个数改写成用“万台”作单位的数.
7127000台=712.7万台
例3 1991年我国原油产量是139000000吨,把这个数改写成用“万吨”作单位的数.再保留一位小数.
139000000吨=1.39亿吨
≈1.4亿吨
求近似数与改写的区别
意义上
方法上
符号上
小数末尾0的处理上
★求小数的近似值评课稿
★《求小数的近似数》教学反思
★求小数的近似数教学反思
★k语录
★人教版求小数的近似数教学设计
★《求一个小数的近似数》教学反思
★四年级数学《求小数近似数》教学设计
★小学生多音字——K
★咬文嚼字K组
★小数加法和减法练习课 第3课时
《soj3102 O(n)求第k小的数(精选5篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印