以下是小编整理的北师大版小学六年级上册数学知识点,本文共5篇,仅供参考,希望能够帮助到大家。

篇1:北师大版小学六年级上册数学知识点
北师大版小学六年级上册数学知识点
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数:分子分数线(—)分母(不能为0) 分数的基本性质 分数是一个数
比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用
1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 乙=甲÷几分之几 几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。(3)找等量关系。(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
小学数学中零属于正整数吗
0是否为正整数
0不是正整数。
正整数,为大于0的整数,也是正数与整数的交集。正整数又可分为质数,1和合数。正整数可带正号(+),也可以不带。如:+1、+6、3、5,这些都是正整数。0既不是正整数,也不是负整数(0是整数)。
正整数简介
和整数一样,正整数也是一个可数的无限集合。在数论中,正整数,即1、2、3……;但在集合论和计算机科学中,自然数则通常是指非负整数,即正整数与0的集合,也可以说成是除了0以外的自然数就是正整数。正整数又可分为质数,1和合数。正整数可带正号(+),也可以不带。
整数分为三大类:
1、正整数,即大于0的整数,如,1,2,3…
2、0。
3、负整数,即小于0的整数,如,-1,-2,-3…
正整数与整数的数量
因为正整数是可以无限递推下去的,所以不管有多少个整数,一定能找一个正整数和他一一对应。比如我如果选一个整数是10000000000(10个0)那么它相当于第0000001个正整数。即使那个整数再往下数下去,也一定能够找到一个正整数与它对应。所以整数和正整数数量是一样的。
数学因数与倍数知识点
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
篇2:六年级上册北师大版数学比知识点
六年级上册北师大版数学比知识点
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)
∶ ∶ ∶ ∶
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的`数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
(2)用求比值的方法。注意: 最后结果要写成比的形式。
如: 15∶10 = 15÷10 = 3/2 = 3∶2
5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如: 已知两个量之比为,则设这两个量分别为。
路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
小学数学常用的数量关系
1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数
2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数
3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度
4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价
5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间
小学数学分数与除法知识点
理解分数与除法的关系:被除数÷除数=(除数不为0)。
分数的分母不能是0。因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。
运用分数与除法的关系解决实际问题。用分数来表示两数相除的商。
根据分数与除法的关系把假分数化成带分数的方法:
用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。
把带分数化成假分数的方法:
将整数与分母相乘的积加上原来的分子作分子,分母不变。
篇3:六年级数学北师大版知识点
6年级毕业考试数学重难知识点:几何面积
基本思路:
在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。
常用方法:
1.连辅助线方法
2.利用等底等高的两个三角形面积相等。
3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
4.利用特殊规律
①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)
②梯形对角线连线后,两腰部分面积相等。
③圆的面积占外接正方形面积的78.5%。
六年级数学上册知识点精选
1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
一般先看横的数字,再看竖的数字,注意中间是逗号
2.分数乘法的意义:一个数×分数
分数×一个数
3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
4.除以一个不等于0的数,等于乘这个数的倒数
5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数
6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变
7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
8.有关圆的公式:
C= 兀d = 2兀r S =兀r 2
d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2
圆环的面积S = 兀 R 2-兀 r 2
9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息
10.条形统计图:可以清楚的看出数据的多少
折线统计图:可以清楚的看出数据的增减变化趋势
扇形统计图:可以清楚的看出各部分同总数之间的关系
数学学习方法技巧
记笔记的基本方法
记入笔记的内容一定要经过筛选。每一名学生都有自己独特的笔记需求,相应的它也会有自己的筛选方法。抛开具体的科目、知识点,这里有一些参考标准。
1、内容本身不存在疑问。
我们经常发现部分同学在记录解题方法时抄写错误、或者照搬板书布局,最终他自己都无法清晰地读出正确的解题过程。这样的错误不仅会形成无用的笔记,还可能引导思维走入歧途。
2、重点记录自己不熟悉的内容。
为了照顾大多数、防止遗漏,老师在总结的时候通常会往多了讲,以至于同样的几何模型,五年级上学期提到一次、下学期再复习一次、到了六年级还会梳理两次。如果学生不加甄别、反复记录,费时费力不讨好,还容易滋生厌恶。——如果你实在很熟悉,留下一个记号。
3、珍惜自己的心得。
黑板上或讲义上的内容都是老师的知识,不论多么优秀的老师,他无法直接将自己的思路完整的拷贝进入学生的大脑。所以知识的传承需要学生的记录、复习、练习等等。而真正掌握知识点的最重要表现就是产生自己的认识与归纳。
4、记录经典题目。
不论小学、中学还是大学,很多时候学习终究脱离不了题目。如果在某一个角落、一本书当中真的有那么一道题、一段话让你受益匪浅,那么勇敢的记录下来。不要将笔记内容局限在老师所供、讲义所言——它应当帮助记录所有对你重要的内容。
除了这些内容上的筛选,熟练的同学还应该考虑下笔记当中布局与记号。比如,过去老师常使用“△”“.”或者“Ⅱ”来标记相对重要的内容,☆表示最重要的知识点,“→”标记自己的心得,“?”表示自己的疑问等等。这些符号,与红色、黑色墨迹搭配能够形成层次鲜明的内容体系,方便自己的不同的场合下复习想复习的内容。
篇4:北师大版六年级数学知识点
第六单元百分数(一)
一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
篇5:六年级数学知识点北师大版
小学六年级毕业考试数学重难知识点
不定方程
一次不定方程:
含有两个未知数的一个方程,叫做二元一次方程,由于它的解不,所以也叫做二元一次不定方程;
常规方法:
观察法、试验法、枚举法;
多元不定方程:
含有三个未知数的方程叫三元一次方程,它的解也不
多元不定方程解法:
根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可
涉及知识点:
列方程、数的整除、大小比较
解不定方程的步骤:
1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案
技巧总结:
A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数
B、消元技巧:消掉范围大的未知数。
六年级上册数学知识点归纳
一、分数乘法
(一)分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c
二、分数乘法的解决问题(详细见重难点分解)
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面
2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数× 。
3、写数量关系式技巧:
(1)“的”相当于 “×”(乘号)
“占”、“是”、“比”“相当于”相当于“=”(等号)
(2)分率前是“的”:
单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:
单位“1”的量×(1±分率)=分率的对应量
小学六年级数学毕业考试复习计划
一、知识梳理
教材分析:
总复习的安排要注意突出知识间的内在联系,便于在复习中进行系统整理和比较,以加深学生认识。把计算、概念、应用题和几何知识分别集中起来复习,便于学生在对比中加深对分数乘除的意义、法则和应用题的理解和掌握。
复习目标:
通过总复习,可以将分数四则运算加以系统整理,使学生对所学的概念、计算方法和其他知识加深理解和掌握,进一步提高四则混合运算和解答用题的能力,全面完成本学期的教学任务。
复习步骤:
第一部分复习分数四则混合运算及简算;
计算题要求怎样简便就怎样算,要求学生有根据题目的具体情况,合理的选择简便算法的能力。
第二部分复习分数、百分数应用题;
掌握关键式:单位“1”的量×分率=分率对应的数量。会解答求分率、单位“1”的量、对应的数量这三种类型的题目。复习时,可以先分开练习这三种类型题目的题组,如:求分率的题组、单位“1”的量是已知(用乘法)的题组、单位“1”的量是未知(用方程或除法)的题组。之后再把几种题型混合,仍采用题组的练习方式,做好对比。如:苹果有120千克,------------------------,梨有多少千克?
(1)梨比苹果多1/4,
(2)苹果比梨少1/4,
分数、百分数应用题多数没有注明用算术解法还是方程解答,有的是要求学生根据题目的具体情况,合理的选择比较简便的算法,因此要注意培养学生灵活运用知识的能力。
第三部分复习圆和轴对称图形。
复习圆和轴对称图形的特征,让学生能够熟练应用圆的有关计算公式解决实际的问题。
复习重点、难点:
重点:分数四则运算;圆的周长和面积。
难点:分数和百分数应用题。
文档为doc格式