欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

七年级下册数学平面直角坐标系知识点

时间:2023-02-14 08:29:59 其他范文 收藏本文 下载本文

下面是小编给各位读者分享的七年级下册数学平面直角坐标系知识点,欢迎大家分享。

七年级下册数学平面直角坐标系知识点

篇1:七年级下册数学平面直角坐标系知识点

七年级下册数学平面直角坐标系知识点

平面直角坐标系误区提醒

(1)求点的坐标时,容易将横、纵坐标弄反,还容易忽略坐标符号;(2)思考问题不周,容易出现漏解。(如点P到x轴的距离为1,这里点P的纵坐标应当是,而不是1)。

平面直角坐标系常见考法

(1)由点的位置确定点的坐标,由点的坐标确定点的位置;(2)求某些特殊点的坐标。

平面直角坐标基本概念

1、有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做有序数对。

2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向

竖直的数轴称为y轴或纵轴,取向上方向为正方向

两坐标轴的交战为平面直角坐标系的原点

3、象限:坐标轴上的点不属于任何象限

第一象限:x>0,y>0

第二象限:x0

第三象限:x0,y

纵坐标轴上的点:(0,y)

4、距离问题:点(x,y)距x轴的距离为y的绝对值

距y轴的距离为x的绝对值

坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为x1-x2的绝对值

点A(0,y1)点B(0,y2),则AB距离为y1-y2的绝对值

5、绝对值相等的代数问题:a与b的绝对值相等,可推出

1)a=b或者

2)a=-b

6、角平分线问题

若点(x,y)在一、三象限角平分线上,则x=y

若点(x,y)在二、四象限角平分线上,则x=-y

7、平移:

在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y)

向左平移a个单位长度,可以得到对应点(x-a,y)

向上平移b个单位长度,可以得到对应点(x,y+b)

向下平移b个单位长度,可以得到对应点(x,y-b)

初中数学常见知识点

(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

初一数学解题方法与技巧

1数学各类题型

1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。

2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。

3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。

2选择题的答题技巧

掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。

篇2:七年级下册数学《平面直角坐标系》说课稿

一、说教材

首先谈谈我对教材的理解,《平面直角坐标系》是人教版初中数学七年级下册第七章7.1.2的内容,本节课的内容是平面直角坐标系及相关概念。有序数对在上一节已经进行了讲解,并且之前也学习了数轴的概念,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容为后面研究函数的图像提供了有力的基础。

二、说学情

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

掌握什么是平面直角坐标系,会通过点的坐标找到位置以及通过位置写出点的坐标。

(二)过程与方法

在探索平面直角坐标系以及点的坐标与位置关系时,提升逻辑推理能力以及几何直观。

(三)情感态度价值观

在自主探索中感受到成功的喜悦,激发学习数学的兴趣。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平面直角坐标系及相关概念。这种方法学生首次见到,难以理解,所以本节课的教学难点是:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系。

五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)新课导入

首先是导入环节,那么我先提问:上节课学习的内容是什么?能否举一个例子。

根据学生回答追问:有序数对所表示的位置如何直观表示?从而引出本节课的课题《平面直角坐标系》

利用有序数对而不用数轴进行导入,是因为有序数对是上节课学习的内容,而数轴是上学期学习的内容,距离学生相对比较远。这样利用学生刚刚学过的知识进行导入,更好的从学生的角度出发,学生更容易接受。

(二)新知探索

接下来是教学中最重要的.新知探索环节,我主要采用讲解法、小组合作、启发法等。

学生对于该问题能够根据之前的知识经验考虑使用数轴,我便和学生一起回顾数轴的三要素。接下来进一步引导:对于有序数对有两个数应该如何表示,进而转到用两个数轴。

篇3:平面直角坐标系数学七年级下册教案

平面直角坐标系人教版数学七年级下册教案

学习目标:

1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。会画平面直角坐标系,并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置。

2、知道平面直角坐标系内有几个象限,清楚各象限的点的坐标的符号特点。

3、给出坐标能判断所在象限。

学习重点:

1、在给定的平面直角坐标系内,会根据坐标确定点,根据点的位置写出点的坐标。

2、知道象限内点的坐标符号的特点,根据点的坐标判断其所在象限。

学习难点:

坐标轴上点的坐标的特点。

学习方法:

自主学习合作探究

学习过程:

一自主学习:

1、画一条数轴,在数轴上标出3,―3,0,2

数轴上的点可以用个实数来表示,这个实数叫做___________。

2、思考:直线上的一个点可以用数轴上一个实数来表示点的位置,能不能找到一种办法来确定平面内的点的'位置呢?(例如图7.1―3中A、B、C、D各点)。

3、自学课本第66―67页的内容,然后填空。

(1)我们可以在平面内画两条互相_____、_____重合的数轴,组成________________,水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的________。

(2)如何确定点的坐标。(阅读课本第66页最后一段)如图7.1―4写出点B、C、D的坐标_______________________。

思考:原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?

《实数、平面直角坐标系》测试题

1、如果点M到x轴和y轴的距离相等,则点M横、纵坐标的关系是。

A、相等 B、互为相反数 C、互为倒数 D、相等或互为相反数

2、将某图形的横坐标都减去2,纵坐标不变,则该图形()。

A、向右平移2个单位 B、向左平移2个单位

C、向上平移2个单位 D、向下平移2个单位

《实数、平面直角坐标系》、填空题

1、生活中只要你留心,就会发现有许多用数字“代替”目标位置的现象。

(1)一张电影票上写有“7排9号”,进电影院先找,后找,这是一对有序数对;

(2)一张硬座的火车票“10车厢18号”,上火车时你得先找,再在车厢里找号座位。

2、教室内座位,列数在前,排数在后。如果李小刚的座位是(3,4),则(3,4)意义是。

3、某一本书在印刷上有错别字,在第20页第4行从左数第11个字上,如果用数序表示可记为(20,4,11),你是电脑打字员你认为(100,20,4)的意义是。

4、在电影票上将“10排8号”前记为(10,8),那么(25,11)表示的意义是。

5、小亮家住在3号路,门牌是18号,可记为(3,18),那么小琪家在5号路门牌号是49号,可记为。

篇4:七年级下册平面直角坐标系说课稿

七年级下册平面直角坐标系说课稿

《平面直角坐标系》是人教实验版七年级下学期第六章第一节第二课时。本节课的教学设计立足于问题情境的创设,把原来枯燥的平面直角系赋予一定的现实意义,让学生在实际问题中学习知识,力求避免空洞的教学。

情景(1):新课程强调:要让学生接触到来自身边的数学,体会数学所具有的巨大应用价值,我设计了活动“你知道我在哪里吗?”。

让学生站成等距离的一排,互相确定自己的位置。从学生的答案中,归纳出满足数轴的三要素:一个对象(基准)、一个方向、一个距离。从而进入第一个知识点教学——用数轴来刻画直线上位置关系。

这样设计的目的是通过学生自己位置的确定,唤起学生已有的生活经验,能够较好的体现数学的现实性,充分吸引学生的注意力,激发学生学习兴趣。

情景(2):问题是思想方法、知识积累和发展的逻辑力量,是生长新思想、新方法、新知识的种子。而初中生的自制力仍比较差,易受外界干扰,因而学习往往带有盲目性,此时,如果给他们一个正确的学习方向,那么,他们很快就会投入到学习中去。所以在情景(1)后,我提出了探究平面直角坐标系的三个问题:

①如果小兵同学在小兰同学的右侧第二个位置,你能说出董雪同学在数轴上对应的点的坐标吗?

②如果小兵在一个长方形的操场上,你用什么方法可以确定小兵的'位置?

③如果小兵在一个广阔无垠的草地上,你用什么方法可以确定小兵的位置?

《标准》强调:知识的衔接要体现螺旋上升的原则。所以这三个问题的安排有一定的层次性,即由线到面,由有限到无限,由易到难,即尊重学生的人格,关注个体差异,满足不同学生的学习需要,激发学生的学习积极性,使每个学生都能得到充分发展,又适当利用类比的方法,使学生对点与坐标的对应关系顺利地实现由一维到二维的过渡,引出平面直角坐标系。

经过这样一串问题的设计,在教学过程中加深了学生对建立平面直角坐标系的必要性的理解,突破了本章的教学难点,使得学生认识平面直角坐标系水到渠成。

篇5:初一数学平面直角坐标系知识点

初一数学平面直角坐标系知识点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标 0,纵坐标 0;②x轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点P(2,3) 到x轴的距离是 ; 到y轴的距离是 ; 点P(2,3) 关于x轴对称的点坐标为( , );点P(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与x轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直 。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ‖y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ‖x轴,PQ⊥y轴。

12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b) 在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

初中数学重点知识点归纳

有理数加法法则

1、同号两数相加,取相同的符号,并把绝对值相加;

2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

3、一个数与0相加,仍得这个数。

有理数加法的运算律

1、加法的交换律:a+b=b+a;

2、加法的结合律:(a+b)+c=a+(b+c)

有理数减法法则

减去一个数,等于加上这个数的相反数;即a-b=a+(-b)

有理数乘法法则

1、两数相乘,同号为正,异号为负,并把绝对值相乘;

2、任何数同零相乘都得零;

3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

数学各类题型解答方法

填空题答题技巧

要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。

对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

解答题答题技巧

(1)仔细审题。注意题目中的关键词,准确理解考题要求。

(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

(3)给出结论。注意分类讨论的问题,最后要归纳结论。

(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

篇6:平面直角坐标系

1、教材分析:

⑴知识结构:

日常生活及其它学科需要一种确定平面内点的位置的方法.在数学上,可以类比数轴,引出的概念.完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来.

⑵重点、难点分析:

本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标.直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识.通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想.

本节的难点是中的点与有序实数对间的一一对应.限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成.教材上只给出了比较简单的描述.教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然.

2、教学建议:

数学是世界的一部分,同时又隐藏在世界中.这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用.因此,数学概念的产生有其必然性与合理性.

(1)概念的引入

组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的.可以让学生进行讨论,他们的生活中还有什么类似的例子.如电影院中的座位,到图书馆找书,学生的课程表等.从丰富的背景材料中,体会数学的广泛应用性.

(2)讲授概念:

现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴.数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的.这样利用数轴可以研究一些数量关系的问题.确定平面内点的位置的方法也可以与此类似,类比出的概念,并结合图形讲述的有关概念.

(3)练习,深入地理解概念:

平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间.如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等.然后,就可以多练习一些简单题,如给出坐标,在中标点,或反之,给出中点的位置,找出其坐标.通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系.

总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解.在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构.在相互讨论评价的过程中,培养学生的责任心.

这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出的概念,并通过练习达到熟练的程度.第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目.如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等.

教学目标:

1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.

2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号.

3、掌握确定已知点关于坐标轴(或原点)的对称点的方法.培养学生观察,归纳总结的能力.

4、培养学生发现问题,主动探索的能力.在与同伴的合作交流中,培养学生的责任心.

5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.

教学重点:

1、掌握象限或坐标轴上的点的坐标的特点.

2、会求已知点关于坐标轴或原点的对称点的坐标.

教学难点:理解平面内的点与有序实数对之间的一一对应关系.

教学用具:直尺、计算机

教学方法:合作学习,讨论,探究

教学过程:

1、提出问题,主动探索

上节课我们学习了的概念,并介绍了象限与坐标轴.初步体会到平面内的点与有序实数对是一一对应的.今天我们需要开始新的探索,发现数学知识.

下面看例1

例1、指出下列各点所在象限或坐标轴;

你能发现什么规律吗?

解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上.

做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?

通过学生的分组讨论后,可总结如下:

象限与坐标轴的定义都是以图形的形式直观给出的.通过本例题,又总结出了相应的代数规律.渗透了数与形的结合.并培养了学生由特殊到一般的抽象思维能力.

练习:习题13.1的第三题

例2、在直角坐标系中,标出下列各对点的位置,

并发现其中的规律.

(1)(3,5),(2,5)

(2)(1,2),(1,-3)

(3)(4,4),(6,6)

(4)

通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数.

另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数.

建议:如果学生在观察时有困难,可以适当增加题量,丰富观察的对象,逐步得出最后的结论.

这些规律也是有其必然的,如两点的纵坐标相同,则这两点在x轴的同侧,且到x轴的距离相等,由平面几何的知识,可推出这两点的连线平行于x轴.其它的性质也有其存在的道理.通过对规律的总结,渗透数形结合思想,并让学生体会数学知识的形成过程.而点的坐标不同,它在平面上的位置也不相同.即平面上的点与有序实数对是一一对应的.从图中可以看出.

例3、在直角坐标系中,描出下列各点

⑴(2,1), (-2,1)

⑵(-3,4), (-3,-4)

⑶(5,-4), (-5,-4)

你能发现上述各对点的位置有何特点吗?它们的坐标有何异同?你能总结出一般的规律吗?并说明其中的道理吗?

解:(从图中观察出的点的位置)特点 两点坐标间关系

(1)两点关于y轴对称 横坐标为相反数,纵坐标相同

(2)两点关于x轴对称 横坐标相同,纵坐标为相反数

(3)两点关于原点对称 横坐标互为相反数,纵坐标互为相反数

这道题能引发我们得出什么样的结论呢?(答案不固定,本教案只给出参考答案).我们可以这样说:对于直角坐标平面上的任意两点,如果它们的横坐标相反,纵坐标相同,则它们关于y轴对称;如果它们横坐标相同,纵坐标相反,则它们关于x轴对称;如果题目的横、纵坐标都相反,则它们关于原点对称,反之亦然.

以上的规律可以解决很多问题,比如,已知点(-10,3).求这个点关于x轴、y轴,及原点的对称点的坐标.

答:(-10,-3);(10,3);(10,-3).

你想过这其中的道理吗?

如两点关于y轴对称.根据轴对称的定义,这两点的连线垂直于y轴,且到y轴的距离相等.所以这两点的连线就平行于x轴,它们的纵坐标相同,对称点在y轴的两点.到y轴的距离相等.即这两点的横坐标相反.

类似地,可以组织学生进行其它两种情况的讨论.这个规律只要求学生能理解,并不要求严格地证明.通过学生的主动探索,复习了对称的概念,体验了数形的结合.亲身经历了数学知识的形成过程.也增强了学生的自信心,激发了他们互动探索的精神.

小结:本节我们讨论了三道例题,这三道题都是大家共同讨论,通过观察归纳总结探索出的规律,这也是数学知识产生的一种过程.而且每道题的解决都离不开数形结合的思想.而且也能逐步体会出平面内的点与有序实数对之间的一一对应关系.这一部分知识为今后的学习打下了基础,希望大家能真正地理解并能熟练应用.

作业 :习题13.1B组的1-3.

七年级数学下册《平面直角坐标系》教学反思

平面直角坐标系教案

平面直角坐标系习题

初中数学《平面直角坐标系》教案设计

初中数学《平面直角坐标系》的教案

平面直角坐标系的教学反思

平面直角坐标系的说课稿件

七年级下册数学知识点

人教版数学七年级下册第六章知识点

七年级下册数学苏教版第八章知识点

《七年级下册数学平面直角坐标系知识点(精选6篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档