以下是小编为大家准备了高中的概念数学教案,本文共12篇,欢迎参阅。

篇1:高中的概念数学教案
高中集合的概念数学教案
目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
重点:集合的基本概念
教学过程:
1.引入
(1)章头导言
(2)集合论与集合论的创始者-----康托尔(有关介绍可引用附录中的内容)
2.讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于: 如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意“∈”的方向,不能把a∈A颠倒过来写.
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分 , , ,0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记 作N
(2)正整数集:非负整数集内排除0的集.记作N* 或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
注:(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*
课堂练习:教材第5页练习A、B
小结:本节课 我们了解集合论的发展,学习了集合的概念及有关性质
课后作业:第十页习题1-1B第3题
附录:
集合论的诞生
集合论是德国著名数学家康托 尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.
康托尔的不朽功绩
前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”.因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来.
数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱.因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并 尽可能回避这一概念.但试图把握无限的康托尔却勇敢地 踏上了这条充满陷阱的不归路.他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.下面就让我们来看一下盒子打开后他释放出的是什么.
“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合那一章后,同学们应该对这句话不会感到陌生.但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永 远处在构造中,永远完成不了,是潜在的,而不是实在.这种关于无穷的观念在数学上被称为潜无限.十八世纪数学王子高斯就持这种观点.用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的.所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的.然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷.他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论.这一理论使人们真正进入了一个难以捉摸的奇特的无限世界.
最能显示出他独创性的是他对无穷集元素个数问题的研究.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应??例如同学 们很容易发现自然数集与正偶数集之间存在着一一对应关系??也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理 数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了代数数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎 意料的是,他在1873年证明了实数集的势大于自然数集.这不但意味着无理数远远多 于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成.”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已.这是何等令人震惊的结果!然而,事情并未终结.魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物.从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次.他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次.他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”.他用 希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系
它可以无限延长下去.就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景.可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了.毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣.他们大叫大喊地反对他的理论.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的.当回头看这段历史时,或许我们可以把对他的.反对看作是对他真正具有独创性成果的一种褒扬吧.
公理化集合论的建立
集合论提出伊始,曾遭到许 多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在19第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术 化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界.这就是19罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中.这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.19,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现.这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论.公理化集合论是对朴素集合论的严格处理.它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.
它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.
超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一.
这个成就可能是这个时代所能夸耀的最伟大的工作.
康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一.
注:整系数一元n次方程的根,叫代数数.如一切有理数是代数数.大量无理数也是代数数.如根号2.因为它是方程x2-2=0的根.实数中不是代数数的数称为超越数.相比之下,超越数很难得到.第一个超越数是刘维尔于1844年给出的.关于π是超越数的证明在康托尔的研究后十年才问世.
篇2:数学教案-三角形的一些概念
教学目标 :
(1)使学生理解三角形、三角形的边、顶点、内角的概念;
(2)正确理解三角形的角平分线、中线、高这三个概念的含义、联系及区别;
(3)能正确地画出一个三角形的角平分线、中线和高;
(4)能用符号规范地表示一个三角形及六个元素;
(5)通过对三角形有关概念的教学,提高学生对概念的辨析能力和画图能力;
(6)让学生结合具体形象叙述定义,训练他们的语言表达能力,激发学生学习几何的兴趣。.
教学重点:明确组成三角形的六个元素,正确理解三角形的“高”、“角平分线”和“中线”这三个概念的含义、联系和区别。
教学难点 :三角形高的画法
教学用具:三角板、投影、微机
教学方法:启发探究法
教学过程 :
1、温故知新,揭示课题
引言之后,先让学生:
(1)试说出三角形以及三角形的边、顶点、角的概念
(2)如图1:试画出 的平分线、BC边上的中线、BC边上的高
然后,在此基础上,揭示课题,提出思考题:三角形是由三条线段组成的,这里要强调“首尾顺次相接”为什么要加上这个条件?具备什么条件的线段才是三角形的角平分线、三角形的中线、三角形的高。
2、运用反例,揭示内涵
由上面分析,让学生判断辨别下列图2中哪一个是正确的?(对第三个图)直角三角形只有一条高对吗?
3、讨论归纳,深化定义
引导启发学生,归纳讨论探索得到的结果:
定义1 三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。
强调:三角形的.角平分线是一条线段,而角的平分线是一条射线。
定义2 三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段。
强调:三角形中线是一条线段。
定义3 三角形的高:从三角形的一个顶点向它对边画垂线,顶点和垂足间的线段。
强调:三角形的高是线段,而垂线是直线。
这一环节运用电教手段,利用<几何画板>动画的功能,增加直观性有利于学生理解掌握定义
4、符号表示,加深理解
通过符号的表述,使学生对三角形的角平分线、中线、高的理解得到加深和强化,在记忆上也趋于简化。
5、初步运用,反复辨析
练习的设计遵循由由浅入深、循序渐进的原则,三个题目,三个层次:
题1 三角形的一条高是( )
A.直线 B.射线 C.垂线 .D.垂线段
题2 画钝角三角形 的高AE。
题3
先让学生思考练习,然后师生一起分析纠正,最后教师点拨小结。这环节运用电教手段,以增大教学容量和直观性,提高效率。
6、归纳总结,强化思想
这节课着重讲了三角形的角平分线、中线和高,在集会理解上述定义时,必须注意到两点:一是三条都是线段;二是钝角三角形与直角三角形的高的画法。
揭示了文字语言、图形语言、符号语言在几何中的作用,要求在学习时熟练三种语言的相互转化。
7、布置作业 ,题目是:
(1)书面作业 P30#2,3 P41#5(做在书上)
(2)交本作业 P41#4
(3)思考题1:
思考题2:
探究活动
1、以3根火柴为边,可以组成一个三角形,用6根火柴为边最多可以组成几个三角形?9根火柴最多能组成几个三角形?
2、从三角形一个顶角引出的三角形角平分线、一条中线能否重合?此时这个三角形的形状如何?
答案:1.4、7;
2.能.三角形为等腰三角形.
篇3:高中数学教案
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
四、教学目标
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣.
五、教学重点与难点:
教学重点
1.对圆锥曲线定义的理解
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
六、教学过程设计
【设计思路】
(一)开门见山,提出问题
一上课,我就直截了当地给出——
例题1:(1) 已知a(-2,0), b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是( )。
(a)椭圆 (b)双曲线 (c)线段 (d)不存在
(2)已知动点 m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是( )。
(a)椭圆 (b)双曲线 (c)抛物线 (d)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。
篇4:高中数学教案
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
(4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。
组合与组合数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。
解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).
三、教法设计
1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系.
2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.
为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为:
排列树图
由排列树图得到,从a,b,c,d 取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.
组合树图
由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).
从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图.
学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式.
3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题.
对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播.对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择方案,总结解题规律.对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高.
4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是
这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的.
对定理2,可启发学生从下面问题的讨论得出.从n个不同元素 , ,…, 里每次取出m个不同的元素( ),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有 的; (3)在这些组合里,有多少个是含有 的;(4)从上面的结果,可以得出一个怎样的公式.在此基础上引出定理2.
对于 ,和 一样,是一种规定.而学生常常误以为是推算出来的,因此,教学时要讲清楚.
教学设计示例
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .
根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练.
[字幕]例1 列举从4个元素 中任取2个元素的所有组合.
例2 计算:(1) ;(2) .
(学生活动)板演、示范.
(教师活动)讲评并指出用两种方法计算例2的第2小题.
[字幕]例3 已知 ,求 的所有值.
(学生活动)思考分析.
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择.
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.
【反馈练习学会应用】
(教师活动)给出练习,学生解答,教师点评.
[课堂练习]课本P99练习第2,5,6题.
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答.
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.
【点评矫正 交流提高】
(教师活动)依照学生的板演,给予指正并总结.
补充练习答案:
1.解:原式:
2.解:由题设得
整理化简得 ,
解之,得 或 (因 ,舍去),
所以 ,所求
[字幕]小结:
1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证.
2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件.
(学生活动)交流讨论,总结记录.
设计意图:由“实践——认识——一实践”的认识论,教学时抓住“学习—一练习——反馈———小结”这些环节,使教学目标得以强化和落实.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
作业参考答案
2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.
3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.
探究活动
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?
解 设四人分别为甲、乙、丙、丁,可从多种角度来解.
解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:
甲拿乙制作的贺卡时,则贺卡有3种分配方法.
甲拿丙制作的贺卡时,则贺卡有3种分配方法.
甲拿丁制作的贺卡时,则贺卡有3种分配方法.
由加法原理得,贺卡分配方法有3+3+3=9种.
解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.
正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).
逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).
说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法.
(2)设集合 ,如果S中元素的一个排列 满足
篇5:高中数学教案
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练.
[字幕]例1 列举从4个元素 中任取2个元素的所有组合.
例2 计算:(1) ;(2) .
(学生活动)板演、示范.
(教师活动)讲评并指出用两种方法计算例2的第2小题.
[字幕]例3 已知 ,求 的所有值.
(学生活动)思考分析.
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择.
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.
【反馈练习学会应用】
(教师活动)给出练习,学生解答,教师点评.
[课堂练习]课本P99练习第2,5,6题.
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答.
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
篇6:高中数学教案
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.
要特别注意,不加特殊说明,本章不研究重复排列问题.
③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 , ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
高中数学教案模板范文
篇7:高中数学教案
一、教学内容分析
本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.
二、教学目标设计
1.理解组合的意义,掌握组合数的计算公式;
2.能正确认识组合与排列的联系与区别
3.通过练习与训练体验并初步掌握组合数的计算公式
三、教学重点及难点
组合概念的理解和组合数公式;组合与排列的区别.
四、教学用具准备
多媒体设备
五、教学流程设计
六、教学过程设计
一、复习引入
1.复习
我们在前几节中学习了排列、排列数以及排列数公式
定 义
特 点
相同排列
公 式
排 列
以上由学生口答.
2.引入
那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?
这是一个排列问题
若改为:构成的线段有几条?则为 ,
其实亦可用另一种方法解决,这就是组合.
二、学习新课
探究性质
1. 组合定义: P16
一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.
【说明】:⑴不同元素; ⑵“只取不排”——无序性;
⑶相同组合:元素相同.
2.组合数定义:
从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.
如:引入中的例子可表示为
= = 这是为什么呢?
因为 构成有向线段的问题可分成2步来完成:
第一步,先从7个点中选2个点出来,共有 种选法;
第二步,将选出的2个点做一个排列,有 种次序;
根据乘法原理,共有 · = 所以
·判断何为排列、组合问题: 利用书本P16~P17例题请学生判断
· 这个公式叫组合数公式
3.组合数公式:
如 = =
用计算器求 、 、 、
可发现 = =
由此猜想:
用实际例子说明:比如要从50人中挑选4个出来参加迎春长跑的选择方案有 ,就相当于挑46个人不参加长跑的选择方案 一样.“取法”与“剩法”是“一 一对应”的.
证明:∵
又 ,∴
当m=n时,
此性质作用:当 时,计算 可变为计算 ,能够使运算简化.
4. 组合数性质:
1、
2、=
可解释为:从 这n 1个不同元素中取出m个元素的组合数是 ,这些组合可以分为两类:一类含有元素 ,一类不含有 .含有 的组合是从 这n个元素中取出m (1个元素与 组成的,共有 个;不含有 的组合是从 这n个元素中取出m个元素组成的,共有 个.根据加法原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.
证明:
得证.
【说明】1( 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.
2( 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.
2.例题分析
例1、(1) ,求x
(2)
(3)
略解:(1)
(2)
(3)
例2、应用题:
有15本不同的书,其中6本是数学书,问:
分给甲4本,且都不是数学书;
略解:(1)
3.问题拓展
例3.题设同例2:
(2)平均分给3人;
(3)若平均分为3份;
(4)甲分2本,乙分7本,丙分6本;
(5)1人2本,1人7本,1人6本.
略解:(2) (3)
(4) (5)
三、课堂小结
指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.
能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.
学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.
排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.
四、作业布置
(略)
七、教学设计说明
在学习过程中,从排列问题引入,随即自然地过渡到组合问题.由此让学生对于排列与组合两者的异同有深刻理解,并能自如地进行判断.
本节课在教学技术上通过多媒体课件大大缩短了教师板书抄题的时间,让学生能够更加连贯的思考以及探索问题.
在例题的设计上从最基本的组合数公式的利用,到简单的应用题,再到组合中较难的分组分配以及平均不平均分配问题的训练,由浅入深,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.
在课堂教学中教师遵循“以学生为主体”的思想,鼓励学生善于观察和发现;鼓励学生积极思考和探究;鼓励学生大胆猜想,努力营造一个民主和谐、平等交流的课堂氛围,采取对话式教学,调动学生学习的积极性,激发学生学习的热情,使学生开阔思维空间,让学生积极参与教学活动,提高学生的数学思维能力.
高中数学教案大全
篇8:高中数学教案
教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是,,,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
系统抽样
将总体均分成几个部分,按事先确定的规则在各部分抽取
在第一部分抽样时采用简单随机抽样
总体中的个体数较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统
总体由差异明显的几部分组成
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分.
(2)确定比例:计算各层的个体数与总体的个体数的比.
(3)确定各层应抽取的样本容量.
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.
四、数学运用
1.例题.
例1(1)分层抽样中,在每一层进行抽样可用_________________.
(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;
②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;
③某班元旦聚会,要产生两名“幸运者”.
对这三件事,合适的抽样方法为
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为1人,其中持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
2435
4567
3926
1072
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?
解:抽取人数与总的比是60∶12000=1∶200,
则各层抽取的人数依次是12.175,22.835,19.63,5.36,
取近似值得各层人数分别是12,23,20,5.
然后在各层用简单随机抽样方法抽取.
答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人
数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便.
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.
五、要点归纳与方法小结
本节课学习了以下内容:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系.
篇9:高中数学教案精选
指数与指数幂的运算教案
整体设计
教学分析
我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
三维目标
1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.
2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.
3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.
4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.
重点难点
教学重点
(1)分数指数幂和根式概念的理解.
(2)掌握并运用分数指数幂的运算性质.
(3)运用有理指数幂的性质进行化简、求值.
教学难点
(1)分数指数幂及根式概念的理解.
(2)有理指数幂性质的灵活应用.
课时安排
3课时
教学过程
第1课时
作者:路致芳
导入新课
思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.
思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.
推进新课
新知探究
提出问题
(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?
(3)根据上面的结论我们能得到一般性的结论吗?
(4)可否用一个式子表达呢?
活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.
讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.
(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.
(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.
(4)用一个式子表达是,若xn=a,则x叫a的n次方根.
教师板书n次方根的意义:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集.
可以看出数的平方根、立方根的概念是n次方根的概念的特例.
提出问题
(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.
(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质 的数,有什么特点?
(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?
(4)任何一个数a的偶次方根是否存在呢?
活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的 特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.
(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.
(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.
(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.
类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:
①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).
②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.
③负数没有偶次方根;0的任何次方根都是零.
上面的文字语言可用下面的式子表示:
a为正数:n为奇数, a的n次方根有一个为na,n为偶数, a的n次方根有两个为±na.
a为负数:n为奇数, a的n次方根只有一个为na,n为偶数, a的n次方根不存在.
零的n次方根为零,记为n0=0.
可以看出数的平方根、立方根的性质是n次方根的性质的特例.
思考
根据n次方根的性质能否举例说明上述几种情况?
活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.
解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.
根式的概念:
式子na叫做根式,其中a叫做被开方数,n叫做根指数.
如3-27中,3叫根指数,-27叫被开方数.
思考
nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?
活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.
解答:根据n次方根的意义,可得:(na)n=a.
通过探究得到:n为奇数,nan=a.
n为偶数,nan=|a|=a,-a,a≥0,a<0.
因此我们得到n次方根的运算性质:
①(na)n=a.先开方,再乘方(同次),结果为被开方数.
②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.
n为偶数,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值.
应用示例
思路1
例 求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).
活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b).
点评:不注意n的奇偶性对式子nan的值的影响 ,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.
变式训练
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.
思路2
例1 下列各式中正确的是( )
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.
解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错.
(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.
(3)a0=1是有条件的,即a≠0,故C项也错.
(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.
答案:D
点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.
例2 3+22+3-22=__________.
活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.
解析:因为3+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式.
思考
上面的例2还有别的解法吗?
活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.
另解:利用整体思想,x=3+22+3-22,
两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.
变式训练
若a2-2a+1=a-1,求a的取值范围.
解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.
知能训练
(教师用多媒体显示在屏幕上)
1.以下说法正确的是( )
A.正数的n次方根是一个正数
B.负数的n次方根是一个负数
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整数集)
答案:C
2.化简下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.
3.计算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明.
活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.
通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下.再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.
解:(1)(na)n=a(n>1,n∈N).
如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立.
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,当n为奇数,当n为偶数.
当n为奇数时,a∈R,nan=a恒成立.
例如:525=2,5(-2)5=-2.
当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的.
点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解.
课堂小结
学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.
1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集.用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数.
(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).
(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.
(3)负数没有偶次方根.0的任何次方根都是零.
2.掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a<0.
作业
课本习题2.1A组 1.
补充作业:
1.化简下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
2.若5
解析:因为5
答案:2a-13
3.5+26+5-26=__________.
解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,
不难看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
设计感想
学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.
第2课时
作者:郝云静
导入新课
思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.
思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.
推进新课
新知探究
提出问题
(1)整数指数幂的运算性质是什么?
(2)观察以下式子,并总结出规律:a>0 ,
① ;
②a8=(a4)2=a4= ,;
③4a12=4(a3)4=a3= ;
④2a10=2(a5)2=a5= .
(3)利用(2)的规律,你能表示下列式子吗?
, , , (x>0,m,n∈正整数集,且n>1).
(4)你能用方根的意义来解释(3)的式子吗?
(5)你能推广到一般的情形吗?
活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.
讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①5a10= ,②a8= ,③4a12= ,④2a10= 结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变.
根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).
(3)利用(2)的规律,453= ,375= ,5a7= ,nxm= .
(4)53的四次方根是 ,75的三次方根是 ,a7的五次方根是 ,xm的n次方根是 .
结果表明方根的结果和分数指数幂是相通的.
(5)如果a>0,那么am的n次方根可表示为nam= ,即 =nam(a>0,m,n∈正整数集,n>1).
综上所述,我们得到正数的正分数指数幂的意义,教师板书:
规定:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1).
提出问题
(1)负整数指数幂的意义是怎样规定的?
(2)你能得出负分数指数幂的意义吗?
(3)你认为应怎样规定零的分数指数幂的意义?
(4)综合上述,如何规定分数指数幂的意义?
(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?
(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?
活动:学生回想初中学习的情形,结合 自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价.
讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+.
(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.
规定:正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈=N+,n>1).
(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.
(4)教师板书分数指数幂的意义.分数指数幂的意义就是:
正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.
(5)若没有a>0这个条件会怎样呢?
如 =3-1=-1, =6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2= ,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.
(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.
有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:
①ar?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q).
我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.
应用示例
例1 求值:(1) ;(2) ;(3)12-5;(4) .
活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.
解:(1) =22=4;
(2) =5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4) =23-3=278.
点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如 =382=364=4.
例2 用分数指数幂的形式表示下列各式.
a3?a;a2?3a2;a3a(a>0).
活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结.
解:a3?a=a3? = ;
a2?3a2=a2? = ;
a3a= .
点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数 幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.
例3 计算下列各式(式中字母都是正数).
(1) ;
(2) .
活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
(2) =m2n-3=m2n3.
点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.
本例主要是指数幂的运算法则的综合考查和应用.
变式训练
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4 计算下列各式:
(1)(325-125)÷425;
(2)a2a?3a2(a>0).
活动:先由学生观察以上两个式子的特 征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能训练
课本本节练习1,2,3
【补充练习】
教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.
1.(1)下列运算中,正确的是( )
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是( )
A.①② B.①③ C.①②③④ D.①③④
(3)(34a6)2?(43a6)2等于( )
A.a B.a2 C.a3 D.a4
(4)把根式-25(a-b)-2改写成分数指数幂的形式为( )
A. B.
C. D.
(5)化简 的结果是( )
A.6a B.-a C.-9a D.9a
2.计算:(1) --17-2+ -3-1+(2-1)0=__________.
(2)设5x=4,5y=2,则52x-y=__________.
3.已知x+y=12,xy=9且x 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3.解: . 因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x 所以原式= =12-6-63=-33. 拓展提升 1.化简: . 活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x-1= -13= ; x+1= +13= ; . 构建解题思路教师适时启发提示. 解: = = = = . 点拨:解这类题目,要注意运用以下公式, =a-b, =a± +b, =a±b. 2.已知 ,探究下列各式的值的求法. (1)a+a-1;(2)a2+a-2;(3) . 解:(1)将 ,两边平方,得a+a-1+2=9,即a+a-1=7; (2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47; (3)由于 , 所以有 =a+a-1+1=8. 点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值. 课堂小结 活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点: (1)分数指数幂的意义就是:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义. (2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. (3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈Q), ②(ar)s=ars(a>0,r,s∈Q), ③(a?b)r=arbr(a>0,b>0,r∈Q). (4)说明两点: ①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系. ②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用 =am来计算. 作业 课本习题2.1A组 2,4. 设计感想 本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务. 第3课时 作者:郑芳鸣 导入新课 思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是无理数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂. 思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题. 推进新课 新知探究 提出问题 (1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值? (2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律? 2的过剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 … … 的近似值 2的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … (3)你能给上述思想起个名字吗? (4)一个正数的无理数次幂到底是一个什么性质的数呢?如 ,根据你学过的知识,能作出判断并合理地解释吗? (5)借助上面的结论你能说出一般性的结论吗? 活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容: 问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向. 问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联. 问题(3)上述方法实际上是无限接近,最后是逼近. 问题(4)对问题给予大胆猜测,从数轴的观点加以解释. 问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般. 讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值. (2)第一个表:从大于2的方向逼近2时, 就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向逼近. 第二个表:从小于2的方向逼近2时, 就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向逼近. 从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面 从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向接近,而另一方面 从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向接近,可以说从两个方向无限地接近,即逼近,所以 是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示 的点靠近,但这个点一定在数轴上,由此我们可得到的结论是 一定是一个实数,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5. 充分表明 是一个实数. (3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识. (4)根据(2)(3)我们可以推断 是一个实数,猜测一个正数的无理数次幂是一个实数. (5)无理数指数幂的意义: 一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数. 也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂. 提出问题 (1)为什么在规定无理数指数幂的意义时,必须规定底数是正数? (2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗? 活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳. 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明. 对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通. 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了. 讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱. (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①ar?as=ar+s(a>0,r,s都是无理数). ②(ar)s=ars(a>0,r,s都是无理数). ③(a?b)r=arbr(a>0,b>0,r是无理数). (3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂. 实数指数幂的运算性质: 对任意的实数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈R). ②(ar)s=ars(a>0,r,s∈R). ③(a?b)r=arbr(a>0,b>0,r∈R). 应用示例 例1 利用函数计算器计算.(精确到0.001) (1)0.32.1;(2)3.14-3;(3) ;(4) . 活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值; 对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可; 对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可; 对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按 键,再按3,最后按=键.有时也可按2ndf或shift键,使用键上面的功能去运算. 学生可以相互交流,挖掘计算器的用途. 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705. 点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可. 例2 求值或化简. (1)a-4b23ab2(a>0,b>0); (2) (a>0,b>0); (3)5-26+7-43-6-42. 活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律. 解:(1)a-4b23ab2= =3b46a11 . 点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示. (2) = =425a0b0=425. 点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数. (3)5-26+7-43-6-42 =(3-2)2+(2-3)2-(2-2)2 =3-2+2-3-2+2=0. 点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用. 例3 已知 ,n∈正整数集,求(x+1+x2)n的值. 活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性, 与 具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示. = . 这时应看到1+x2= , 这样先算出1+x2,再算出1+x2,代入即可. 解:将 代入1+x2,得1+x2= , 所以(x+1+x2)n= = = =5. 点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法. 知能训练 课本习题2.1A组 3. 利用投影仪投射下列补充练习: 1.化简: 的结果是( ) A. B. C. D. 解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为 ,所以原式的分子分母同乘以 . 依次类推,所以 . 答案:A 2.计算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4. 解:原式= =53+100+916-3+13+716=100. 3.计算a+2a-1+a-2a-1(a≥1). 解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1). 本题可以继续向下做,去掉绝对值,作为思考留作课下练习. 4.设a>0, ,则(x+1+x2)n的值为__________. 解析:1+x2= . 这样先算出1+x2,再算出1+x2, 将 代入1+x2,得1+x2= . 所以(x+1+x2)n= = =a. 答案:a 拓展提升 参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂 的意义. 活动:教师引导学生回顾无理数指数幂 的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算 的过剩近似值和不足近似值,利用逼近思想,“逼出” 的意义,学生合作交流,在投影仪上展示自己的探究结果. 解:3=1.732 050 80…,取它的过剩近似值和不足近似值如下表. 3的过剩近似值 的过剩近似值 3的不足近似值 的不足近似值 1.8 3.482 202 253 1.7 3.249 009 585 1.74 3.340 351 678 1.73 3.317 278 183 1.733 3.324 183 446 1.731 3.319 578 342 1.732 1 3.322 110 36 1.731 9 3.321 649 849 1.732 06 3.322 018 252 1.732 04 3.321 972 2 1.732 051 3.321 997 529 1.732 049 3.321 992 923 1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838 1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045 … … … … 我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数 21.7,21.72,21.731,21.731 9,…, 同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数: 21.8,21.74,21.733,21.732 1,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为 , 即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8. 也就是说 是一个实数, =3.321 997 …也可以这样解释: 当3的过剩近似值从大于3的方向逼近3时,23的近似值从大于 的方向逼近; 当3的不足近似值从小于3的方向逼近3时,23的近似值从小于 的方向逼近. 所以 就是一串有理指数幂21.7,21.73,21.731,21.731 9,…,和另一串有理指数幂21.8,21.74,21.733,21.732 1,…,按上述规律变化的结果,即 ≈3.321 997. 课堂小结 (1)无理指数幂的意义. 一般地,无理数指数幂aα(a>0,α是无理数) 是一个确定的实数. (2)实数指数幂的运算性质: 对任意的实数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈R). ②(ar)s=ars(a>0,r,s∈R). ③(a?b)r=arbr(a>0,b>0,r∈R). (3)逼近的思想,体会无限接近的含义. 作业 课本习题2.1 B组 2. 设计感想 无理数指数是指数概念的又一次扩充, 教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力. 备课资料 【备用习题】 1.以下各式中成立且结果为最简根式的是( ) A.a?5a3a?10a7=10a4 B.3xy2(xy)2=y?3x2 C.a2bb3aab3=8a7b15 D.(35-125)3=5+125125-235?125 答案:B 2.对于a>0,r,s∈Q,以下运算中正确的是( ) A.ar?as=ars B.(ar)s=ars C.abr=ar?bs D.arbs=(ab)r+s 答案:B 3.式子x-2x-1=x-2x-1成立当且仅当( ) A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2 解析:方法一: 要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2. 若x≥2,则式子x-2x-1=x-2x-1成立. 故选D. 方法二: 对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-1<0时式子不成立. 对B,x-1<0时式子不成立. 对C,x<1时x-1无意义. 对D正确. 答案:D 4.化简b-(2b-1)(1 解:b-(2b-1)=(b-1)2=b-1(1 5.计算32+5+32-5. 解:令x=32+5+32-5, 两边立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0. ∵x2+x+4=x+122+154>0,∴x-1=0,即x=1. ∴32+5+32-5=1. 两角差的余弦公式 【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案 2、有余力的学生可在完成探究案中的部分内容。 【学习目标】 知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。 过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。 情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。 .【重点】通过探索得到两角差的余弦公式以及公式的灵活运用 【难点】两角差余弦公式的推导过程 预习自学案 一、知识链接 1. 写出 的三角函数线 : 2. 向量 , 的数量积, ①定义: ②坐标运算法则: 3. , ,那么 是否等于 呢? 下面我们就探讨两角差的余弦公式 二、教材导读 1.、两角差的余弦公式的推导思路 如图,建立单位圆O (1)利用单位圆上的三角函数线 设 则 又OM=OB+BM =OB+CP =OA_____ +AP_____ = 从而得到两角差的余弦公式: ____________________________________ (2)利用两点间距离公式 如图,角 的终边与单位圆交于A( ) 角 的终边与单位圆交于B( ) 角 的终边与单位圆交于P( ) 点T( ) AB与PT关系如何? 从而得到两角差的余弦公式: ____________________________________ (3) 利用平面向量的知识 用 表示向量 , =( , ) =( , ) 则 . = 设 与 的夹角为 ①当 时: = 从而得出 ②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + = 此时 = 从而得出 2、两角差的余弦公式 ____________________________ 三、预习检测 1. 利用余弦公式计算 的值. 2. 怎样求 的值 你的疑惑是什么? ________________________________________________________ ______________________________________________________ 探究案 例1. 利用差角余弦公式求 的值. 例2.已知 , 是第三象限角,求 的值. 训练案 一、基础训练题 1、 2、 3、 二、综合题 高中数学教案范文精选 1.1.1 任意角 教学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点 终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类: A 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 ④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面 终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α + k·360° , k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z ⑵ α是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍; ⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角. 例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°; ⑵640°; ⑶-950°12’. 答:⑴240°,第三象限角; ⑵280°,第四象限角; ⑶129°48’,第二象限角; 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}. 例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类: 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 ③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材P2-P5; ②教材P5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α, 解:??角属于第三象限, ? k·360°+180°<α<k·360°+270°(k∈Z) 因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z) 故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°< 各是第几象限角? <k·180°+135°(k∈Z) . <n·360°+135°(n∈Z) , 当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时, 属于第二象限角 <n·360°+315°(n∈Z) , 当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时, 属于第四象限角 因此 属于第二或第四象限角. 1.1.2弧度制 (一) 教学目标 (二) 知识与技能目标 理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数. (三) 过程与能力目标 能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (四) 情感与态度目标 通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点 弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点 “角度制”与“弧度制”的区别与联系. 教学过程 一、复习角度制: 初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入: 由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义 我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略. 3.思考: (1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗? (2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为 ②整圆所对的圆心角为 ③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|= . 4.角度与弧度之间的转换: ①将角度化为弧度: ②将弧度化为角度: 5.常规写法: ① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30’化成弧度. 例2.把? rad化成度. 例3.计算: (1)sin4 (2)tan1.5. 8.课后作业: ①阅读教材P6 –P8; ②教材P9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题. 1. 你能遵守学校的规章制度,按时上学,按时完成作业,书写比较端正,课堂上你也坐得比较端正。如果在学习上能够更加主动一些,寻找适合自己的学习 2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。 3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。 4. 你热情大方,为人豪爽,身上透露出女生少有的霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生! 5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩! 6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步! 7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油! 8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步! 9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。 10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。 ★概念教学 ★数学教案 文档为doc格式篇10:高中数学教案精选
篇11:高中数学教案
篇12:高中数学教案