以下是小编帮大家整理的求数列通项的方法总结,本文共20篇,仅供参考,希望能够帮助到大家。

篇1:数列求通项的方法总结
数列求通项的方法总结
按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。为大家总结数列求通项的方法,一起来看看吧!
一、累差法
递推式为:an+1=an+f(n)(f(n)可求和)
思路::令n=1,2,…,n-1可得
a2-a1=f(1)
a3-a2=f(2)
a4-a3=f(3)
……
an-an-1=f(n-1)
将这个式子累加起来可得
an-a1=f(1)+f(2)+…+f(n-1)
∵f(n)可求和
∴an=a1+f(1)+f(2)+ …+f(n-1)
当然我们还要验证当n=1时,a1是否满足上式
例1、已知数列{a}中,a1=1,an+1=an+2,求an
解: 令n=1,2,…,n-1可得
a2-a1=2
a3-a2=22
a4-a3=23
……
an-an-1=2n-1
将这个式子累加起来可得
an-a1=f(1)+f(2)+…+f(n-1)
∵f(n)可求和
∴an=a1+f(1)+f(2)+…+f(n-1)
当n=1时,a1适合上式
故an=2n-1
二、累商法
递推式为:an+1=f(n)an(f(n)要可求积)
思路:令n=1,2, …,n-1可得
a2/a1=f(1)
a3/a2=f(2)
a4/a3=f(3)
……
an/an-1=f(n-1)
将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)
∵f(n)可求积
∴an=a1f(1)f(2) …f(n-1)
当然我们还要验证当n=1时,a1是否适合上式
例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an
解: 令n=1,2, …,n-1可得
a2/a1=f(1)
a3/a2=f(2)
a4/a3=f(3)
……
an/an-1=f(n-1)
将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)
即an=2n
当n=1时,an也适合上式
∴an=2n
三,构造法
1、递推关系式为an+1=pan+q (p,q为常数)
思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)
故可将递推式化为an+1+x=p(an+x)
构造数列{bn},bn=an+q/(p-1)
bn+1=pbn即bn+1/bn=p,{bn}为等比数列.
故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an
例3、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an
解:设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3
故可将递推式化为an+3=2(an-1+3)
构造数列{bn},bn=an+3
bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3
bn=bn-1·3,bn=an+3
bn=4×3n-1
an+3=4×3n-1,an=4×3n-1-1
2、递推式为an+1=pan+qn(p,q为常数)
思路:在an+1=pan+qn两边同时除以qn+1得
an+1/qn+1=p/qan/qn+i/q
构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q
故可利用上类型的解法得到bn=f(n)
再将代入上式即可得an
例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an
解: 在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得
2n+1an+1=(2/3)×2nan+1
构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1
故可利用上类型解法解得bn=3-2×(2/3)n
2nan=3-2×(2/3)n
an=3×(1/2)n-2×(1/3)n
3、递推式为:an+2=pan+1+qan(p,q为常数)
思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan)
也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q
解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)
这样就转化为前面讲过的类型了.
例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an
解:设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)
也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3
可取x=1,y= -1/3
构造数列{bn},bn=an+1-an
故数列{bn}是公比为-1/3的等比数列
即bn=b1(-1/3)n-1
b1=a2-a1=2-1=1
bn=(-1/3)n-1
an+1-an=(-1/3)n-1
故我们可以利用上一类型的`解法求得an=1+3/4×[1-(-1/3)n-1](nN*)
例题
1、利用sn和n的关系求an
思路:当n=1时,an=sn
当n≥2 时, an=sn-sn-1
例6、已知数列前项和s=n2+1,求{an}的通项公式.
解:当n=1时,an=sn=2
当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1
而n=1时,a1=2不适合上式
∴当n=1时,an=2
当n≥2 时, an=2n-1
2、利用sn和an的关系求an
思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解
例7、在数列{an}中,已知sn=3+2an,求an
解:即an=sn-sn-1=3+2an-(3+2an-1)
an=2an-1
∴{an}是以2为公比的等比数列
∴an=a1·2n-1= -3×2n-1
2、用不完全归纳法猜想,用数学归纳法证明.
思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明
例8、(全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an
解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6
由此猜想an=n+1,下用数学归纳法证明:
当n=1时,左边=2,右边=2,左边=右边
即当n=1时命题成立
假设当n=k时,命题成立,即ak=k+1
则 ak+1=a2k-kak+1
=(k+1)2-k(k+1)+1
=k2+2k+1-k2-2k+1
=k+2
=(k+1)+1
∴当n=k+1时,命题也成立.
综合(1),(2),对于任意正整数有an=n+1成立
即an=n+1
篇2:求数列通项的方法总结
求数列通项的方法总结
求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,分享了求数列通项的方法,一起来看看吧!
一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f(n)可求前n项和).
例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。
解:由an+1=an+2n+1得an+1-an=2n+1则
an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1
=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1
=2[(n-1)+(n-2)+…+2+1]+(n-1)+1
=2+(n-1)+1
=(n-1)(n+1)+1
=n2
所以数列an的通项公式为an=n2。
例2:在数列{an}中,已知an+1= ,求该数列的通项公式.
备注:取倒数之后变成逐差法。
解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,
将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==
二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).
例3.已知数列{an}中a1=,an=an-1(n?叟2)求数列{an}的通项公式。
解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。
注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.
三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。
例4.已知Sn为数列an的前n项和,且Sn=2n+1,求数列an的通项公式.
解:当n=1时,a1=S1=2+1=3,当n?叟2时,an=Sn-Sn-1=(2n+1)-(2n-1+1)=2n-1.
而n=1时,21-1=1≠a1,∴an3(n=1)2n-1(n?叟2)。
四、构造新数列(待定系数法): ①将递推公式an+1=qan+d(q,d为常数,q≠0,d≠0)通过(an+1+x)=q(an+x)与原递推公式恒等变成an+1+=q(an+)的方法叫构造新数列.
例5.在数列an中,a1=1,当n?叟2时,有an=3an-1+2,求an的通项公式。
解:设an+m=3(an-1+m),即有an=3an-1+2m,对比an=3an-1+2,得m=1,于是得an+1=3(an-1+1),数列an+1是以a1+1=2为首项,以3为公比的等比数列,所以有an=23n-1-1。
类似题型练习:已知数列an满足a1=1,an+1=2an+1(n∈N*)求数列an的.通项公式.
注:此种类型an+1=pan+g(n)(p为常数,且p≠0,p≠1)与上式的区别,其解法如下:将等式两边同除以pn+1,则=+,令bn=,则bn+1=bn=,这样此种数列求通项的问题可以转化为逐差法的问题,当然这种数列的通项公式也常用待定系数法解决,关键要根据g(n)选择适当的形式。
如:an的首项a1=1,且an+1=4an+2n,求an
五、数学归纳法(用不完全归纳法猜想,用数学归纳法证明)
例6.设数列an满足:a1=1,an+1an-2n2(an+1-an)+1=0求数列an的通项公式.
解:由an+1an-2n2(an+1-an)+1=0得an+1=,可算得a2=3,a3=5,a4=7,猜想an=2n-1,并用数学归纳法予以证明(以下略)
六、待定系数法
例7.已知数列an满足an+1=2an+3×5n,a1=6,求数列an的通项公式。
解:设an+1+x×5n+1=2(an+x×5n) ④
将an+1=2an+3×5n代入④式,得2an+3×5n+x×5n+1=2an+2x×5n,等式两边消去2an,得35n+x5n+1=2x5n,两边除以5n,得3+5x=2x,则x=-1,代入④式得an+1-5n+1=2(an-5n) ⑤
由a1-51=6-5=1≠0及⑤式得an-5n≠0,则=2,则数列{an-5n}是以a1-51=1为首项,以2为公比的等比数列,则an-5n=2n-1,故an=2n-1+5n。
评注:本题解题的关键是把递推关系式an+1=2an+3×5n转化为an-1-5n+1=2(an-5n),从而可知数列{an-5n}是等比数列,进而求出数列{an-5n}的通项公式,最后再求出数列{an}的通项公式。
七、特征根法
形如递推公式为an+2=pan+1+qan(其中p,q均为常数)。对于由递推公式an+2=pan+1+qan,a1=α,a2=β,给出的数列an,方程x2-px-q=0,叫做数列an的特征方程。
若x1,x2是特征方程的两个根, 当x1≠x2时,数列an的通项为an=Axn-11+Bxn-12,其中A,B由a1=α,a2=β决定(即把a1,a2,x1,x2和n=1,2,代入an=Axn-11+Bxn-12,得到关于A、B的方程组);
当x1=x2时,数列an的通项为an=(A+Bn)xn-11,其中A,B由1=α,a2=β决定(即把a1,a2,x1,x2和n=1,2,代入an=(A+Bn)xn-11,得到关于A、B的方程组)。
例8.数列an:3an+2-5an+1+2an=0(n?叟0,n∈N),a1=a,a2=b求an
解:特征方程是3x2-5x+2=0,∵x1=1,x2= ,∴an=Axn-11+Bxn-12=A+Bn-1。
又由a1=a,a2=b,于是a=A+Bb=A+B?圯A=3b-2aB=3(a-b)
故an=3b-2a+3(a-b)()n-1
篇3:数列通项公式方法总结
不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。求数列通项公式的题型很多,不同的题型有不同的解决方法。下面结合教学实践,谈谈求数列通项公式的解题思路。
一、已知数列的前几项
已知数列的前几项,求通项公式。通过观察找规律,分析出数列的项与项数之间的'关系,从而求出通项公式。这种方法称为观察法,也即是归纳推理。
篇4:数列通项公式方法总结
分析:根据an与Sn的关系,将an+1=2Sn+1转化为an与an+1的关系。
解:由an+1=2Sn+1
得an=2Sn-1+1(n≥2)
两式相减,得an+1-an=2an
∴an+1=3an (n≥2)
∵a2=2Sn+1=3
∴a2=3a1
∴{an}是以1为首项,3为公比的等比数列
∴an=3n-1
(3)an+1=an+f(n),用叠加法
思路:令n=1,2,3,……,n-1
得a2=a1+f(1)
a3=a2+f(2)
a4=a3+f(3)
……
+)an=an——1+f(n-1)
an=a1+f(1)+f(2)+…+f(n-1)
例5、若数列{an}满足a1=2,an+1=an+2n
则{an}的通项公式=( )
解:∵an+1=an+2n
∴a2 =a1+2×1
a3=a2+2×2
a4=a3+2×3
……
+)an=an——1+2(n-1)
an=a1+2(1+2+3+…+n-1)
=2+2×(1+n-1)(n-1)
=n2-n+2
(4)an+1=f(n)an,用累积法
思路:令n=1,2,3,……,n-1
得a2 =f(1)a1 a3=f(2)a2 a4=f(3)a3
……
×)an=f(n-1)an-1
an=a1·f(1)·f(2)·f(3)……f(n-1)
例6、若数列{an}满足a1=1,an+1=2n+an,则an=( )
解:∵an+1=2nan ∴a2 =21a1
a3=22a2 a4=23a3
……
×) an=2n——1·an——1
an=2·22·23·……·2n-1a1=2n(n-1)/2
(5)an=pan——1+q, an=pan——1+f(n)
an+1=an+p·qn(pq≠0),
an=p(an——1)q, an+1=ran/pan+q=(pr≠0,q≠r)
(p、q、r为常数)
这些类型均可用构造法或迭代法。
①an=pan——1+q (p、q为常数)
构造法:将原数列的各项均加上一个常数,构成一个等比数列,然后,求出该等比数列的通项公式,再还原为所求数列的通项公式。
将关系式两边都加上x
得an+x=Pan——1+q+x
=P(an——1 + q+x/p)
令x=q+x/p,得x=q/p-1
∴an+q/p-1=P(an——1+q/p-1)
∴{an+q/p-1}是以a1+q/p-1为首项,P为公比的等比数列。
∴an+q/p-1=(a1+q/p-1)Pn-1
∴an=(a1+q/p-1)Pn-1-q/p-1
迭代法:an=p(an——1+q)=p(pan-2+q)+q
=p2((pan-3+q)+pq+q……
例7、数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+)求an
解析:由Sn=2an-n 得Sn-1=2an-1-(n-1) (n≥2,n∈N+)
两式相减得an=2an-1+1
两边加1得an+1=2(an-1+1) (n≥2,n∈N+)
构造成以2为公比的等比数列{an+1}
②an=Pan-1+f(n)
例8、数列{an}中,a1为常数,且an=-2an-1+3n-1(≥2,n∈N)
证明:an=(-2)n-1a1+3n+(-1)n·3·2n-1/5
分析:这道题是证明题,最简单的方法当然是数学归纳法,现用构造法和迭代法来证明。
方法一:构造公比为-2的等比数列{an+λ·3n}
用比较系数法可求得λ=-1/5
方法二:构造等差型数列{an/(-2)n}。由已知两边同以(-2)n,得an/(-2)n=an-1/(-2)n=1/3·(-3/2)n,用叠加法处理。
方法三:迭代法。
an=-2an-1+3n-1=-2(-2an-2+3n-2)+3n-1
=(-2)2an-2+(-2)·3n-2+3n-1
=(-2)2(-2an-3+3n-3)+(-2)·3n-2+3n-1
=(-2)3an-3+(-2)·3n-3+(-2)·3n-2+3n-1
=(-2)n-1a1+(-2)n-1·3+(-2)n-3·+32+……+(-2)·3n-2+3n-1
=(-2)n-1a1+3n+(-1)n-2·3·2n-1/5
③an+1=λan+p·qn(pq≠0)
(ⅰ)当λ=qn+1时,等式两边同除以,就可构造出一个等差数列{an/qn}。
例9、在数列{an}中,a1=4,an+1+2n+1,求an。
分析:在an+1=2an+2n+1两边同除以2n+1,得an+1/2n+1=an/2n+1
∴{an/2n}是以a1/2=2为首项,1为公差的等差数列。
(ⅱ)当λ≠q时,等式两边同除以qn+1,令bn=an/qn,得bn+1=λ/qbn+p,再构造成等比数列求bn,从而求出an。
例10、已知a1=1,an=3an-1+2n-1,求an
分析:从an=3an-1+2n-1两边都除以2n,
得an/2n=3/2 an-1/2n-1+1/2
令an/2n=bn
则bn=3/2bn-1+1/2
④an=p(an——1)q(p、q为常数)
例11、已知an=1/a an——12,首项a1,求an。
方法一:将已知两边取对数
得lgan=2lgan——1-lga
令bn=lgan
得bn=2bn-1-lga,再构造成等比数列求bn,从而求出an。
方法二:迭代法
an=1/a a2n——1=1/a (1/a a2n——2)2=1/a3 a4n——2
=1/a3 (1/a a2n——3)4=1/a7·an——38=a·(an——3/a)23
=……=a·(a1/a)2n——1
⑤an+1=ran/pan+q(p、q、r为常数,pr≠0,q≠r)
将等式两边取倒数,得1/an+1=q/r·1/an+p/r,再构造成等比数列求an。
例12、在{an}中,a1=1,an+1=an/an+2,求an
解:∵an+1=an/an+2
∴1/an+1=2·1/an+1
两边加上1,得1/an+1+1=2(1/an+1)
∴{1/an+1}是以1/an+1=2为首项,2为公比的等比数列
∴ 1/an+1=2×2n-1=2n
∴an=1/2n-1
以上罗列出求数列通项公式的解题思路虽然很清晰,但是一般考生对第三项中的5种类型题用构选法和迭代法都比较困难的。遇到此情况,可转化为第一种类型解决,即从an与Sn的关系式求出数列的前几项,用观察法求an。
篇5:数列通项公式方法总结
(1)0,22——1/3,32——1/4,42+1/5……
(2)9,99,999,……
分析:(1)0=12——1/2,每一项的分子是项数的平方减去1,分母是项数加上1,n2——1/n+1=n——1,其实,该数列各项可化简为0,1,2,3,……,易知an=n——1。
(2)各项可拆成10-1,102-1,103-1,……,an=10n——1。
此题型主要通过让学生观察、试验、归纳推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生的思维能力。
二、已知数列的前n项和Sn
已知数列的前n项和Sn,求通项公式an,主要通过an与Sn的关系转化,即an -{ S1(n=1) Sn -Sn——1(n≥2)
例2、已知数列{an }的前n项和Sn=2n+3,求an
分析:Sn=a1+a2 +……+an——1+an
Sn——1=a1+a2 +……+an——1
上两式相减得 Sn -Sn——1=an
解:当n=1时,a1=S1=5
当n≥2时,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1
∵n=1不适合上式
∴an ={5(n=1) 2n——1(n≥2)
三、已知an与Sn关系
已知数列的第n项an与前n项和Sn间的关系:Sn=f(an),求an。一般的思路是先将Sn与an的关系转化为an与an——1的关系,再根据与的关系特征分为如下几种类型。不同的类型,要用不同的方法解决。
(1)an=an——1+k。数列属等差数列,直接代公式可求通项公式。
例3、已知数列{an},满足a1=3,an=an——1+8,求an。
分析:由已知条件可知数列是以3为首项,8为公差的等差数列,直接代公式可求得an=8n-5。
(2)an=kan——1(k为常数)。数列属等比数列,直接代公式可求通项公式。
例4、数列{an}的前n项和Sn,a1=1,an+1=2Sn+1(n∈N+)
篇6:求数列通项公式的解题思路
求数列通项公式的解题思路
广东省高州市第二中学 梁志华
数列既是高中数学的重要内容,也是学习高等数学的基础,因此,每年高考对本章内容均作较全面的考查,而且经常是以综合题、主观题的形式出现,难度较大,不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。求数列通项公式的题型很多,不同的题型有不同的解决方法。下面结合教学实践,谈谈求数列通项公式的解题思路。
一、已知数列的前几项
已知数列的`前几项,求通项公式。通过观察找规律,分析出数列的项与项数之间的关系,从而求出通项公式。这种方法称为观察法,也即是归纳推理。
篇7:求数列极限方法总结
求数列极限方法总结
极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到,平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。
极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。 熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下。
极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。
四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。
与极限计算相关知识点包括:
连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;
可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验 存在的`定义是极限 存在;
渐近线,(垂直、水平或斜渐近线);
多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。
下面我们重点讲一下数列极限的典型方法。
求数列极限可以归纳为以下三种形式。
1.抽象数列求极限
这类题一般以选择题的形式出现, 因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。
2.求具体数列的极限,可以参考以下几种方法:
利用单调有界必收敛准则求数列极限。首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。
利用函数极限求数列极限。如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。
3.项和或项积数列的极限,主要有以下几种方法:
利用特殊级数求和法。如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。
利用幂级数求和法。若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。
利用定积分定义求极限。若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限。
利用夹逼定理求极限。若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。
求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。
篇8:高中数学求数列前n项和的方法
一、用倒序相加法求数列的前n项和
如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”
二、用公式法求数列的前n项和
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
三、用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。
四、用错位相减法求数列的前n项和
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。
五、用迭加法求数列的前n项和
迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
六、用分组求和法求数列的前n项和
所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。
七、用构造法求数列的前n项和
所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。
拓展:斜率怎么计算
1、当直线L的斜率存在时,斜截式y=kx+b,当x=0时,y=b。2、当直线L的斜率存在时,点斜式y2-y1=k(x2-x1)。3、对于任意函数上任意一点,其斜率等于其切线与x轴正方向所成的角,即k=tanα。4、斜率计算:ax+by+c=0中,k=-a/b。
曲线斜率相关知识点
1.曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。
2.曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
3.当f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;当f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
4.在区间(a, b)中,当f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;当f''(x)>0时,函数在该区间内的图形是凹的。
篇9:数列、数列的通项公式教案
数列、数列的通项公式教案
目的:
要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:
1数列的概念。
按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2.数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。
从映射、函数的观点看,数列可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。由于数列的.项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:
根据数列前几项的特点,以现规律后写出数列的通项公式。给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
过程:
一、从实例引入(P110)
1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数 3. 4. -1的正整数次幂:-1,1,-1,1,…5. 无穷多个数排成一列数:1,1,1,1,…
二、提出课题:
数列
1.数列的定义:
按一定次序排列的一列数(数列的有序性)
2. 名称:
项,序号,一般公式 ,表示法
3. 通项公式:
与 之间的函数关系式如 数列1: 数列2: 数列4:
4. 分类:
递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。
5. 实质:
从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6. 用图象表示:
— 是一群孤立的点 例一 (P111 例一 略)
三、关于数列的通项公式
1. 不是每一个数列都能写出其通项公式 (如数列3)
2. 数列的通项公式不唯一 如: 数列4可写成 和
3. 已知通项公式可写出数列的任一项,因此通项公式十分重要例二 (P111 例二)略
四、补充例题:
写出下面数列的一个通项公式,使它的前 项分别是下列各数:1.1,0,1,0. 2. , , , , 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5. , , ,
五、小结:
1.数列的有关概念
2.观察法求数列的通项公式
六、作业:
练习P112习题 3.1(P114)1、2
七、练习:
1.观察下面数列的特点,用适当的数填空,关写出每个数列的一个通项公式;(1) , , ,( ), , …(2) ,( ), , , …
2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、、、; (2) 、、、; (3) 、、、; (4) 、、、
3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式
4.已知数列an的前4项为0, ,0, ,则下列各式 ①an= ②an= ③an= 其中可作为数列{an}通项公式的是A ① B ①② C ②③ D ①②③
5.已知数列1, , , ,3, …, ,…,则 是这个数列的( )A. 第10项 B.第11项 C.第12项 D.第21项
6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。
7.设函数 ( ),数列{an}满足
(1)求数列{an}的通项公式;
(2)判断数列{an}的单调性。
8.在数列{an}中,an=
(1)求证:数列{an}先递增后递减;
(2)求数列{an}的最大项。
答案:
1.(1) ,an= (2) ,an=
2.(1)an= (2)an= (3)an= (4)an=
3.an= 或an= 这里借助了数列1,0,1,0,1,0…的通项公式an= 。
4.D
5.B
6. an=4n-2
7.(1)an= (2)<1又an<0, ∴ 是递增数列
篇10:数列通项公式问题探究
数列通项公式问题探究
下面是一篇关于数列通项公式问题探究的论文,对正在写有关数学论文的写作者有一定的参考价值和指导作用!
摘要:求通项是高考中经常出现的形式,但是这方面的题目形式多变,技巧性较强,导致这一内容成为学生学习数列问题的难点。本文对一些常见的递推数列求通项的方法进行归纳总结,以希望对广大中学生朋友们突破这一难点提供一定的帮助。
关键词:数列;通项公式;方法;
一、观察法
例1:根据数列的前4项,写出它的一个通项公式:
(1)9,99,999,9999,...
(2)1,1/2,1/4,1/8,...
解:(1)变形为:101- 1,102- 1,103- 1,104- 1,......
∴通项公式为:10n- 1
(2)变形为:1/21-1,1/22-1,1/23-1,1/24-1,......,
∴通项公式为:1/2n- 1
观察法就是要抓住各项的特点,与常见的`数列形式相联系进行变形,探索出各项的变化规律,从而找出各项与项数n的关系,写出通项公式。
二、定义法
例2:已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x- 1)2,且a1=f(d- 1),a3=f(d+1),b1=f(q+1),b3=f(q- 1),求数列{an}和{bn}的通项公式;
解:(1)∵a1=f(d- 1)=(d- 2)2,a3=f(d+1)=d2,
∴a3- a1=d2-(d- 2)2=2d,
∴d=2,
∴an=a1+(n- 1)d=2(n- 1);
又b1=f(q+1)=q2,b3=f(q- 1)=(q- 2)2,
由q∈R,且q≠1,得q=- 2,∴bn=b·qn- 1=4·(- 2)n-1 当已知数列为等差或等比数列时,只需求得首项及公差或公比,可直接利用等差或等比数列的通项公式的定义写出该数列的通项公式。
三、叠加法
例3:已知数列6,9,14,21,30,...求此数列的一个通项。
解:已知a2- a1=3,a3- a2=5,...,an- an- 1=2n- 1,...
各式相加得:an- a1=3+5+...+(2n- 1)=n2- 1
∴an=n2+5
对于可表述成为an- an- 1=f(n)的形式的数列,即可通过叠加的方法消去a2至an- 1项,从而利用的已知求出。
四、叠乘法
例4:设数列 {an}是首项为1的正项数列,且满足(n+1)a2n+1- nan2+an+1an=0,求数列{an}的通项公式。
解:∵ (n+1)a2n+1- nan2+an+1an=0,可分解为[(n+1)an+1- nan](an+1+an)=0
又∵ {an}是首项为1的正项数列,
∴an+1+an≠0,
∴ (n+1)an+1- nan=0,
由 此 得 出 :a1=2a2,2a2=3a3,...,(n- 1)a(n-1)=nan,这n- 1个式子,将其相乘得:a1=nan,又∵a1=1,∴an=1/n,∵n=1也成立,∴an=1/n(n∈N*)。
对于相邻的两项有确定的比例关系的递推式,可以通过叠乘法消去和,从而利用的已知求出此类数列的通项公式。
五、取倒数法
例5:已知数列{an},a1=-1, n∈N*,求an =?
解:把原式变形得 an+1- an+1·an= an
两边同除以 anan+1得1/an=1/an+1 +1
∴{1/an} 是首项为 -1,d=-1 的等差数列
故an=-1/n
有些关于通项的递推关系式变形后含有 anan+1项,直接求相邻两项的关系很困难,但两边同除以 anan+1后,相邻两项的倒数的关系容易求得,从而间接求出 an。
六、利用公式 an=Sn-Sn-1(n ≥ 2) 求通项
例 6:已知各项均为正数的数列 {an} 的前 n 项和为 Sn满足 S1>1 且 6Sn=(an+1)( an+2) n ∈ N*,求 {an}的通项公式。
解:由 a1=S1= 解得 a1=1 或 a1=2,
由已知a1=S1>1,因此 a1=2
又由 an+1= Sn+1-Sn= 1/6 (an+1 +1)(an+1 +2)-1/6 (an +1)(an +2)得(an+1+an)( an-1-an-3) =0
∵ an>0 ∴ an-1-an=3从而 {an} 是首项为 2,公差为 3 的等差数列,
故 {an} 的通项为 an=2+3(n-1)=3n-1。
有 些 数 列 给 出 {an} 的 前 n 项 和 Sn与 an的 关 系 式Sn=f(an),利用该式写出 Sn+1=f(an+1),两式做差,再利用 an+1=Sn+1-Sn导出 an+1与 an的递推式,从而求出 an。
七、构造等比数列法
例 7:已知数列 {an} 满足 a1=1,an+1=2an+1 (n ∈ N*),求数列 {an} 的通项公式。
解:构造新数列 {an+p},其中 p 为常数,使之成为公比是 an的系数 2 的等比数列,即 an+1+p =2(an+p) 整理得:an+1=2an+p, an+1= 2an+1 ∴ p=1 即 {an+1} 是首项为 a1+1=2,q=2 的等比数列∴ an+1=2·2n-1
∴an=2n-1。
原数列 {an} 既不等差,也不等比。若把 {an} 中每一项添上一个数或一个式子构成新数列,使之等比,从而求出 an。该法适用于递推式形如 an+1=ban+c 或 an+1= ban+f(n)an+1= 或an+1=ban+cn其中 b、c 为不相等的常数,f(n) 为一次式。
总之,数列是初等数学向高等数学过度的桥梁,而求数列的通项公式又是学好数列知识的关键,它具有很强的技巧性。但是由于同学们在刚刚接触数列知识时,对求数列的通项公式没有系统的方法,常常感觉无从下手,需要教师和学生共同努力,共同思考,不断的完善求数列通项公式的方法和技巧,开拓思维,创新学习,逐步树立学好数学的信心,提高自身的数学素养,并能融会贯通的运用到其他的知识学习中去。
参考文献:
[1]Cheng Baojuan .Fractional recursive progression item formula of the solution of [J].Education Forum,,(31)
篇11:利用函数不动点求数列的通项公式
利用函数不动点求数列的通项公式
递推公式是给定数列的一种重要的.方式,已知数列的前,n项和递推公式求数列通项公式的试题在数学高考和竞赛中也屡见不鲜.
作 者:林国夫 作者单位:浙江省上虞市春晖中学,312353 刊 名:数学通报 PKU英文刊名:BULLETIN DES SCIENCES MATHEMATICS 年,卷(期): 47(12) 分类号:O1 关键词:篇12:数列的通项公式的教学反思
数列的通项公式的教学反思
1、爱因斯坦说过:“兴趣是最好的老师。”新课程的教材比以前有了更多的背景足以说明。本节也以国际象棋的故事为引例来激发学生的学习兴趣,然而却在求和公式的证明中以“我们发现,如果用公比乘…”一笔带过,这个“发现”却不是普通学生能做到的,他们只能惊叹于解法的神奇,而求知欲却会因其“技巧性太大”而逐步消退。因此如何在有趣的数学文化背景下进一步拓展学生的视野,使数学知识的发生及形成更为自然,更能贴近学生的认知特征,是每一位教师研讨新教材的重要切入点。
2、“课程内容的呈现,应注意反映数学发展的规律,以及人们的认识规律,体现从具体到抽象、特殊到一般的原则。”“教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。”这些都是《数学课程标准》对教材编写的建议,更是对课堂教学实践的要求。然而,在新课程的教学中,“穿新鞋走老路”仍是常见的现状,“重结果的应用,轻过程的探究”或者是应试教育遗留的祸根,却更与教材的编写,教师对《课程标准》、教材研究的深浅有关,更与课堂教学实践密切相关。我们也曾留足时间让学生思考,却没有人能“发现”用“公比乘以①的两边”,设计“从特殊到一般”即由2,3,4,…到q,再到 ,也是对教学的不断实践与探索的成果。因此,新课程教材留给教师更多发展的`空间,每位教师有责任也应当深刻理会《标准》的理念,认真钻研教材,促进《标准》及教材更加符合学生的实际。
3、先看文[1]由学生自主探究而获得的两种方法:
且不说初中教材已经把等比定理删去,学生能获得以上两种方法并不比发现乘以来得容易,无奈之下,有的教师便用“欣赏”来走马观花地让学生感受一下,这当然更不可取。
回到乘比错位相减法,其实要获得方法1并不难:可以用q乘以 ,那么是否可以在 的右边提出一个q呢?请看:
与 比较,右边括号中比少了一项: ,则有
以上方法仅须教师稍作暗示,学生都可完成。
对于方法2,若去掉分母有 ,与方法1是一致的。
4、在导出公式及证明中值得花这么多时间吗?或者直接给出公式,介绍证明,可留有更多的时间供学生练习,以上过程,教师讲的是不是偏多了?
如果仅仅是为了让学生学会如何应试,诚然以上的过程将不为人所喜欢,因为按此过程,一节课也就差不多把公式给证明完,又哪来例题与练习的时间呢?
但是我们要追问:课堂应教给学生什么呢?课堂教学应从庞杂的知识中引导学生去寻找关系,挖掘书本背后的数学思想,挖掘出基于学生发展的知识体系,教学生学会思考,让教学真正成为发展学生能力的课堂活动。因此,本课例在公式的推导及证明中舍得花大量时间,便是为了培养学生学会探究与学习,其价值远远超过了公式的应用。
篇13:利用递推关系求数列的通项公式的评课稿
利用递推关系求数列的通项公式的评课稿
严老师的课堂 最大的亮点就是师生互动如行云流水,如春风拂面, 如鱼翔浅底, 轻松活泼,而又不乏智慧的光芒,学生参与热情高,学习氛围好。 这节课的教学 重点就 是让学生通过对例题及其变式的思考,体会“利用递推关系求数列的通项公式”的方法 (如定义法、累加法、待定系数法等)和化归思想 。其实,此类问题既是数列教学中的难点问题,也是江苏高考的.热点问题。 总体而言,在严老师的引导下,学生基本达成了教学目标,高一学生能做到这一点已经难能可贵 了 。 笔者建议, 是不是 可以突破例题和练习的界限 ,进行 如下 的教学设计:
在数列中,已知 ,其前项和为 , 根据下列条件, 分别求数列的通项公式 。
教师一定要敢于 放开手让学生去思考,去板演,看看他(她)有什么想法,或者有什么困惑,然后再让学生进行交流,教师要做的就是引导、点评和总结。学生有了这样的经历和体验之后 ,对问题的认识和理解应该会更深刻。另外,对累加法的应用,笔者认为还是化成差的形式,即“ ”操作起来 更 方便一些。 以上只是个人的一点不成熟的想法,请大家批评指正。
篇14:用累差法和累积法求递归数列的通项公式
用累差法和累积法求递归数列的通项公式
虽然累差法和累和法不能解决具有普遍性的递归数列,但本人在教学中发现其方法对某些递归数列求其通项是有好处的.,现介绍如下:
作 者:燕志学 李开学 作者单位:燕志学(贵阳市乌当中学,550000)李开学(贵阳农业学校,550000)
刊 名:成都教育学院学报 英文刊名:JOURNAL OF CHENGDU COLLEGE OF EDUCATION 年,卷(期): 15(7) 分类号:A8 关键词:篇15:数列求和方法总结
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的`个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公
式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)公差;
数列和公式:sn,=(a1+an)n2;
数列和=(首项+末项)项数2;
项数公式:n=(an+a1)d+1;
项数=(末项-首项)公差+1;
公差公式:d=(an-a1))(n-1);
公差=(末项-首项)(项数-1);
关键问题:确定已知量和未知量,确定使用的公式。
篇16:数列求和的方法总结
01裂项相消法:
将数列中的.每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的结果,如图。
02公式法:
用常用求和公式求和得到细解结果,也是数列求和的最基本最重要的方法,如图。
03倒序相加法:
是解决数列求和经典方法,在等差数列前n项和公式的推导过程中,使用了这种方法,如图。
篇17:数列求和方法的总结
数列求和方法的总结
1.基本公式法
2.错位相消法:
3.分组求和
把一个数列分成几个可以直接求和的数列,然后利用公式法求和。
4.裂项(拆项)求和
把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和。
5.倒序相加法
根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的。
篇18:数列等差求和方法总结
教学目标
1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;
(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;
(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.
2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.
3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.
教学建议
(1)知识结构
(2)重点、难点分析
①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
(3)教法建议
①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.
②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的`学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.
③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.
④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.
⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.
⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
篇19:数列求和公式方法总结
数列求和公式方法总结
数列求和是历年高考的必考内容,重点要熟练掌握等差数列、等比数列的求和公式,其中错位相减法和裂项相消法也是考查的重点。下面为大家发分享了数列求和公式方法,希望对大家有帮助!
一、分组转化求和法
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前n项和Sn时可以用分组求和法求解。一般步骤是:拆裂通项――重新分组――求和合并。
例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和
解由和式可知,式中第n项为an=n(3n+1)=3n2+n
∴Sn=1×4+2×7+3×10+…+n(3n+1)
=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)
=3(12+22+32+…+n2)+(1+2+3+…+n)
=3×16n(n+1)(2n+1)+n(n+1)2
=n(n+1)2
二、奇偶分析求和法
求一个数列的前n项和Sn,如果需要对n进行奇偶性讨论或将奇数项、偶数项分组求和再求解,这种方法称为奇偶分析法。
例2:求和:Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)
分析:观察数列的通项公式an=(-1)n(2n-1)可知Sn与数列项数n的奇偶性有关,故利用奇偶分析法及分组求和法求解,也可以在奇偶分析法的基础上利用并项求和法求的`结果。
解:当n为偶数时,
Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)
=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)
=-n2(1+2n-3)2+n2(3+2n-1)2
=-n2-n2+n2+n2=n
当n为奇数时,
Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)
=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)
=-n+12(1+2n-1)2+n-12(3+2n-3)2
=-n2+n2+n2-n2=-n
综上所述,Sn=(-1)nn
三、并项求和法
一个数列an的前n项和Sn中,某些项合在一起就具有特殊的性质,因此可以几项结合求和,再求Sn,称之为并项求和法。形如an=(-1)nf(n)的类型,就可以采用相邻两项合并求解。如例3中可用并项求和法求解。
例3:求S=-12+22-32+42-…-992+1002
解S=(-12+22)+(-32+42)+…+(-992+1002)
=(1+2)+(3+4)+…+(99+100)=5050
四、基本公式法
如果一个数列是符合以下某种形式,如等差、等比数列或通项为自然数的平方、立方的,那么可以直接利用以下数列求和的公式求和。
常用公式有
(1)等差数列求和公式:Sn=na1+n(n-1)2d=n(a1+an)2
(2)等比数列求和公式:Sn=na1a1(1-qn)1-q=a1-anq1-q(q=1)(q≠1)
(3)1+2+3+…+n=n(n+1)2
(4)1+3+5+…+2n-1=n2
(5)2+4+6+…+2n=n(n+1)
(6)12+22+32+…+n2=16n(n+1)(2n+1)
(7)13+23+33+…+n3=14n2(n+1)2
例1:已知等比数列an的通项公式是an=12n-1,设Sn是数列an的前n项和,求Sn。
解:∵an=12n-1∴a1=1,q=12
∴Sn=1+12+14+…+12n-1=1(1-12n)1-12=2-12n-1
五、裂项相消法
如果一个数列an的通项公式能拆分成两项差的形式,并且相加过程中可以互相抵消至只剩下有限项时,这时只需求有限项的和,把这种求数列前n项和Sn的方法叫做裂项相消法。
裂项相消法中常用的拆项转化公式有:
(1)1n(n+1)=1n-1n+1,1n(n+k)=1k(1n-1n+k)
(2)1(2n-1)(2n+1)=12(12n-1-12n+1)
(3)1n(n+1)(n+2)=12[1n(n+1)-1(n+1)(n+2)]
(4)1n+n+1=n+1-n,1n+n+k=1k(n+k-n),
其中n∈N,k∈R且k≠0
例5:求数列1,11+2,11+2+3,…,11+2+3+…+n,…的前n和Sn。
解由题知,an=11+2+3+…+n=2n(n+1)=2(1n-1n+1)
∴Sn=1+11+2+11+2+3+…+11+2+3+…+n
=2(1-12)+2(12-13)+2(13-14)+…+2(1n-1n+1)
=2(1-12+12-13+13-14+…+1n-1n+1)
=2(1-1n+1)=2nn+1
篇20:求极限方法总结
求极限方法总结
为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面
首先对极限的总结如下:
极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致
1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了你还能有补充么???)
1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记
(x趋近无穷的时候还原成无穷小)
2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)
首先他的使用有严格的使用前提
必须是 X趋近而不是N趋近(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件
(还有一点 数列极限的'n当然是趋近于正无穷的 不可能是负无穷)
必须是 函数的导数要存在(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死)
必须是 0比0 无穷大比无穷大
当然还要注意分母不能为0
落笔他 法则分为3中情况
1 0比0 无穷比无穷 时候 直接用
2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了
30的0次方 1的无穷次方 无穷的0次方
对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)
3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 )E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则 最大项除分子分母看上去复杂处理很简单
5无穷小于有界函数的处理办法
面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了
6夹逼定理(主要对付的是数列极限)
这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。
7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)
8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。 这两个很重要 对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式
(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)
11 还有个方法 ,非常方便的方法
就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的x的x次方 快于 x 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢)当x趋近无穷的时候 他们的比值的极限一眼就能看出来了
12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中
13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的
14还有对付数列极限的一种方法,
就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。
15单调有界的性质
对付递推数列时候使用 证明单调性
16直接使用求导数的定义来求极限 ,
(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)
(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义)
★数列
★数列教案
★总结方法
文档为doc格式