下面是小编为大家整理的几何证明选讲,本文共12篇,供大家参考借鉴,希望可以帮助您。

篇1:几何证明选讲
高中数学选修4-1知识点总结
平行线等分线段定理
平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。
推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。平分线分线段成比例定理
平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。相似三角形的判定及性质
相似三角形的判定:
定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似系数)。
由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似。
预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。
判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。简述为:两角对应相等,两三角形相似。高中复习提纲网 /
判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的'两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。
判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。
引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;
(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。
定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比例,那么这两个直角三角形相似。
相似三角形的性质:
(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;
(2)相似三角形周长的比等于相似比;
(3)相似三角形面积的比等于相似比的平方。
相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。直角三角形的射影定理
射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。
圆周定理
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。
圆心角定理:圆心角的度数等于它所对弧的度数。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。圆内接四边形的性质与判定定理
定理1:圆的内接四边形的对角互补。
定理2:圆内接四边形的外角等于它的内角的对角。
圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。
推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。圆的切线的性质及判定定理 高中复习提纲网 /
切线的性质定理:圆的切线垂直于经过切点的半径。
推论1:经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。弦切角的性质
弦切角定理:弦切角等于它所夹的弧所对的圆周角。与圆有关的比例线段
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
篇2:几何证明选讲
新课标高考试题应对策略之一
―――几何证明选讲题解体攻略
赵栋先
20,河南省的新课标卷给人以耳目一新的感觉,尤其是他的几何证明选讲问题,命题人确实下了很大功夫,该题分两问,第一问考查四点共圆问题,难度不是很大,但是应用了一元二次方程根与系数关系的知识,应用了相似三角形的证明,第二问是考察四边形的外接圆半径问题,难度还是有的,很多同学理解不透外接圆的本质,所以无从下手解决。
请先看题:
(22)(本小题满分10分)选修4-1:几何证明选讲如图, , 分别为 的边 , 上的点,且不与 的顶点重合。已知 的长为m,的长为n,AD, 的长是关于 的方程 的两个根。
(Ⅰ)证明: , , , 四点共圆;
(Ⅱ)若 ,且 ,求 , , , 所在圆的半径。
第一问解法:
证明策略一:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
因为 , 的长是关于 的方程 的两个根.
所以 ,
因为 的长为 , 的长为 ,所以 .
连接 ,根据题意,在 和 中,
因为,
即 ,又 ,
从而 .
因此,
所以 , , , 四点共圆.
证明策略二:把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的`四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)
事实上,以上定理就是割线定理的逆定理,即托勒密定理的逆定理,先让我们证明他的正确性。
E
D
B
C
A
已知:在四边形BCDE中,延长BE边和CD边交于A点,
若AExAB=ADxAC ,求证:B,C,D,E四点共圆。
证明:∵AD・AB=AE・AC,
∴ =
又∵∠A=∠A
∴△AED∽△ABC
∴∠AED=∠B
根据圆内接四边形判定定理知,B,C,D,E四点共圆。
这个结论,即为托勒密定理的逆定理,我们可以利用它证明第一问:
因为 , 的长是关于 的方程 的两个根.
所以 ,
因为 的长为 , 的长为 ,所以
所以 =AE・AC
根据托勒密定理的逆定理,B,C,D,E四点共圆。
对于第一问来说,我们只要平时多积累方法,总是可以解决的,但是对于托勒密定理的逆定理,大纲中没有要求掌握,我们可以根据自己的基础,有选择的去掌握。
下面我们来解决第二问:
第二问是在第一问四点共圆的基础上,求这四个点所在圆的半径。
解决策略一:我们可以根据圆内接四边形圆心的性质,把圆心做出来,圆心到任一顶点的连线长度即为半径这个思路来解题。
知识联系:那么,圆内接四边形的圆心究竟有什么性质呢?让我们先来考虑一下三角形的外接圆圆心的性质,我们知道,三角形外接圆圆心是各条边垂直平分线的交点,
那么圆内接四边形的圆心是否也有相同的性质呢?答案是一定的。原因很简单:圆内接四边形的圆心到四边形各个顶点的距离相等,则到一条线段两个端点距离相等的点的集合是什么呢?很明显,这样的集合是线段的中垂线,那么到四边形四条边的定点相等的点的集合一定是四条边中垂线的交点了,这个问题一旦解决,第一问的圆心问题就简单了。我们看半径的求解方法。
篇3:几何证明选讲试题
知识联系:那么,圆内接四边形的圆心究竟有什么性质呢?让我们先来考虑一下三角形的外接圆圆心的性质,我们知道,三角形外接圆圆心是各条边垂直平分线的交点,
那么圆内接四边形的圆心是否也有相同的性质呢?答案是一定的。原因很简单:圆内接四边形的圆心到四边形各个顶点的距离相等,则到一条线段两个端点距离相等的点的集合是什么呢?很明显,这样的集合是线段的中垂线,那么到四边形四条边的定点相等的点的集合一定是四条边中垂线的交点了,这个问题一旦解决,第一问的圆心问题就简单了。我们看半径的求解方法。
(Ⅱ)当 时,方程 的两根为 , .
故 , .
取 的中点 , 的中点 ,分别过 作 的垂线,两垂线相交于 点,
连接 .因为 , , , 四点共圆,所以 , , , 四点所在圆的圆心为 ,半径为 .
由于 ,故 , .
, .所以 .、
该解法是在做出圆心的基础上求半径的,考查高中数学重点知识垂直平分线的问题,很有新意。那么该问还有没有其他的解法?有,请看・・・・・・
解决策略二:解该题的第一个方法用到数学中基本方法和基本运算,但有点繁琐,思路也不太好打开,有没有不用做出圆心直接求半径的方法?有!
知识联系:(1)四边形BCDE的外接圆是不是连接四边形中任意三点的三角形的外接圆?答案是肯定的!
(2)三角形的外接圆半径与解三角形中的.哪个定理联系很紧密?
――正弦定理
正弦定理的表达形式: = = =2R,其中这里边的R,就是三角形的外接圆半径。那么,我们只要找到三角形的一边长和该边所对的角,就能将半径求出,而不需做出圆心。
解题过程:在△ABC中,连接DE、CD,根据AE=4,AC=6易知 , .
则DE2 =AE2+AD2 所以DE=2 ,又在△ADC中,sin∠ACD= = =
所以在三角形DCE中, =2R=10 所以R=5 .
这种解题方法的掌握,是在有了扎实的基本功基础上的巧妙联想和合理推测证明,有利于学生知识体系的构建和基础知识的提升。
解决策略三:利用△ABC为直角三角形这个有利条件,联想到解析几何中圆的标准方程的求法,建立二维x-o-y坐标系,利用解析几何的手段解决!
知识联系:圆的一般方程:x2+y2+Dx+Ey+F=0
圆的标准方程:(x-a)2+(y-b)2=r2
Y
X
解题过程:在Rt△ABC中,以A点为原点,以AB为x轴,以AC为y轴,建立直角坐标系x-o-y系
根据AE=4,AC=6易知 , .
则C(0,6), E(0,4), D(2,0), B(12,0)
设圆的一般方程为 x2+y2+Dx+Ey+F=0,
将C、D、E三点的坐标带入,得
36+6E+F=0 D=-14
16+4E+F=0 E=-10
4+2D+F=0 F=24
转化成标准方程为(x-7)2+(y-5)2=50从而得到半径是5 .
事实上,这个方法本身不难,但难就难在如何从几何证明选讲中迅速进行知识迁移,转化成解析几何问题,而这里的转移,恰恰是解决这个问题的关键所在。
统观这些解题方法,从本质上来看都是组成高中数学知识框架的重要部分,并且都要求掌握,所以要求我们在平时的学习中夯实基础,同时在学习的过程中还要将知识进行整理,让知识联系起来,别且要发挥我们想像的翅膀,做到深思熟虑,大胆联想,合理推测,正确证明,这样才能做到对知识的整体把握,才能举一反三,这样学起数学来就易如反掌了!
篇4:几何证明选讲的试题
几何证明选讲的试题
几何证明选讲的试题
知识联系:那么,圆内接四边形的圆心究竟有什么性质呢?让我们先来考虑一下三角形的外接圆圆心的性质,我们知道,三角形外接圆圆心是各条边垂直平分线的交点,
那么圆内接四边形的圆心是否也有相同的性质呢?答案是一定的,几何证明选讲试题。原因很简单:圆内接四边形的圆心到四边形各个顶点的距离相等,则到一条线段两个端点距离相等的点的集合是什么呢?很明显,这样的集合是线段的中垂线,那么到四边形四条边的定点相等的点的集合一定是四条边中垂线的交点了,这个问题一旦解决,第一问的圆心问题就简单了。我们看半径的求解方法。
(Ⅱ)当 时,方程 的两根为 , .
故 , .
取 的中点 , 的中点 ,分别过 作 的垂线,两垂线相交于 点,
连接 .因为 , , , 四点共圆,所以 , , , 四点所在圆的圆心为 ,半径为 .
由于 ,故 , .
, .所以 .、
该解法是在做出圆心的基础上求半径的',考查高中数学重点知识垂直平分线的问题,很有新意。那么该问还有没有其他的解法?有,请看······
解决策略:解该题的第一个方法用到数学中基本方法和基本运算,但有点繁琐,思路也不太好打开,有没有不用做出圆心直接求半径的方法?有!
知识联系:(1)四边形BCDE的外接圆是不是连接四边形中任意三点的三角形的外接圆?答案是肯定的!
(2)三角形的外接圆半径与解三角形中的哪个定理联系很紧密?
——正弦定理
正弦定理的表达形式: = = =2R,其中这里边的R,就是三角形的外接圆半径,证明范文《几何证明选讲试题》。那么,我们只要找到三角形的一边长和该边所对的角,就能将半径求出,而不需做出圆心。
解题过程:在△ABC中,连接DE、CD,根据AE=4,AC=6易知 , .
则DE2 =AE2+AD2 所以DE=2 ,又在△ADC中,sin∠ACD= = =
所以在三角形DCE中, =2R=10 所以R=5 .
这种解题方法的掌握,是在有了扎实的基本功基础上的巧妙联想和合理推测证明,有利于学生知识体系的构建和基础知识的提升。
解决策略:利用△ABC为直角三角形这个有利条件,联想到解析几何中圆的标准方程的求法,建立二维x-o-y坐标系,利用解析几何的手段解决!
知识联系:圆的一般方程:x2+y2+Dx+Ey+F=0
圆的标准方程:(x-a)2+(y-b)2=r2
Y
X
解题过程:在Rt△ABC中,以A点为原点,以AB为x轴,以AC为y轴,建立直角坐标系x-o-y系
根据AE=4,AC=6易知 , .
则C(0,6), E(0,4), D(2,0), B(12,0)
设圆的一般方程为 x2+y2+Dx+Ey+F=0,
将C、D、E三点的坐标带入,得
36+6E+F=0 D=-14
16+4E+F=0 E=-10
4+2D+F=0 F=24
转化成标准方程为(x-7)2+(y-5)2=50从而得到半径是5 .
事实上,这个方法本身不难,但难就难在如何从几何证明选讲中迅速进行知识迁移,转化成解析几何问题,而这里的转移,恰恰是解决这个问题的关键所在。
统观这些解题方法,从本质上来看都是组成高中数学知识框架的重要部分,并且都要求掌握,所以要求我们在平时的学习中夯实基础,同时在学习的过程中还要将知识进行整理,让知识联系起来,别且要发挥我们想像的翅膀,做到深思熟虑,大胆联想,合理推测,正确证明,这样才能做到对知识的整体把握,才能举一反三,这样学起数学来就易如反掌了!
篇5:初中几何证明
初中几何证明
初中几何证明因为ABCD菱形
所以AD=DC 角cdb=角adb
因为AP=AP
所以DCP全等 DAP
所以PC=PA AP=PC 角DCP=角DAP
2因为ABCD菱形
所以DF平行ap
所以角BAP=角F
因为 角DCP=角DAP
所以角PCE=角BAP
所以角F=角PCE
因为角CPE=角 CPF
所以三角形PCE相似于三角形PFC
因为PC=AP
所以AP2=PEXPF
2
CE=EF=4
证明:
因为:CE⊥AD
所以:
因为:AD平分∠CAB
所以:
在三角形AEC和三角形AEF中
AE=AE
所以:三角形AEC全等于三角形AEF
所以:CE=EF
因为,∠ACB=90°,CE⊥AD
所以:三角形ACE相似于三角形DEC
所以:CE*CE=AE*AD=16
所以:CE=4
所以:CE=EF=4
3
D是RtΔABC的斜边BC上一点,且ΔABD与ΔACD的'内切圆相等,S表示RtΔABC的面积。求证:S=AD^2。
对于任意ΔABC,D是边BC上一点,如果ΔABD与ΔACD的内切圆相等,则有
AD^2=[(CA+AB)^2-BC^2]/4 (1)
下面先证这一命题。设AD=x,则
BD/CD=S(ABD)/S(ACD)=(AB+x+BD)/(CA+x+CD) (2)
由余弦定理得:
BD/CD=(x^2-AB^2+BD^2)/(-x^2+CA^2-CD^2) (3)
又BD+CD=BC (4)
根据以上三式,可推得(1)式.
因为ΔABC是直角三角形,BC为斜边,由勾股定理得:
BC^2=CA^2+AB^2, (5)
又RtΔABC的面积S=CA*AB/2。 (6)
根据(1),(5),(6)式得:
AD^2=[(CA+AB)^2-BC^2]/4=CA*AB/2=S
4
证明 设S1,S2分别表示ΔABD与ΔACD的面积.
作DE⊥AB于E,DF⊥CA于F。设AB=c,CA=b,BD=n,CD=m。
由相似三角形知:
DE=nb/(n+m), DF=mc/(n+m),
在RtΔADE中,由勾股定理得:
AD^2=(n^2*b^2+m^2*c^2)/(n+m)^2。
因为ΔABD与ΔACD的内切圆半径相等,即
2S1/(AD+c+n)=2S2/(AD+b+m)
且S1:S2=n:m,
有n/(AD+c+n)=m/(AD+b+m)
<==>AD(m-n)=nb-mc
若m=n,则得 b=c,S=AD^2 显然成立。
若m≠n,则
(nb-mc)^2/(m-n)^2=(n^2*b^2+m^2*c^2)/(n+m)^2。
<==>n^2*b^2+m^2*c^2=bc*(n+m)^2/2,
即得 S=AD^2。
篇6:几何证明定理
几何证明定理
几何证明定理一.直线与平面平行的(判定)
1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.
2.应用:反证法(证明直线不平行于平面)
二.平面与平面平行的(判定)
1. 判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行
2.关键:判定两个平面是否有公共点
三.直线与平面平行的(性质)
1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行 2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线
四.平面与平面平行的(性质)
1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行
2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行
五:直线与平面垂直的(定理)
1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)
六.平面与平面的垂直(定理)
1.一个平面过另一个平面的垂线,则这两个平面垂直
(或者做二面角判定)
2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换
七.平面与平面垂直的(性质)
1.性质一:垂直于同一个平面的两条垂线平行
2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)
以上,是立体几何的定理和性质整理.是一定要记住的基本!!
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
48定理 四边形的.内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形。
篇7:高中几何证明
高中几何证明
高中几何证明一、
已知平行四边形ABCD,过ABC三点的圆O1,分别交AD.BD于E.F、过CDF三点的圆O2交AD于G 。设圆O1.O2半径分别为R,r。
1.求证AC^2=AG*AD
2.AD:EG=R^2:r^2
连接AC、GC。利用两个圆转化角的关系,
∠AGC = 180 - ∠DGC = 180 - ∠DFC = ∠BFC = ∠BAC = ∠ACD
于是两个三角形ACG和ADC相似。第一问由此立得。
同样利用上述相似,∠GCA = ∠ADC = ∠ABC。于是由“弦切角等于圆周角”,说明GC与圆O1相切。于是GC^2 = GE*GA。
在两个圆中利用正弦定理,不难发现R/r = BC/CD = AD/CD。此时
AD/EG = AG*AD/AG*EG = AC^2/GC^2 = (AC/GC)^2 = (AD/CD)^2
最后一个等式仍然源于前述相似
二、
因为不能上传图片,,所以口叙述一下,,高手们都可以想象出来吧
在一个圆的圆上选不重合的四点,,,连接成一个非平行四边形非梯形的四边形,,也就是内切四边形吧,,然后延长其中两条边,,交于点A,,再延长另外两条边交于点B,,然后过A点做圆的两条切线,,切线交圆于点C和D,,怎样证明B,C,D共线?
用调和点列的方法较为容易 但方法的掌握不在高中的`要求内
下面采用简单的定理来证明 比较麻烦
首先,设圆内接四边形为四边形ABCD,AB与DC交于点P,AD与BC交于点Q,过点Q做圆O的两条切线,切点分别为点E和点F.
再设AC与BD交于点R,下面来证明一个更强的结论:P、F、R、E共线.
设OQ交EF于L,PR交AQ于M,EF交AQ于点M',连结OF、OE、AL、OA、OD,并延长AL到S.
由Menelaus定理,
AB/BP×PC/CD×DQ/QA=1 -------------------------------------------------------------------------------1
由Ceva定理,
AB/BP×PC/CD×DM/MA=1 -------------------------------------------------------------------------------2
由1、2,
DM/MA=DQ/QA --------------------------------------------------------------------------------*
另一方面,
由射影定理,
QE^2=QL×QO ----------------------------------------------------------------------------------------------3
由切割线定理,
QE^2=QD×QA ----------------------------------------------------------------------------------------------4
由3,4,
QL*QO=QD*QA
所以O,L,D,A四点共圆
篇8:高中几何证明定理
高中几何证明定理
高中几何证明定理一.直线与平面平行的(判定)
1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.
2.应用:反证法(证明直线不平行于平面)
二.平面与平面平行的(判定)
1. 判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行
2.关键:判定两个平面是否有公共点
三.直线与平面平行的(性质)
1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行 2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线
四.平面与平面平行的(性质)
1.性质:如果两个平行平面同时和第三个平面相交,那么他们的.交线平行
2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行
五:直线与平面垂直的(定理)
1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)
六.平面与平面的垂直(定理)
1.一个平面过另一个平面的垂线,则这两个平面垂直
(或者做二面角判定)
2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换
七.平面与平面垂直的(性质)
1.性质一:垂直于同一个平面的两条垂线平行
2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)
以上,是立体几何的定理和性质整理.是一定要记住的基本!。
想要变-态的这里多的是- -
欧拉定理&欧拉线&欧拉公式(不一样)
九点圆定理
葛尔刚点
费马定理(费马点(也叫做费尔马点))
海伦-公式
共角比例定理
张角定理
帕斯卡定理
曼海姆定理
卡诺定理
芬斯勒-哈德维格不等式(几何的)
外森匹克不等式(同上)
琴生不等式(同上)
塞瓦定理
梅涅劳斯定理
斯坦纳定理
托勒密定理
分角线定理(与角分线定理不同)
斯特瓦尔特定理
切点弦定理
西姆松定理。
篇9:几何法证明不等式
[(a+b)/2]^2<(a^2+b^2)/2
(a,b∈R,且a≠b)
设一个正方形的边为C,有4个直角三角形拼成这个正方形,设三角形的一条直角边为A,另一条直角边为B, (B>A) A=B,刚好构成,若A不等于B时,侧中间会出现一个小正方形,所以小正方形的面积为(B-A)^2,经化简有(B+A)^2=4AB,所以有((A+B)/2)^2=AB,又因为(A^2+B^2)/2>=AB,所以有((A+B)/2)^2<=(A^2+B^2)/2,又因为A不等与B,所以不取等号
可以在直角三角形内解决该问题
=[(a+b)/2]^2-(a^2+b^2)/2
=<2ab-(a^2+b^2)>/4
=-(a-b)^2/4
<0
能不能用几何方法证明不等式,举例一下。
比如证明 SIN x不大于x (x范围是0到 兀/2,闭区间)
做出一个单位圆,
以O为顶点,x轴为角的一条边
任取第一象限一个角x,
它所对应的弧长就是1*x=x
那个角另一条边与圆有一个交点
交点到x轴的`距离就是 SIN x
因为点到直线,垂线段长度最小,
所以SIN x 小于等于 x,当且尽当x=0时,取等
已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;
能给出其他方法的就给分
(a1+a2+...+an)/n≥(a1a2...an)^(1/n)
一个是算术,一个是几何。人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^
搞笑归搞笑,我觉得可以这样做,题目结论相当于证
(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0
我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)
我们考虑各元偏导都等于0,得到方程组,然后解出
a1=a2=……=an
再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。
要的是数学法证明也就是代数法 不是用向量等几何法证明.....有没有哪位狠人帮我解决下
【柯西不等式的证明】 二维形式的证明
(a^2+b^2)(c^2+d^2)(a,b,c,d∈R)
=a^2・c^2 +b^2・d^2+a^2・d^2+b^2・c^2
=a^2・c^2 +2abcd+b^2・d^2+a^2・d^2-2abcd+b^2・c^2
=(ac+bd)^2+(ad-bc)^2
≥(ac+bd)^2,等号在且仅在ad-bc=0即ad=bc时成立。
一般形式的证明
求证:(∑ai^2)(∑bi^2) ≥ (∑ai・bi)^2
证明:
当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立
令A=∑ai^2B=∑ai・biC=∑bi^2
当a1,a2,…,an中至少有一个不为零时,可知A>0
构造二次函数f(x)=Ax^2+2Bx+C,展开得:
f(x)=∑(ai^2・x^2+2ai・bi・x+bi^2)=∑ (ai・x+bi)^2≥0
故f(x)的判别式△=4B^2-4AC≤0,
移项得AC≥B,欲证不等式已得证。
篇10:初一下册几何证明
初一下册几何证明
初一下册几何证明1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.
过F点分别作AC,BC上的高交于P,Q点.
根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.
过D点做BC上的高交BC于O点.
过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.
则X=DO,Y=HY,Z=DJ.
因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD
同理可证FP=2DJ。
又因为FQ=FP,EM=EN.
FQ=2DJ,EN=2HD。
又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又因为
FQ=2DJ,EN=2HD。所以DO=HD+JD。
因为X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.
在△BCI)和△CDE中
∵BC=CD, ∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ ΔCDE
∴BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN
∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN
∴ΔBDM≌ ΔCNE ∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=( )
3°
因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以 ∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQ AB=AD ∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ ∠MAB=∠DAQ
∴∠MAP=∠MAB+∠PAB=45度=∠PAQ
∵∠MAP=∠PAQ
AM=AQ AP为公共边
∴三角形AMP≌三角形AQP
∴MP=PQ
∴MB+PB=PQ
∴PQ=PB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP
∵直角△BMP∽△CBP
∴PB/PC=MB/BC
∵MB=BN
正方形BC=DC
∴PB/PC=BN/CD
∵∠PBC=∠PCD
∴△PBN∽△PCD
∴∠BPN=∠CPD
∵BP⊥MC
∴∠BPN+∠NPC=90°
∴∠CPD+∠NPC=90°
∴DP⊥NP
2
1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.
过F点分别作AC,BC上的高交于P,Q点.
根据角平分线上的点到角的`2边距离相等可以知道FQ=FP,EM=EN.
过D点做BC上的高交BC于O点.
过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.
则X=DO,Y=HY,Z=DJ.
因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD
同理可证FP=2DJ。
又因为FQ=FP,EM=EN.
FQ=2DJ,EN=2HD。
又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又因为
FQ=2DJ,EN=2HD。所以DO=HD+JD。
因为X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.
在△BCI)和△CDE中
∵BC=CD, ∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ ΔCDE
∴BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN
∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN
∴ΔBDM≌ ΔCNE ∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=( )
3°
因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以 ∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQ AB=AD ∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ ∠MAB=∠DAQ
∴∠MAP=∠MAB+∠PAB=45度=∠PAQ
∵∠MAP=∠PAQ
AM=AQ AP为公共边
∴三角形AMP≌三角形AQP
∴MP=PQ
∴MB+PB=PQ
∴PQ=PB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP
∵直角△BMP∽△CBP
∴PB/PC=MB/BC
∵MB=BN
正方形BC=DC
∴PB/PC=BN/CD
∵∠PBC=∠PCD
∴△PBN∽△PCD
∴∠BPN=∠CPD
∵BP⊥MC
∴∠BPN+∠NPC=90°
∴∠CPD+∠NPC=90°
∴DP⊥NP
篇11:初中几何题证明思路
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等
三、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五、证明线段的和、差、倍、分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和、差、倍、分
1.作两个角的和,证明与第三角相等。
2.作两个角的差,证明余下部分等于第三角。
3.利用角平分线的定义。
4.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明两线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
篇12:计划生育证明选篇
兹有我镇________村_______村民小组______________夫妇,生育_____男_____女,___落实__________手术措施。_____征收第______期社会抚养费。
特此证明
XX计生办
经办人:
________年月日
★面试题选
★选冠子
文档为doc格式