欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

怎么学好初中几何

时间:2022-05-23 14:18:33 其他范文 收藏本文 下载本文

【导语】以下是小编为大家准备的怎么学好初中几何(共8篇),欢迎大家前来参阅。

怎么学好初中几何

篇1:怎么学好初中几何

1.听得懂几何语言

几何语言按叙述形式可分为两种:文字语言,如“两个角互为余角”,“两条直线平行,同位角相等”;符号语言,如“∠1+∠2=90°”,“∵a∥b∴∠1=∠2”。

几何语言按用途可分为三种:1.描述语言,如“点C在线段AB上”,“射线OA经过点P”;2.作图语言,如“在线段AB的延长线上取一点C,使得CB=CA”;3.推理语言,如“∵AB∥CD∴∠1=∠2”。

2.要学好概念

首先弄清概念的三个方面:①定义--对概念的判断;②图形--对定义的直观形象描绘;③表达方法--对定义本质属性的反映.注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质……

3.看得懂几何图形

“几何是图形的王国”,这句话形象地说明了几何学是一们以图形为其研究对象的学科。正确掌握按照一定程序看图、做图的方法,是学好平面几何的重要一环。1.学会看图说话和读话画图2.识别有重叠部分的不同图形3.学会看懂图形尺寸的注法4.会正确地画图或作图5.动手制作数学模型

4.记得住公理定理

几何证明的依据都是已学过的公理、定理、定义,因此必须牢记它们的题设和结论,才能加以应用。

5.要进行直观思维

即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力.

6.要富于想像

有的问题既要凭借图形,又要进行抽象思维.比如,几何中的“点”没有大小,只有位置.现实生活中的点和实际画出来的点就有大小.所以说,几何中的“点”只存在于大脑思维中.“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中.

7.要掌握几何证题的推理格式

数学中推理证明的书写格式有许多中,常用的最基本的是演绎法,它是从已知条件出发,根据已经学过的数学概念、定理、公理等顺着推理,逐步推出求证所需结论。这种证题的思路又叫“综合法”。课本中的定理、例题多数采用这种方法。它的书面表达常用的语言是“因为…,所以…”;常用的符号是“∵…,∴…”。在几何证题走出第一步时,首先要掌握好这种格式,要规范化。

8.要学会理顺证题思路

怎样学会理顺证题思路呢?主要靠听课((听老师讲证明前的分析),看书,练习过程中积极思考和逐步积累,对任何一道题,不仅要弄明白题目是怎样证的,而更重要的是怎样想出来的,只有经常这样做,才能使自己思维开阔。

9.要敢做题

很多人看到一道几何题不敢下手,其实只要你试着做,就会有出路。做题要敢加辅助线,辅助线是做题的关键,一般有了辅助线,题就迎刃而解了。

10.要多做题

心里有题库,考试是自然不会慌。但做题不是记答案,而是领略过程中的方法,思路,这是一道题最重要的东西。

11.要勤反思、勤总结

每次做好一道几何证明题,应及时反思:本证题用了哪些定理、公理?是什么类型(证线段相等、角相等、三角形全等…)的题目?添加了什么辅助线?有没有其它证法?这样才能达到举一反三、触类旁通的效果,才不至于陷入题海不能自拔。

12.调整心态

记住,你面对的不是一道数学题,而是有意思的图形。如果你脱离了对题的恐惧,也许解题会变得简单一些。

13.在平时的学习过程中,要做到以下六点

细心观察--看一看动手实验--量一量大胆猜想--猜一猜

合作交流--议一议合情推理--证一证总结反思--想一想

篇2:初中几何怎么学好

初中几何学习方法

(一)对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。例如我们在证明相似的时候,如果利用两边对应成比例及其夹角相等的方法时,必须注意所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节我们必须在平时就要引起足够的重视并且牢固掌握,只有这样才是学好几何的基础。

(二)善于归纳总结,熟悉常见的特征图形。举个例子,已知A,B,C三点共线,分别以AB,BC为边向外作等边△ABD和等边△BCE,如果再没有其他附加条件,那么你能从这个图形中找到哪些结论?

我们通过很多习题能够总结出:一般情况下题目中如果有两个有公共顶点的等边三角形就必然会出现一对旋转式的全等三角形的结论,这样我们很容易得出△ABE≌△DBC,在这对全等三角形的基础上我们还会得出△EMB≌△CNB,△MBN是等边三角形,MN∥AC等主要结论,这些结论也会成为解决其它问题的桥梁。在几何的学习中这样典型的图形很多,要善于总结。

(三)熟悉解题的常见着眼点,常用辅助线作法,把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。

例如:在一个非直角三角形中出现了特殊的角,那你应该马上想到作垂直构造直角三角形。因为特殊角只有在特殊形中才会发挥作用。再比如:在圆中出现了直径,马上就应该想到连出90°的圆周角。遇到梯形的计算或者证明问题时,首先我们心里必须清楚遇到梯形问题都有哪些辅助线可作,然后再具体问题具体分析。举个例子说,如果题目中说到梯形的腰的中点,你想到了什么?你必须想到以下几条:第一你必须想到梯形的中位线定理;第二你必须想到可以过一腰的中点平移另一腰;第三你必须想到可以连接一个顶点和腰的中点然后延长去构造全等三角形。只有这几种可能用到的辅助线烂熟于心,我们才能很好的解决问题。其实很多时候我们只要抓住这些常见的着眼点,试着去做了,那么问题也就迎刃而解了。另外只要我们想到了,一定要肯于去尝试,只有你去做了才可能成功。

(四)考虑问题全面也是学好几何至关重要的一点。在几何的学习中,经常会遇到分两种或多种情况来解的问题,那么我们怎么能更好的解决这部分问题呢?这要靠平时的点滴积累,对比较常见的分情况考虑的问题要熟悉。例如说到等腰三角形的角要考虑是顶角还是底角,说到等腰三角形的边要考虑是底还是腰,说到过一点作直线和圆相交,要考虑点和圆有三种位置关系,所以要画出三种图形。这样的情况在几何的学习中是非常常见的,在这里不一一列举,但大家在做题时一定要注意考虑到是否要分情况考虑。很多时候是你平常注意积累了,你心里有了这个问题,你做题时才会自然而然的想到。

学好初中几何技巧

一、一定要看懂题。读题,明确条件这是基本的,还在读题的基础上做出一定的分析和思考,更深一点是明白出题人的意图。比如这道题,当你读到梯形并且AB=CD,需要想到什么?等腰梯形,但止步与此是不行的,这个时候脑子中要过一遍等腰梯形的各种性质,比如底角相等,比如对角线相等,比如对角线分出两个等腰三角形,这些是学习的时候就应该掌握的基础,每做一道相关的题目都要能快速的过一遍,一个是熟悉知识、另一个是能够调用相关资源解决问题。相同的看到60度应该能意识到这里有等边三角形。建议各位同学每读一道题都能做出上述思考,并长期坚持,你会发现对解决各种难题会很有帮助。

二、要对常见的模型有认识,会对常见的考点有了解,我想对同学们来说需要做一些记忆。初中阶段无非四种:等腰三角形三线合一、倍长中线构造全等、直角三角形斜边中线、中位线。

三、要尝试。经过了上述2步,其实仍然没有解决问题,但已经做好了准备,那么接下来到底该怎么做?去试吧!思考是什么?对多数人来说就是尝试、错误、反复尝试、正确这样一个过程,不要去追求一下子得到答案,把每一个方法都试试,一定会有一个方法可以解决问题。比如能不能倍长中线呢?有的可以成功,有的会失败,但经过尝试之后,哪怕你没有解决问题,你对问题的思考也是非常深入的,提升也是会非常快的。

篇3:怎么学好初中几何

1、对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题

例如我们在证明相似的时候,如果利用两边对应成比例及其夹角相等的方法时,必须注意所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节我们必须在平时就要引起足够的重视并且牢固掌握,只有这样才是学好几何的基础。

2、善于归纳总结,熟悉常见的特征图形

举个例子,已知A,B,C三点共线,分别以AB,BC为边向外作等边△ABD和等边△BCE,如果再没有其他附加条件,那么你能从这个图形中找到哪些结论?

如果我们通过很多习题能够总结出:一般情况下题目中如果有两个有公共顶点的等边三角形就必然会出现一对旋转式的全等三角形的结论,这样我们很容易得出△ABE≌△DBC,在这对全等三角形的基础上我们还会得出△EMB≌△CNB,△MBN是等边三角形,MN∥AC等主要结论,这些结论也会成为解决其它问题的桥梁。在几何的学习中这样典型的图形很多,要善于总结。

3、熟悉解题的常见着眼点,常用辅助线作法

把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。例如:在一个非直角三角形中出现了特殊的角,那你应该马上想到作垂直构造直角三角形。因为特殊角只有在特殊形中才会发挥作用。再比如:在圆中出现了直径,马上就应该想到连出90°的圆周角。遇到梯形的计算或者证明问题时,首先我们心里必须清楚遇到梯形问题都有哪些辅助线可作,然后再具体问题具体分析。

举个例子说,如果题目中说到梯形的腰的中点,你想到了什么?你必须想到以下几条:第一你必须想到梯形的中位线定理;第二你必须想到可以过一腰的中点平移另一腰;第三你必须想到可以连接一个顶点和腰的中点然后延长去构造全等三角形。只有这几种可能用到的辅助线烂熟于心,我们才能很好的解决问题。其实很多时候我们只要抓住这些常见的着眼点,试着去做了,那么问题也就迎刃而解了。另外只要我们想到了,一定要肯于去尝试,只有你去做了才可能成功。

4、考虑问题全面也是学好几何至关重要的一点

在几何的学习中,经常会遇到分两种或多种情况来解的问题,那么我们怎么能更好的解决这部分问题呢?这要靠平时的点滴积累,对比较常见的分情况考虑的问题要熟悉。例如说到等腰三角形的角要考虑是顶角还是底角,说到等腰三角形的边要考虑是底还是腰,说到过一点作直线和圆相交,要考虑点和圆有三种位置关系,所以要画出三种图形。这样的情况在几何的学习中是非常常见的,在这里不一一列举,但大家在做题时一定要注意考虑到是否要分情况考虑。很多时候是你平常注意积累了,你心里有了这个问题,你做题时才会自然而然的想到。

初中数学几何学习注意问题

1、多做题,在起步初期,多见一些题,对一些模型有初步认识。

2、多总结,尽量在老师的帮助下能够总结出一些模型的主要辅助线做法和解题方法。

3、多应用,多用模型解决问题,不要没有方法的撞大运,要根据图形特点思考解法。

4、多完善,不断做题总会有新的知识添加到已有的模型体系中来,不断壮大自己的知识树。

5、多思考,对于任何一道题都有可能存在不止一种方法,每种方法涉及到的模型不尽相同,要能够通过一题多解发现模型之间的相互关系,增强自己对模型的理解深度。

篇4:初中数学几何怎么学好

初中数学几何学习方法

(一)对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。例如我们在证明相似的时候,如果利用两边对应成比例及其夹角相等的方法时,必须注意所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节我们必须在平时就要引起足够的重视并且牢固掌握,只有这样才是学好几何的基础。

(二)善于归纳总结,熟悉常见的特征图形。举个例子,已知A,B,C三点共线,分别以AB,BC为边向外作等边△ABD和等边△BCE,如果再没有其他附加条件,那么你能从这个图形中找到哪些结论?

我们通过很多习题能够总结出:一般情况下题目中如果有两个有公共顶点的等边三角形就必然会出现一对旋转式的全等三角形的结论,这样我们很容易得出△ABE≌△DBC,在这对全等三角形的基础上我们还会得出△EMB≌△CNB,△MBN是等边三角形,MN∥AC等主要结论,这些结论也会成为解决其它问题的桥梁。在几何的学习中这样典型的图形很多,要善于总结。

(三)熟悉解题的常见着眼点,常用辅助线作法,把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。

(四)考虑问题全面也是学好几何至关重要的一点。在几何的学习中,经常会遇到分两种或多种情况来解的问题,那么我们怎么能更好的解决这部分问题呢?这要靠平时的点滴积累,对比较常见的分情况考虑的问题要熟悉。例如说到等腰三角形的角要考虑是顶角还是底角,说到等腰三角形的边要考虑是底还是腰,说到过一点作直线和圆相交,要考虑点和圆有三种位置关系,所以要画出三种图形。这样的情况在几何的学习中是非常常见的,在这里不一一列举,但大家在做题时一定要注意考虑到是否要分情况考虑。很多时候是你平常注意积累了,你心里有了这个问题,你做题时才会自然而然的想到。

学好初中几何方法

(一) 语言关

每一行当有每一行当的语言,叫做“行话”。平面几何也有它的语言特点。要跨入平面几何学习的大门,首先要过好“语言关”。

几何语言按叙述形式可分为两种:文字语言,如“两个角互为余角”,“两条直线平行,同位角相等”;符号语言,如 “∠1+∠2=90°”,“∵a∥b∴∠1=∠2”。同学们要当好文字语言和符号语言之间的“翻译官”,要努力尽快地掌握符号语言的使用和表达,学会把文 字语言译成符号语言,这也是几何证题的关键。

几何语言按用途可分为三种:1.描述语言,如“点C在线段AB上”,“射线OA经过点P”;2.作图语言,如“在线段AB的延长线上取一点C,使得 CB=CA”;3.推理语言,如“∵AB∥CD∴∠1=∠2”。同学们要熟悉最基本的描述语言和最基本的作图语言。例如“点C在射线AB上”,“直线AB 与CD相交于点O”,“直线a、b、c两两相交”,“直线l经过点A”等等。再例如“连结A、B”,“过点A、B作直线”,“画线段AB=50px”,“在 射线OA上取一点P,使得OP=50px“,”过点A作直线l的垂线,垂足为O” 等等,还有“经过两点有且只有一条直线”。总之,数学语言是很讲究严谨美,同学们要养成读数学教科书的习惯,还要把课本中的范句摘录下来,反复使用,强化训练,尽快学会使用几何的“行话”,而不讲“土话”。

(二)推理关

新的课程标准对同学的推理能力提出如下要求:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理,落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论和质疑。在几何里,通过推理论证的训练,是学生发 展推理能力行之有效的手段。心理学家研究结果表明,同学们在13、14岁,正是由直觉思维向逻辑思维过渡的阶段。学习几何推理论证,也可以说是大家逻辑思维训练的良好起步。错过这一训练的黄金时间,势必影响逻辑思维能力的发展。

1.牢记课本中的公理、定理、定义及一些重要的例题、习题,记清它们的题设和结论。

几何证明的依据都是已学过的公理、定理、定义,因此必须牢记它们的题设和结论,才能加以应用。

2.要掌握几何证题的推理格式

数学中推理证明的书写格式有许多中,常用的最基本的是演绎法,它是从已知条件出发,根据已经学过的数学概念、定理、公理等顺着推理,逐步推出求证所需结论。这种证题的思路又叫“综合法”。课本中的定理、例题多数采用这种方法。它的书面表达常用的语言是“因为…,所以…”;常用的符号是“∵…,∴…”。 在几何证题走出第一步时,首先要掌握好这种格式,要规范化。

3.要理顺证题思路

怎样学会理顺证题思路呢?主要靠听课((听老师讲证明前的分析),看书,练习过程中积极思考和逐步积累,对任何一道题,不仅要弄明白题目是怎样证的,而更重要的是怎样想出来的,只有经常这样做,才能使自己思维开阔。

4.要勤反思、勤总结

(三)图形关

“几何是图形的王国”,这句话形象地说明了几何学是一们以图形为其研究对象的学科。正确掌握按照一定程序看图、做图的方法,是学好平面几何的重要一环。

1. 学会看图说话和读话画图

2. 识别有重叠部分的不同图形

3. 学会看懂图形尺寸的注法

4. 会正确地画图或作图

5. 动手制作数学模型

随着课程的逐步深入和进展,几何证题的内容和难点会不断增加。因此,学习一段后,要回顾总结:看自己学了哪些知识?在审题、推理、分析方面掌握了哪些方法?学习了哪些常用的辅助线?若有不足的地方,就要通过练习来补上,要使自己达到既能熟练掌握,又会灵活运用的程度才行。

学好初中几何注意事项

1、多做题,在起步初期,多见一些题,对一些模型有初步认识。

2、多总结,尽量在老师的帮助下能够总结出一些模型的主要辅助线做法和解题方法。

3、多应用,多用模型解决问题,不要没有方法的撞大运,要根据图形特点思考解法。

4、多完善,不断做题总会有新的知识添加到已有的模型体系中来,不断壮大自己的知识树。

5、多思考,对于任何一道题都有可能存在不止一种方法,每种方法涉及到的模型不尽相同,要能够通过一题多解发现模型之间的相互关系,增强自己对模型的理解深度。

篇5:怎么快速学好初中数学几何

一、概念关

初中几何将逻辑性与直观性相结合,由生产生活中的实际几何模型,抽象出数学教材上的几何概念,是九年义务教育教材的一大特色。因此,在教学中应尽可能地让学生先观察几何模型,形成感性认识,在此基础上,再给出数学名称,画出数学图形,定义图形,研究性质。

例如:在介绍“直线”这个不加定义的概念时可分为四步:

(1)展示一根拉得很紧的细线,让学生想一下铁路上的铁轨等,给学生一个实际模型的感性认识。

(2)给出数学名称,对于以上形象的线叫直线。

(3)给出定义:直线是向两方无限延伸的线。直线是描述性定义,只要认识理解“直”与“向两方无限延伸”,它无长短,无粗细,是理想中的直线。

(4)图形性质:“直线公理:过两点有且只有一条直线。”可举实例说明。一个概念经过以上四步,学生便会记忆深刻、所学知识落实到位。

二、语言关

几何语言的表现形式有三种:一是图形语言,就是我们研究的几何图形。如角、三角形、梯形等。二是文字语言,就是概念、定理、公理、或一个几何题用文字来表现的语言。三是符号语言:如:“//”“⊥”“△”等。这三种语言在几何中通常是并存的,有时又互相渗透,互相转化。教学中要对学生加强这三种几何语言的基本训练,要求每一位学生不仅能熟练地表达每一种语言,而且能根据解题或证题的需要,准确地将其中一种语言“翻译”成其它语言形式。对于几何语言的学习,要严谨、准确,尤其是三种几何语言的“互译”要熟练掌握,对于图形、文字、符号的使用要融汇贯通,这是学好几何的关键。

三、画图关

几何图形是学习研究的主要对象,画准图形是解(证)题的基础。画出正确符合题意的图形,往往会给学生留下深刻直观的印象,也给解(证)题带来清晰的思路。相反,不准确的图形,会给思考问题,解决问题带来错觉,甚至把思维引入歧途,把显而易见的问题变得无法入门。所以,要求学生在学习中,严格要求自己,认真地画出规范、准确的几何图形,千万不能怕麻烦或为了省事,不用学习用具而随便、徙手画图。

四、推理证明关:

几何的推理证明同代数相比,思维方式有明显区别,几何借助图形思考,言必有据。因此,学习几何推理证明,要注意以下几点:

(1)扎实认真地学好几何基础知识,是学好几何推理证明的前提条件,定义、公理、定理、推论是几何推导的理论依据。所以要深刻理解其含义,彻底弄清其题设和结论。只有这样,才能灵活、正确运用它们来推导证明,解决问题。

(2)要练好三项基本功:正确地识图与作图;会使用三种几何语言的互相“翻译”,具有准确熟练地进行口头、书面的语言表达。

(3)加强在学习中对证明推导的基本结构和格式的训练。

(4)在老师的指导下,注意对证明方法的训练。几何证明方法一般有两种:分析法和综合法,这两种方法结合起来,称为“逆推顺证”,即用分析法寻找证题思路,用综合法书写证题过程。

篇6:浅析如何学好初中几何的论文

浅析如何学好初中几何的论文

在初中数学的学习中,几何一直是大多数学生的难题,那么学习几何到底有没有捷径呢?我们又应该怎样来学习几何呢?

(一)对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。例如我们在证明相似的时候,如果利用两边对应成比例及其夹角相等的方法时,必须注意所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节我们必须在平时就要引起足够的重视并且牢固掌握,只有这样才是学好几何的基础。

(二)善于归纳总结,熟悉常见的特征图形。举个例子,如图,已知a,b,c三点共线,分别以ab,bc为边向外作等边△abd和等边△bce,如果再没有其他附加条件,那么你能从这个图形中找到哪些结论?

如果我们通过很多习题能够总结出:一般情况下题目中如果有两个有公共顶点的等边三角形就必然会出现一对旋转式的`全等三角形的结论,这样我们很容易得出△abe≌△dbc,在这对全等三角形的基础上我们还会得出△emb≌△cnb,△mbn是等边三角形,mn∥ac等主要结论,这些结论也会成为解决其它问题的桥梁。在几何的学习中这样典型的图形很多,要善于总结。

(三)熟悉解题的常见着眼点,常用辅助线作法,把大问题细化成各个小问题,从而各个击破,解决问题。

在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。例如,在一个非直角三角形中出现了特殊的角,那你应该马上想到作垂直构造直角三角形。因为特殊角只有在特殊形中才会发挥作用。再比如,在圆中出现了直径,马上就应该想到连出90°的圆周角。遇到梯形的计算或者证明问题时,首先我们心里必须清楚遇到梯形问题都有哪些辅助线可作,然后再具体问题具体分析。举个例子说,如果题目中说到梯形的腰的中点,你想到了什么?你必须想到以下几条,第一你必须想到梯形的中位线定理。第二你必须想到可以过一腰的中点平移另一腰。第三你必须想到可以连接一个顶点和腰的中点然后延长去构造全等三角形。只有这几种可能用到的辅助线烂熟于心,我们才能很好的解决问题。其实很多时候我们只要抓住这些常见的着眼点,试着去作了,那么问题也就迎刃而解了。另外只要我们想到了,一定要肯于去尝试,只有你去做了才可能成功。

(四)考虑问题全面也是学好几何至关重要的一点。在几何的学习中,经常会遇到分两种或多种情况来解的问题,那么我们怎么能更好的解决这部分问题呢?这要靠平时的点滴积累,对比较常见的分情况考虑的问题要熟悉。例如说到等腰三角形的角要考虑是顶角还是底角,说到等腰三角形的边要考虑是底还是腰,说到过一点作直线和圆相交,要考虑点和圆有三种位置关系,所以要画出三种图形。这样的情况在几何的学习中是非常常见的,在这里不一一列举,但大家在做题时一定要注意考虑到是否要分情况考虑。很多时候是你平常注意积累了,你心里有了这个问题,你作题时才会自然而然的想到。

总之,学好几何必须在牢固掌握基础知识的基础上注意平时的点滴积累,善于归纳总结,熟悉解题的常见着眼点,当然做到这些必须要有一定数量的习题积累,我们并不提倡题海战术,但做适量的习题还是必要的,只有量的积累才能达到质的飞跃。

篇7:怎么学好数学几何

(一)对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。例如我们在证明相似的时候,如果利用两边对应成比例及其夹角相等的方法时,必须注意所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节我们必须在平时就要引起足够的重视并且牢固掌握,只有这样才是学好几何的基础。

(二)善于归纳总结,熟悉常见的特征图形。举个例子,已知A,B,C三点共线,分别以AB,BC为边向外作等边△ABD和等边△BCE,如果再没有其他附加条件,那么你能从这个图形中找到哪些结论?

我们通过很多习题能够总结出:一般情况下题目中如果有两个有公共顶点的等边三角形就必然会出现一对旋转式的全等三角形的结论,这样我们很容易得出△ABE≌△DBC,在这对全等三角形的基础上我们还会得出△EMB≌△CNB,△MBN是等边三角形,MN∥AC等主要结论,这些结论也会成为解决其它问题的桥梁。在几何的学习中这样典型的图形很多,要善于总结。

(三)熟悉解题的常见着眼点,常用辅助线作法,把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。

篇8:怎么学好数学几何

(一)对基础知识的把握一定要牢固,在这个基础上我们才能谈如何学好的新问题。例如我们在证实相似的时候,假如利用两边对应成比例及其夹角相等的方法时,必须注重所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节我们必须在平时就要引起足够的重视并且牢固把握,只有这样才是学好几何的基础。

(二)善于归纳总结,熟悉常见的特征图形。

(三)熟悉解题的常见着眼点,常用辅助线作法,把大新问题细化成各个小新问题,从而各个击破,解决新问题。在我们对一个新问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决新问题的着眼点。例如,在一个非直角三角形中出现了非凡的角,那你应该马上想到作垂直构造直角三角形。因为非凡角只有在非凡形中才会发挥功能。再比如,在圆中出现了直径,马上就应该想到连出90°的圆周角。碰到梯形的计算或者证实新问题时,首先我们心里必须清楚碰到梯形新问题都有哪些辅助线可作,然后再具体新问题具体分析。

(四)考虑新问题全面也是学好几何至关重要的一点。在几何的学习中,经常会碰到分两种或多种情况来解的新问题,那么我们怎么能更好的解决这部分新问题呢?这要靠平时的点滴积累,对比较常见的分情况考虑的新问题要熟悉。例如说到等腰三角形的角要考虑是顶角还是底角,说到等腰三角形的边要考虑是底还是腰,说到过一点作直线和圆相交,要考虑点和圆有三种位置关系,所以要画出三种图形。这样的情况在几何的学习中是非经常见的,在这里不一一列举,但大家在做题时一定要注重考虑到是否要分情况考虑。很多时候是你平常注重积累了,你心里有了这个新问题,你作题时才会自然而然的想到。

浅析如何学好初中几何的论文

浅谈学好初中几何课的几点方法论文

初中几何知识点总结归纳

初中数学课件几何画板

初中数学几何知识点提纲

初中怎么学好物理化学

如何学好初中文言文

学好初中地理方法

中学生怎样学好初中地理

学好初中数学的学习方法

《怎么学好初中几何(共8篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档