欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

比的意义2(人教版六年级教案设计)

时间:2024-01-08 08:36:58 其他范文 收藏本文 下载本文

下面小编给大家带来比的意义2(人教版六年级教案设计),本文共16篇,希望能帮助到大家!

比的意义2(人教版六年级教案设计)

篇1:比的意义2(人教版六年级教案设计)

教学目标

1.理解比的意义,掌握比的读法和写法,认识比的各部分名称.

2.掌握求比值的方法,并能正确求出比的比值.

3.培养学生抽象、概括能力.

教学重点

理解比的意义,掌握求比值的方法.

教学难点

理解比的意义,建立比的概念.

教学过程

一、谈话引入

在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比.(板书:比的意义)

二、讲授新课

(一)教学例1

例1.一面红旗,长3分米,宽2分米.长是宽的几倍?宽是长的几分之几?

板书:3÷2=  =       2÷3=

1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?

2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?

3.小结

(1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几.

(2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比.

4.练习

有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?

(二)教学例2

例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

1.求的是什么?谁除以谁?也就是谁和谁进行比较?

2.汽车行驶路程和时间的比是100比2表示什么?

3.思考:单价可以说成是谁和谁的比?

工作效率可以说成是谁和谁的比?

商可以说成是谁和谁的比?

4.小结

通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比.

(三)归纳总结

引导学生观察板书  ,什么叫比?

教师板书:两个数相除又叫做两个数的比.

(四)练习

1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是(   ),柳树和杨树棵树的比是(   )

2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是(    ).

3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是(   ),青菜和萝卜单价的比是(    ).

(五)比的各部分名称和求比值的方法(演示课件“比的意义”)

1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.

例如:  3比2        记作:3∶2

2比3        记作:2∶3

100比2      记作:100∶2

2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.

板书:

3.提问:比的前项和后项能随便交换位置吗?为什么 ?

4.练习:求比值

教师说明:求比值不写单位名称.

(六)比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)

1.教师提问

(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?

(2)为什么要用“相当于”这个词?能不能用“是”?

(3)在除法中,除数不能是零,那比的后项呢

篇2:比和比例2(人教版六年级教案设计)

教学目标

1.理解比和比例的意义及性质.

2.理解比例尺的含义.

教学重点

整理比和比例、求比值及比例尺.

教学难点

正、反比例概念和判断及应用.

教学步骤

一、基本训练.

43-27

5.65+0.5 4.8÷0.4 1.25÷  100×1%

0.25×40   2-

二、归纳整理.

(一)比和比例的意义及性质.

1.回忆所学知识,填写表格【演示课件“比和比例”】

2.分组讨论:

比和分数、除法有什么联系?

比的基本性质有什么作用?比例的基本性质呢?

3.总结几种比的化简方法.【继续演示课件“比和比例”】

比 前项 ∶(比号) 后项 比值

除法

分数

(1)整数比化简,比的前项和后项同时除以它们的最大公约数.

(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

(4)用求比值的方法化简,求出比值后再写成比的形式.

解比例:12 :x=8 :2

4.巩固练习.

(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?

(3)解比例:  ∶  =8∶2

(二)求比值和化简比.【继续演示课件“比和比例”】

1.求比值:4∶

化简比:4∶

2.比较求比值和化简比的区别.

一般方法 结果

求比值 根据比值的意义,用前项除以后项 是一个商,可以是整数、小数或分数

化简比 根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外) 是一个比,它的前项和后项都是整数

3.巩固练习.

(1)求比值.

45∶72    ∶3

(2)化简比.

∶    0.7∶0.25

(三)比例尺.【继续演示课件“比和比例”】

1.出示中国地图.

教师提问:

(1)这幅地图的比例尺是多少?(比例尺是  )

(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(3)比例尺除了写成  ,以外,还可以怎样表示?

2.巩固练习.

在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

(四)正比例和反比例.【继续演示课件“比和比例”】

1.回忆正、反比例意义.

2.巩固练习.

(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

①收入一定,支出和结余

②出米率一定,稻谷的重量和大米的重量.

③圆柱的侧面积一定,它的底面周长和高.

(2)木料总量、每件家具的用料和制成家具的件数这三种量

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成反比例.

(3)如果  =8  ,  和  成( )比例.

如果  =  ,  和  成( )比例.

(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

三、全课小结.

这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的

篇3:比的意义(六年级)(人教版六年级教案设计)

教学目标

1.理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。

2.理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。

教学重点和难点

掌握比的意义,建立比的概念,能准确地求出比值。

教学过程

老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)

导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。

(一)准备题

(事先板书)口头列式解答。

1.一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?

2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

板书: 100÷2=50(千米)

师:观察上面的两道题,它们有什么共同特点?(都用除法)

(二)讲授新课:比的意义

1.观察练习1。

问:3÷2表示什么?(3是2的几倍。)

谁和谁比?(长和宽比。)

2÷3表示什么?(2是3的几分之几。)

谁和谁比?(宽和长比。)

师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。

板书:长和宽的比是3比2。宽和长的比是2比3。

也就是说,3÷2可以说成3比2,2÷3也可以说成2比3。

提问:3分米、2分米都表示什么?(长度)

师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。

2.观察练习2。

提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?

师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即 100∶2可以说成 100比2。)

路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度。)

3.归纳总结。

师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上“比”。)什么叫做比?(学生讨论后,老师归纳并板书。)

板书:两个数相除又叫做这两个数的比。

4.练一练。(投影)

(1)书法小组有男生6人,女生5人,男女生人数的比是(  )比(  ),女生人数和男生人数的比是(  )比(  )。

(2)小红3小时走11千米,小红所行路程和时间的比是(  )比(  ),这个比表示(  )。

提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)

(三)比的写法和各部分名称

师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)

3比2 记作3∶2

2比3 记作2∶3

100比5 记作100∶5

“∶”叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。

提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)

比值可以是哪些数?(分数、小数、整数)

练习:你会求比值吗?(板书)

100∶2=100÷2=50

(老师说明:求比值和解答应用题不同,不写单位名称。)

(四)比、除法、分数之间的关系

师:两个数相除又叫做两个数的比,比和除法到底有什么关系?

学生讨论,老师出示投影。

生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。

师:为什么要用“相当于”这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。

提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)

师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成

成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。

提问:比和分数有什么关系?

生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)

师:分数是一个数,所以比同分数也是“相当于”的关系。

(五)反馈练习

1.第56页的“做一做”,学生动笔在本上做。

2.(投影)把下面的比写成分数形式。

3.选择答案。

航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是

[  ]

4.判断正误:(举反馈牌)

(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的

(  )

(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。

(  )

(  )

师:写比要注意比的顺序,前、后项不能颠倒。

(六)课堂总结

今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?

(七)布置作业

(略)

课堂教学设计说明

本节课是在学生学过分数与除法的关系、分数乘除法的意义和计算方法以及分数乘除法应用题的基础上进行的,因此本课从除法应用题入手,通过复习同类量相除,不同类量相除的内容,引出“比”的概念,培养了知识迁移能力。在理解比的意义过程中,让学生通过观察、分析归纳出比的意义,体现了概念教学的特点,使学生不仅获取了新知识,也培养了学生自学能力和分析归纳能力。课后练习,重在加强学生对概念的理解,及时反馈了学生掌握概念的情况。

篇4:数的意义2(人教版六年级教案设计)

教学目标

1.使学生比较系统地、牢固地掌握有关整数、分数、小数、百分数的基础知识.

2.进一步弄清概念间的联系与区别.

教学重点

使学生比较系统地、牢固地掌握整数、小数、分数、百分数的基础知识.

教学难点

弄清概念间的联系和区别.

教学步骤

一、铺垫孕伏.

1.填空【演示课件“数的意义”】

0、1、79、  、0.25、0.6、100、  、  、  、85%、30、90%、7、8、2.35……

学生分类填数:

2.导入:上题同学们填得很正确,这就是我们在小学阶段学习的几种数:整数、分数、小数、百分数.这节课我们就把这几种数的意义和有关知识进行一下整理和复习.(板书课题:数的意义)

二、探究新知【继续演示课件“数的意义”】

(一)整数

1.小组讨论.

2.师生总结.

自然数:0、1、2、3、……

自然数是整数.

教师说明:在小学只学大于0和等于0的整数,进入初中就要学习小于0的整数.

想一想:自然数有什么特征?

总结:最小的自然数是0,没有最大的自然数,说明自然数的个数是无限的.

(二)分数.

1.引导学生思考:

①把单位“1”平均分成若干份,表示这样的一份或几份的数叫什么数?(分数)

表示其中一份的数是这个分数的什么?(分数单位)

②在整数范围内能计算2÷9吗?有了分数以后能计算吗?为什么?

2.填空练习.

①把单位“1”平均分成4份,表示这样的3份是  ;把3平均分成4份,每一份是  .

②  的分数单位是( ),它至少再添上( )个这样的单位就成了整数.

3.教师说明:两个数相除,它们的商可以用分数表示.

即:

4.教师提问:同学们想一想,分数可以分为哪几类?

教师板书:

谁能说出真、假分数的意义及有关知识?(举例说明)

①分子比分母小的分数叫做真分数.真分数小于1.

②分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于1或者等于1.

③分子是分母的倍数的假分数可以化成整数.

④分子不是分母倍数的假分数可以化成带分数.

⑤反之,整数和带分数也可以化成假分数.

教师板书:假分数

教师说明:假分数、带分数、整数可以相互转化.带分数是由整数和真分数合成的数,它是分子不是分母倍数的假分数的另一种形式.

(三)小数.

教师引导:从分数的意义联想一下,小数的意义又是什么呢?还学了哪些有关的知识呢?你能举例说明吗?

教师板书:

教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百……以及十分之一、百分之-……都是计数单位.各个计数单位所占的位置,叫做数位.数位是按一定的顺序排列的.

(四)百分数.

教师提问:你们还记得百分数的意义吗?

教师板书:百分数(百分率或百分比):用%表示.

三、全课小结.

这节课我们整理和复习了数的意义及有关知识,并形成了知识网络,对数概念间的联系与区别有了更清楚的认识.

四、随堂练习【继续演示课件“数的意义”】

1.填空.

(1)把根3米长的铁丝平均分成7段,每一段长是这根铁丝的  ,每段长米  .

(2)分数单位是  的最大真分数是  ,它至少再添上( )个这样的分数单位就成了假分数.

(3)10个0.001是( ),10个0.01是( ),10个0.1是( ),10   1是( ),10个10是( ).

(4)最高位是百万位的整数是( )位数;最低位是百分位的小数有( )位小数.

(5)最小的四位数是( ),最大的三位数是( ),它们相差( ).

2.判断下面的说法是不是正确,并说明理由.

(1)自然数既可表示有“多少个”,又可以表示是“第几个”.

篇5:比的基本性质2(人教版六年级教案设计)

教学目标

1.理解比的基本性质.

2.正确应用比的基本性质化简比.

3.培养学生的抽象概括能力,渗透转化的数学思想.

教学重点

理解比的基本性质.

教学难点

正确应用比的基本性质化简比.

教学过程

一、复习引入

(一)复习商不变的性质

1.谁能直接说出60÷25的商?

2.你是怎么想的?

3.根据是什么?内容是什么?

(二)复习分数的基本性质

约分:

通分:

根据是什么?内容是什么?

(三)求比值

3∶2 8∶4 7∶21 27∶9

5∶25  16∶4  24∶5 2∶1

二、讲授新课

我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?

(一)比的基本性质

1.把练习3中8∶4和2∶1这两个比找出来

2.教师提问

这两个比有什么共同点吗?(比值都相等)

这两个比有什么不同点吗?(前项和后项都不同)

我们可以说8∶4和2∶1相等吗?

你是怎么想的?

(1)根据比与除法的关系(商不变的性质)

8∶4=8÷4=(8÷4)÷(4÷4)=2÷1=2∶1

(2)根据比与分数的关系(分数基本性质)

8∶4=  =  =  =2∶1

3.学生尝试概括比的基本性质(演示课件“比的基本性质”)

(1)教师板书:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.

板书课题:比的基本性质

(2)教师强调:“同时”“相同”“0除外”几个关键词

(二)化简比

1.练习引入

学校有8个篮球,12个排球,篮球和排球个数的比是多少?

(1)篮球和排球的个数比是8∶12

(2)篮球和排球的个数比是2∶3

讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?

2.最简单的整数比

最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比.

3.化简比

例1.把下面各比化成最简单的整数比.

(1)14∶21=(14÷7)∶(21÷7)=2∶3

讨论:化简整数比的方法是什么?

(2)  ∶  =(  ×18)∶(  ×18)=3∶4

讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?

(3)1.25∶2=(1.25×100)∶(2×100)=125∶200=5∶8

1.25∶2=(1.25×4)∶(2×4)=5∶8(更好)

讨论:怎样把小数比化成最简单的整数比?

4.小结化简比的方法

(1)都化成整数比

(2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止.

(三)区别化简比和求比值

1.练习

比 最简单的整数比 比值

25∶100

4.2∶1.4

1∶

2.讨论:化简比和求比值的区别是什么?

区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.

例如:25∶100化简比的结果是  ,读作1比4,求比值的结果是  ,读作四分之一.

三、巩固练习

(一)化简比

6∶10   ∶  0.3∶0.4

12∶21   ∶2 0.25∶1

(二)选择

1.1千米∶20千米=(     )

(1)1∶20    (2)1000∶20    (3)5∶1

2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是(     )

(1)20∶21   (2)21∶20      (3)7∶10

(三)思考题

篇6:百分数的意义和写法2(人教版六年级教案设计)

教学目标

1.理解百分数的意义,知道百分数在实际应用中的重要性.

2.能正确地读写百分数.

教学重点

使学生正确理解百分数的意义,熟练地读写百分数.

教学难点

使学生弄清百分数与分数的联系与区别.

教学过程

一、复习准备

(一)教师提问:什么叫分数?

(二)填空

1.把3个苹果平均分给4个小朋友,每个小朋友分到  个苹果.

2.小明饲养了3只白兔,4只灰兔.白兔与灰兔的只数比是(    ).白兔的只数是灰兔的  .

(三)思考

1.这里的  ,表示的是哪两个数量之间的关系?也可以说成是哪两个数量的比?

2.这个  与上题中的  个苹果有什么区别?

教师说明:分数既可以表示一个数,又可以表示两个数的比.

二、新授教学

(一)引入新课

1.教师提问

(1)花生仁的出油率是38%,

(2)种子的发芽率是96.2%,

(3)九月份比八月份增产了5%,

你们知道这三个数都是什么数吗?

2.教师说明

在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数.那么百分数表示的意义是什么呢?百分数又该怎样书写呢?这节课我们就一起学习百分数的意义和写法.

教师板书课题:百分数的意义和写法

(二)教学例1(课件演示:百分数的意义和写法)

例1.某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人.分别算出两个年级的三好学生各占本年级学生人数的几分之几?

1.学生独立解答

2.学生反馈,教师板书

(1)六年级三好学生人数占本年级学生人数的  .

(2)五年级三好学生人数占本年级学生人数的  .

3.教师提问:直接比较哪个年级三好学生人数所占的比率大,容易吗?为什么?

4.教师说明:为了便于统计和比较,通常用分母是100的分数表示.

5.学生独立解答

五年级三好学生人数占本年级的  .

教师板书:用  盖住

6.教师提问

(1)哪个年级三好学生人数占的比率大?

(2)这两个比率分别代表什么?

(三)教学例2(课件演示:百分数的意义和写法)

例2.一个工厂从一批产品中抽出500件,经过检验,有490件合格.由此推算出这批产品合格的比率是  ,也可以写成  .

1.学生反馈:这批产品合格的比率是  ,也可以写成  .

2.思考:假如生产另一批同样的产品,合格的比率是  ,哪一次生产的产品合格的比率高?

3.教师说明

这里的  和  ,虽然不是最简分数,但为了便于比较,不再把它们化简.

(四)总结百分数的意义

1.教师说明:(指板书)这里的  、  、  都可以叫做百分数.

2.想一想,议一议

(1)这几个数有什么相同的地方?

(2)这几个数表示的意义有什么相同的地方?

(3)什么样的数叫做百分数?

3.总结百分数的意义.

教师板书:表示一个数是另一个数的百分之几的数,叫做百分数.

4.思考:  、  、  可以分别写成比的形式吗?比的后项都是多少?

教师说明:  、  、  这些百分数都表示一个数是另一个数的百分之几,也就是说都是一个比率,因此,百分数也叫做百分率或百分比.

教师板书:百分数也叫做百分率或百分比.

(五)百分数的写法

1.教师说明:百分数通常不写成分数的形式,而在原来的分子后面加上百分号“%”表示.

2.教师示范“%”的写法并板书:17%、15%、98%.

3.教师说明:

(1)百分数的分子可以小于100,如17%;也可以大于100,如115%;

(2)百分数的分子可以是整数,也可以是小数,如101.%.

4.练习

篇7:正比例的意义(人教版六年级教案设计)

教学目标

1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。

2.学会判断成正比例关系的量。

3.进一步培养学生观察、分析、概括的能力。

教学重点和难点

理解正比例的意义,掌握正比例变化的规律。

教学过程设计

(一)复习准备

请同学口述三量关系:

(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

(学生口述关系式、老师板书。)

(二)学习新课

今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

幻灯出示:

一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?

生:60千米、120干米、180千米……

师:根据刚才口答的问题,整理一个表格。

出示例1。(小黑板)

例1 一列火车行驶的时间和所行的路程如下表。

师:(看着表格)回答下面的问题。表中有几种量?是什么?

生:表中有两种量,时间和路程。

师:路程是怎样随着时间变化的?

生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……

师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

(板书:两种相关联的量)

师:表中谁和谁是两种相关联的量?

生:时间和路程是两种相关联的量。

师:我们看一看他们之间是怎样变化的?

生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。

师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?

生:路程由480千米变为420千米、360千米……

师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)

生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

(分组讨论)

师:请同学发表意见。

生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?

师:根据时间和路程可以求出什么?

生:可以求出速度。

师:这个速度是谁与谁的比?它们的结果又叫什么?

生:这个速度是路程和时间的比,它们的结果是比值。

师:这个60实际是什么?变化了吗?

生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。

师:谁是定量时,两种相关联的量同扩同缩?

生:速度一定时,时间和路程同扩同缩。

师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

(学生口算验证。)

生:都是60千米,速度不变,符合变化的规律,同扩同缩。

师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

师:谁能像老师这样叙述一遍?

(看黑板引导学生口述。)

师:我们再看一题,研究一下它的变化规律。

出示例2。(小黑板)

例2 某种花布的米数和总价如下表:

(板书)

按题目要求回答下列问题。(幻灯)

(1)表中有哪两种量?

(2)谁和谁是相关联的量?关系式是什么?

(3)总价是怎样随着米数变化的?

(4)相对应的总价和米数的比各是多少?

(5)谁是定量?

(6)它们的变化规律是什么?

生:(答略)

师:比较一下两个例题,它们有什么共同点?

生:都有两种相关联的量,一种量变化,另一种量也随着变化。

师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

师:很好。请打开书,看书上是怎样总结的?

(生看书,并画出重点,读一遍意义。)

师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?

师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

生:(答略)

师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

(三)巩固反馈

1.课本上的“做一做”。

2.幻灯出示题,并说明理由。

(1)苹果的单价一定,买苹果的数量和总价(  )。

(2)每小时织布米数一定,织布总米数和时间(  )。

(3)小明的年龄和体重(  )。

(四)课堂总结

师:今天主要讲的是什么内容?你是如何理解的?

(生自己总结,举手发言。)

师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

(五)布置作业

(略)

课堂教学设计说明

第一部分:复习三量关系,为本节内容引路。

第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。

总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。

板书设计

篇8:反比例的意义(人教版六年级教案设计)

教学目标

1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用。

2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。

教学重点和难点

理解反比例的意义,掌握两种相关联的量变化规律。

教学过程设计

(一)复习准备

1.(出示幻灯)

一种练习本的数量和总页数如下表:

师:请回答下列问题。

(1)表中哪个量是固定不变的量?

(2)哪两种量是相关联的量?它们的变化规律是怎样的?

(3)表内相关联的两种量成正比例吗?为什么?

2.填空。(小黑板(一))

两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。

3.判断下面各题中两种量是否成正比例。

(1)文具盒的单价一定,买文具盒的个数和总价(  )。

(2)水稻产量一定,水稻的种植面积和总产量(  )。

(3)一堆货物一定,运出的和剩下的(  )。

(4)汽车行驶的速度一定,行驶的时间和路程(  )。

(5)比值一定,比的前项和后项(  )。

可选其中一、二题,说一说为什么?

师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)

(二)学习新课

1.出示例4。(小黑板(二))

例4 华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:

(1)分析表,回答下列问题。(幻灯出示)

①表中有哪种量?

②两种相关联的量是如何变化的?

③你能说出它们的关系式吗?

④相对应的每两个数的乘积各是多少?

⑤哪种量是固定不变的?

师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)

(2)同学们发言。

根据同学发言,用彩色粉笔画出箭头并加以说明:

①每小时加工的数量扩大,加工的时间反而缩小;当每小时加工的数量缩小,加工的时间反而扩大。它们变化的规律是:一扩一缩或一缩一扩,变化的倍数相同。(板书)

②两种量中相对应的两个数的积都是600。

(板书) 10×60=600 30×20=600  50×12=600

③从数量关系看:

(3)我们来总结一下反比例的意义是什么?

(4)上述小结让学生照板书内容自述。

2.出示例5。

例5 用600页纸装订同样的练习本,每本的页数和装订的本数有什么关系呢?请先填表后,再回答下列问题。

观察上表,回答下面的问题:

①表中有哪两种量?

②装订的本数怎样随着每本的页数变化?

③它们变化的规律是怎样的?

④题目中的600是哪种量?

⑤根据两种相关联的量,你能列出一个怎样的关系式?可以求出什么?

生:(答略)

师:我们通过这一例题再次总结一下反比例的意义。

看小黑板(一)中第二条空线,总结反比例的意义。

师:对照反比例的意义详说例5成什么比例。

生:装订的本数是随着每本页数的变化而变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。每本的页数和装订的本数的积总是一定的。如:

15×40=600 20×30=600  25×24=600

所以说每本的页数和装订的本数是成反比例的关系。

师:刚才你们对照例题总结得很好,它们的共同点是什么呢?

幻灯出示:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

(学生看幻灯,读一读。)

师:谁能对照反比例的意义说一说例4是成什么比例?

(学生看黑板叙述,老师在关系式上标出定量和它们的关系。)

生:加工的时间随着每小时加工数量的变化而变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量,它们的关系是反比例的关系。

3.学习字母公式。

师:如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),你能概括出成反比例的字母公式吗?

生:x×y=k(一定)。

师:很好。我们今天学习了反比例的意义。和正比例相比较,它们的相同点和不同点你能总结一下吗?(两人互相讨论)

教师指复习小黑板(一)(即填空),学生回答。

生:相同点是都有两种相关联的量,都有一个定量。不同点是,成正比例的量,两种相关联的量同扩同缩,而且相对应的两个数的商(比值)一定;成反比例的量,两种相关联的量一扩一缩,相对应的两个数的积是一定的。

师:大家总结得很好,要判断两种相关联的量成什么比例的量,就要抓住相对应的个数是商一定,还是积一定。这是判断两种量是成正比例还是成反比例的关键。

(三)巩固反馈

1.打开书看今天讲的内容,并划出重点。

2.看课本中的“做一做”,逐一回答书中的问题。

3.书中练习题4,用语言详叙判断成什么比例?为什么?

4.你能举出一个成反比例的例子吗?(自由发言)

5.练习判断两种量是否成反比例。

(1)煤的总量一定,每天的烧煤量和烧的天数(  )。

(2)李叔叔从家到工厂,骑车的速度和所需要的时间(  )。

(3)玉华做12道练习题,做完的与没做的题(  )。

(4)长方形面积一定,它的长和宽(  )。

(四)课堂总结

本节我们初步了解了反比例的意义,并能运用反比例的意义判断一些简单的问题。通过正、反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是成反比例的关系,要抓住两种相关联的量的变化规律,这是本质。今后我们还要继续研究。

(五)布置作业

练习题中第4,5题。

课堂教学设计说明

本节课是通过知识引进、知识讨论、知识运用总结进行的。

首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。

在引导学生学习正比例学习的基础上,启发学生主动、自觉地去观察、分析、概括、发现规律,从而既学到了新知识,又增长了自学能力。

幻灯演示、小组讨论、集体反馈,选用多样的教学手段,使枯燥的知识活起来,充分调动学生的积极性,激发学生的兴趣。

通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,培养了总结、区别、沟通的能力。练习的多样、及时,使学生加深概念的理解。

板书设计

篇9:分数除法的意义和计算法则2(人教版六年级教案设计)

教学目标

1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.

2.掌握分数除以整数的计算法则,并能正确的进行计算.

3.培养学生分析能力、知识的迁移能力和语言表达能力.

教学重点

正确归纳出分数除以整数的计算法则,并能正确的进行计算.

教学难点

正确归纳出分数除以整数的计算法则,并能正确的进行计算.

教学过程

一、复习引新

(一)说出下面各数的倒数.

0.3       6

(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)

(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:分数除法的意义和计算法则)

二、新授教学

(一).教学分数除法的意义(演示课件:分数除法的意义)

1.每人吃半块月饼,4个人一共吃多少块月饼?

教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个  ?求4个  是多少怎样列算式?(  )

2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

列式:2÷4

3.两块月饼,分给每人半块,可以分给几个人?

列式:

教师提问:说一说结果是多少?你是如何得出结果的?

4.组织学生讨论:分数除法的意义.

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.

5.练习反馈.

根据:  ,写出  ,

(二)教学分数除以整数的计算法则

1.出示例1.把  米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

(1)求每段长多少米怎样列算式?

(2)以小组为单位讨论一下得多少呢?

米平均分成2段就是要把6个  米平均分成2份,每份是3个  米是  米.

(3)教师板书整理.

(米)

2.教师质疑:如果把  米铁丝平均分成3段、6段怎样计算?

也可以这样想:把  米铁丝平均分成3段,就是求  米的  是多少,列式是:

把  米铁丝平均分成6段,就是求  米的  是多少,列式是:

3.教师继续质疑:如果把  米铁丝平均分成4段每段长多少米?怎样计算?

(米)

为什么采用转化成分数乘法这种方法比较好呢?

组织学生观察  在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.

4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.

三、巩固练习

(一)计算下面各题.

学生独立完成,教师巡视,进行个别辅导.

(二)求未知数

1.                    2.

(三)判断.

1.分数除法的意义与整数除法的意义相同.(    )

2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.(    )

3.        (     )

篇10:按比例分配2(人教版六年级教案设计)

教学目标

1.使学生理解按比例分配的意义.

2.掌握按比例分配应用题的特征及解题方法.

3.培养学生应用所学知识解决实际问题的能力.

教学重点

掌握按比例分配应用题的特征及解题方法.

教学难点

按比例分配应用题的实际应用.

教学过程

一、复习引入

(一)填空

已知六年级1班男生人数和女生人数的比是3∶2.

1.男生人数是女生人数的(  )

2.女生人数是男生人数的(  ),女生人数和男生人数的比是(   ).

3.男生人数占全班人数的(  ),男生人数和全班人数的比是(   ).

4.全班人数是男生人数的(  ),全班人数和男生人数的比是(   ).

5.女生人数占全班人数的(  ),女生人数和全班人数的比是(   ).

6.全班人数是女生人数的(  ),全班人数和女生人数的比是(   ).

(二)口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

1.学生口答:100÷2=50(平方米)

2.教师提问

这是一道分配问题,分谁?(100平方米)怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?

这样分还是平均分吗?

3.谈话引入

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)

二、讲授新课

(一)把复习题2增加条件“如果按3∶2分配,两个班的保洁区各是多少平方米?”

(二)教师提问

1.分谁?(100平方米)

2.怎么分?(按3∶2分)

3.求的是什么?(两个班的保洁区各是多少平方米?)

(三)思考:由“如果按3∶2分配”这句话你可以联想到什么?

1.六年级的保洁区面积是二年级的  倍

2.二年级的保洁区面积是六年级的

3.六年级的保洁区面积占总面积的

4.二年级的保洁区面积占总面积的

… …

(四)尝试解答:用你学过的知识解答例题,并说一说怎么想的?

方法一:

3+2=5    100÷5=20(平方米)    20×3=60(平方米)    20×2=40(平方米)

方法二:

3+2=5     100×  =60(平方米)100×  =40(平方米)

方法三:

100÷(1+  )=60(平方米)    60×  =40(平方米)或100-60=40(平方米)

方法四:

100÷(1+  )=40(平方米)     40×  =60(平方米)或100-40=60(平方米)

(五)比较思路:这几种方法中,你认为哪种方法好?为什么?

(第二种,思路简捷,计算简便)

1.说说第二种方法的思路?

(1)求出总份数

(2)各部分数量占总量的几分之几?

(3)按照求一个数的几分之几是多少的方法解答.

(六)这道题做得对不对呢?我们怎么检验?

1.两个班级的面积相加,是否等于原来的总面积.

2.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.

(七)练习

一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3∶2.两种作物各播种多少公顷?

(八)教学例3

学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?

篇11:正、反比例的意义(人教版六年级教案设计)

教学目标

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.

教学重点

理解正反比例的意义,掌握正反比例的变化的规律.

教学难点

理解正反比例的意义,掌握正反比例的变化的规律.

教学过程

一、导入新课

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量

(三)教师谈话

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学

(一)成正比例的量

例1.一列火车行驶的时间和所行的路程如下表:

时间(时) 1 2 3 4 5 6 7 8 ……

路程(千米) 90 180 270 360 450 540 630 720 ……

1.写出路程和时间的比并计算比值.

(1)

(2)    2表示什么?180呢?比值呢?

(3)    这个比值表示什么意义?

(4)    360比5可以吗?为什么?

……

2.思考

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

教师板书:商不变

(二)成反比例的量

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.

工效(个) 10 20 30 40 50 60 ……

时间(时) 60 30 20 15 12 10 ……

2.教师提问

(1)计算工效和时间的乘积.

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)

3.小结:有什么规律?(板书:积不变)

(三)不成比例的量

1.出示表格

运走的吨数 10 20 30 40

剩下的吨数 90 80 70 60

总吨数(和不变) 100 100 100 100

2.教师提问

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变

(四)结合三组题观察、讨论、总结变化规律.

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化

不同点:第一组商不变,第二组积不变,第三组和不变.

总结:

3.分别概括正、反比例的意义

4.强调第三组题中两种相关联的量叫做不成比例

5.教师提问

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式

三、巩固练习

判断下面各题是否成比例?成什么比例?

篇12:分数的意义2(人教版五年级教案设计)

教学目标

1、使学生在已初步认识分数的基础上,进一步理解分数的意义.

2、弄清分子、分母、分数单位的含义.

3、掌握分数的读、写方法,培养学生的抽象、概括能力.

教学重点

理解和掌握分数的意义.

教学难点

抽象概括出分数的意义.

教学过程

一、讲授新课.

(一)分数的产生.

1.请一位同学用米尺测量黑板的长,说一说,用“米”作单位,其结果能不能用整数表示?

2.把一个苹果平均分给两个小朋友,每个小朋友分得的苹果数是不是整数?

(板书课题:分数的意义)

(二)分数的意义.

1.以前我们已学过分数的初步认识,现在请大家仔细观察:下面把一个物体或一个计量单位平均分成了几份?想一想:其中的一份或几份怎样用分数来表示?

(依次出现糕点图、正方形图、1米长的线段图)

2.我们也可以把许多物体看作一个整体,如一堆苹果、一批玩具、一班学生等.

出示图片“苹果图”

教师提问:这幅图把什么看作一个整体?

把它平均分成了几份?

每份是几个苹果?

每份苹果是这个整体的几分之几?

(边讨论边板书)

出示图片“熊猫图”

教师提问:这幅图把什么看作一个整体?

把它平均分成了几份?

每份是几只熊猫玩具?每份是这个整体的几分之几?

4只熊猫玩具是其中的几份?是这个整体的几分之几?

(边讨论边板书)

3.将下面的两幅图与上面的三幅图进行比较,它们有什么不同点与相同点?

明确:一个物体、一个单位或是一些物体都可以看成整体1,都可以用自然数1来表示,通常我们把它叫做单位“1”,它们的相同点在于都是把各自的单位“1”平均分成若干份,取其中的一份或者几份.

(板书:单位“1”    若干份    一份或者几份   分数)

4.总结、归纳分数的意义.

根据上面的例子,谁能说一说,什么样的数叫做分数?

5.练习.

(1)用分数表示下面各图中的涂色部分.

(2)用下面的分数表示图中的涂色部分,对不对?

教师提问:为什么第三个图不能用  表示?(强调平均分)

(3)人人动手、动口,同桌互相检查,老师点名抽查.

①拿出一个圆片,指出它的  是多少?

②拿出两个圆片,指出它的  是多少?

③拿出六个圆片,指出它的  是多少?

教师提问:这里都是要求指出“  ”,为什么“多少”不一样呢?

(三)分子、分母的含义;分数的读写.

1.谁能自己说出一个分数,指出它的分母、分子,并说出这个分数所表示的意义.

2.分数的读法和写法.

填空:  读作:   读作:

九分之四写作: 二十五分之十八写作:

教师小结:读分数的时候,应先读分母,再读分子,并在中间加上“分之”二字;写分数时,应先画分数线,再在分数线下面写分母,在分数线上面写分子.

(四)分数单位的意义.

1.教师提问:

自然数的单位是几?6里面有几个1?7呢?28呢?

的分数单位是什么?它有几个这样的单位?  呢?

2.概括分数单位的意义.

强调:不同分母的分数,其分数单位不一样.

3.练习.

(1)用直线上的点表示分数.

(2)填空.

强调:应先找准单位“1”.再看把它平均分成了多少份,最后决定直线上的这一点用什么分数表示.

二、巩固练习.

1.  是把单位“1”平均分成(     )份,表示这样(  )份的数.

2.把全班学生平均分成6组,一个组的人数是全班人数的(     ),两个组的人数是全班人数的(   ).

篇13:分数应用题2(人教版六年级教案设计)

教学目的

1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

2.通过复习,培养学生的分析能力以及综合能力.

3.通过复习,培养学生认真、仔细的学习习惯.

教学重点

通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

教学难点

通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.

教学过程

一、复习准备.

老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?

学生回答:

(1)3是6的几分之几?

(2)6是3的几倍?

(3)3比6少几分之几?

(4)6比3多几分之几?

(5)6占6与3总和的几分之几?

(6)3是6与3差的几倍?……

谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)

二、复习探讨.

(一)教学例4.

学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?

1.教师提问:根据已知条件,你都可以提出什么问题?并解答.

2.反馈:

(1)水彩画和蜡笔画共多少幅?

(2)水彩画比笔画少多少幅?

(3)蜡笔画比水彩画多几分之几?

(4)水彩画比蜡笔画少几分之几?

(5)水彩画是蜡笔画的几分之几?

(6)蜡笔画是水彩画的几分之几?

(7)……

3.教师质疑.

(1)5问和6问为什么解答方法不同?(单位1不同)

(2)3问和4问的问题有什么不同?(单位1不同)

(二)例题变式.

1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多  ,蜡笔画有多少幅?

2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多  ,水彩画和蜡笔画一共有多少幅?

(1)学生独立解答.

(2)学生讨论两道题的区别.

教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.

(三)深化.

如果题目中的分数发生了变化,我们还会解答吗?

1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的  ,还剩下多少吨钢材?

2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的  ,还剩下15吨,仓库里有多少吨钢材?

(1)学生独立解答.

(2)学生讨论两道题的区别.

教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.

三、巩固反馈.

1.分析下面每个题的含义,然后列出文字表达式.

(1)今年的产量比去年的产量增加了百分之几?

(2)实际用电比计划节约了百分之几?

(3)十月份的利润比九月份的利润超过了百分之几?

(4)的电视机价格比降低了百分之几?

(5)现在生产一个零件的时间比原来缩短了百分之几?

(6)十一月份比十二月份超额完成了百分之几?

2.列式不计算.

(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?

(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?

(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

3.判断并且说明理由.

男生比女生多20%,女生就比男生少20%.         (       )

4.一辆汽车从甲地开往乙地,第一小时行了全程的  ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?

四、课堂总结.

通过今天这堂课,你有什么收获吗?

篇14:工程问题2(人教版六年级教案设计)

教学目标

1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.

2.能正确熟练地解答这类应用题.

3.培养学生运用所学到知识解决生活中的实际问题.

教学重点

理解工程问题的数量关系和题目特点,掌握分析、解答方法.

教学难点

理解工程问题的数量关系.

教学过程

一、复习  旧知.

(一)解答下面应用题

1.挖一条水渠100米,用5天挖完,平均每天挖多少米?

列式:100÷5=20(米)

2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?

列式:

教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?

学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.

3.挖一条水渠100米,平均每天挖20米,几天可以挖完?

列式:100÷20=5(天)

4.挖一条水渠,每天挖全长的  ,几天可以挖完?

列式:  (天)

师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.

二、探索新知.

(一)教学例9.

例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

1.教师提问:

(1)用我们学过的方法怎样分析?怎样解答?

30÷(30÷10+30÷15)=6(天)

(2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?

60÷(60÷10+60÷15)=6(天)

90÷(90÷10+90÷15)=6(天)

24÷(24÷10+24÷15)=6(天)

(3)通过计算,你发现了什么?(结果都相同)

(4)为什么结果都相同呢?

工作总量的具体数量变了,但数量关系没有变;工作效率是用“工作总量÷工作时间”得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)

(5)去掉具体的数量,你还能解答吗?

把这段公路的长看作单位“1”,甲队每天修这段公路的  ,乙队每天修这段公路的  .两队合修,每天可以修这段公路的(  )

列式:

2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)

3.归纳总结.

4.小组讨论:工程问题有什么特点?

工作总量用单位“1”表示,工作效率用  来表示数量关系:工作总量÷工作效率(和)=工作时间

5.练习.

(1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?

(2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?

三、巩固练习.

(一)选择正确的算式.

一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的  ,需要多少小时?正确列式是(   ).

1.

2.

3.

四、归纳总结.

今天我们这节课学习了新的分数应用题-工程应用题.其解答特点是什么?(工作总量÷工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位“1”,工作效率用“  ”表示.)工程应用题还有很多变化,以后我们继续学习.

五、板书设计

工程问题

例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

30÷(30÷10+30÷15)=6(天)

一段公路,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

(天)

特点:  工作总量:“

篇15:百分数的意义(人教版六年级教案设计)

教学内容:

百分数的意义和写法(小学数学九年制义务教材第十一册).

教学目标:

通过教学,使学生正确理解百分数的意义,了解百分数与分数的异同,正确读写百分数.

教学重点:

百分数的意义.

教学难点:

百分数与分数的异同.

教学过程:

一、复习引入:

教师小结:分数既可以表示数量,也可以表示关系.

2.下面各句中的分数表示什么意思?(学生回答,教师在黑板上画出线段图.)

提问:单位一是谁?分数表示谁与谁的关系?

二、新课:

1.意义:上面这些表示关系的分率和倍数都可以用一种新的数来表示,这种数叫百分数.

(板书课题,并把上面句中和图中的分数改成百分数,指导读法.)

(1)参加课外小组的人数占全年级的70%.(读作:百分之七十)

(2)已经修了一条路的25%.(读作:百分之二十五)

(3)今年的钢产量是去年的120%.(读作:百分之一百二十)

提问:这些百分数在各句中分别表示谁与谁的关系?谁表示100份?

像这样表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.(补充板书)

追问:百分数是一种什么数?

2.指导写法:

写百分数时,先写分子,再写百分号(70%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小.

读百分数时,与分数的读法一样.(示范读法)

练一练:用手指在桌上写一写,然后读一读.

在本上写:25% 16.7%  1.25%  100%  131%

3.比较百分数与分数的异同:(小组讨论后指名发言,教师出示投影)

同:都是数,读法相同.

异:(1)意义不同:分数是表示把单位一平均分成若干份,表示这样的一份或几份的数,既可以表示数量,也可以表示关系.百分数是表示一个数是另一个数的百分之几的数,只能表示关系,不能表示数量.

(2)写法不同:写分数时,先写分数线,再写分母,最后写分子,分子、分母分别写在分数线的上下.写百分数时,先写分子,后面写上百分号.

(3)使用范围不同:分数的分子只能比分母小,分子大于分母的要化成带分数或整数,不是最简分数的要化成最简分数,分子必须是整数.而百分数的分子可以比分母小,也可以比分母大,还可以和分母相等,可以是整数,也可以是小数.

三、练习:

1.读百分数:(互相读)

1%  5%  99%  100%  300%  0.6%  38.3%  233.3%

2.写百分数:(两组互相看)

百分之七 百分之四十六

百分之五点三  百分之三百一十点六

百分之五十五  百分之四百

百分之零点一  百分之百

3.把下图中的阴影部分用百分数表示,说说阴影部分、空白部分各占整体的百分之几.

4.用阴影表示下面的百分数,说说百分数表示谁占谁的百分之几.

5.判断:(用手势表示)

(1)一本书,已经看了它的75%,还有25%没有看.(  )

(2)一根绳子长50%米.  (  )

(3)分母是100的分数叫百分数.  (  )

(4)火车的速度比汽车快25%,火车的速度是汽车速度的125%. (  )

6.看图填空:

把(  )看做单位一,(  )占(  )的60%,没走的路程占(  )的(  )%.

把(  )看做单位一,(  )相当于(  )的32%,苹果树是(  )的(  )%.

把(  )看作单位一,(  )相当于(  )的27%,现在用电是原来的(  )%.

四、总结:

看着黑板概括一下今天的学习内容,你学会了什么?什么是百分数?怎样写?与分数有什么不同?

五、布置作业:

1.读书,复习今天的学习内容.

2.书第68页5~8.

六、板书设计:

篇16:比的基本性质(人教版六年级教案设计)

教学目标

1.使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质。

2.能够正确地运用比的基本性质把比化成最简单的整数比。

3.通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

教学重点和难点

1.理解比的基本性质。

2.正确运用比的基本性质把比化成最简单的整数比。

教学过程设计

(一)复习准备

1.复习商不变的性质。

(1)谁能很快地直接说出 41÷25的商?

(2)说一说,你是怎样想的?(41÷25=(41×4)÷(25×4)=164÷100=16.4)

(3)你这样做根据的是什么?(商不变的性质)它的内容是什么?

2.复习分数的基本性质。

(1)把下面各分数约分:

(2)通分练习:

(3)我们进行约分和通分根据的是什么?(分数的基本性质)它的内容是什么?

3.求比值的练习。

8∶4=  48∶12=  16∶8=

24∶18=  40∶16=  15∶5=

(二)学习新课

1.导入新课。

我们以前学过商不变的性质和分数的基本性质,联系这两个性质想一想:在比中又有什么规律可循?下面,我们就一起研究研究。

2.概括比的基本性质。

(1)创设情境。

2∶4根据比与除法的关系可以写成2∶4=2÷4,再想想,2∶4等于4∶8吗?你是怎么想的?(2∶4=2÷4=(2×2)∶(4×2)=4÷8=4∶8)

(2)概括比的基本性质。

①小组讨论:看看上面的两个例子,想一想:在比中有什么样的规律?

②概括出比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

强调“同时”、“相同”、“0除外”这几个重点的关键词语。

(3)出示课题,这就是比的基本性质。(板书课题:比的基本性质。)

3.应用比的基本性质化简比。

(1)引出比的基本性质的作用。

例  一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的比是多少?

请同学回答:有的同学说是45∶40,有的同学把45∶40化简成9∶8。

讨论:一年级和二年级学生人数的比是写成45∶40好呢,还是写成9∶8好?(写成9∶8能使数量间的关系更加简明。)

(2)解释什么是最简单的整数比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

(3)化简比。

应用比的基本性质可以把比化成最简单的整数比。

例1  把下面各比化成最简单的整数比。

这是一个整数比,但不是最简单的整数比,请你在练习本上把它化成最简单的整数比。

讨论:化简整数比的方法是什么?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止。)

这个比的前、后项是什么数?(分数)

18)这里为什么要同乘以18?(使学生清楚地认识到,只要把比的前后项都乘以它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化成最简单的整数比。)

讨论概括:怎样把分数比化成最简单的整数比?(一般先把比的前、后项同时乘以两个分数的分母的最小公倍数,转化为整数比,再化简成最简单的整数比)。

请把1.25∶2化成最简单的整数比。

讨论:如何把小数比化简成最简单的整数比?

④小结;应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?(第一步都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。)

(4)区别化简比和求比值。

①出示练习题:化简下面各比,并求出比值。

填表之后用投影进行订正。

讨论:由于化简比的方法和求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,如8∶12,化简比和求比值的结果都

比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)

(三)巩固反馈

1.完成第57页的“做一做”。

把下面各比化成最简单的整数比。

请学生在练习本上独立完成,用投影仪集体订正。

2.完成第59页第6题。

声音在空气中每秒传播340米,有一种喷气式飞机每秒最快飞行578米,写出这种飞机最快的速度同声音速度的比,并化简。

578∶340=17∶10

3.填空:(口答)

(1)85∶51=(85÷(  ))∶(51÷(  ))=5∶3

(四)课堂总结

通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

(五)布置作业

第58页第5题,第59页第7,8题。

课堂教学设计说明

复习准备中,从复习商不变的性质及分数的基本性质入手,启发学生类推出比的基本性质,这样不仅使学生很快地理解并概括出比的基本性质,还深深地受到了事物间存在着内在联系的辩证唯物主义启蒙教育。

对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。例1的3道小题的教学使学生掌握各种情况化成最简整数比的方法:(1)是整数比,一般要把比的前项和后项都除以它们的最大公约数;(2)是分数比,一般先把比的前项和后项都乘以两个分数的分母的最小公倍数,转化成两个整数比再化简;(3)是小数比,第一步应用小数点向右移动相同位数的方法化成整数,再化简。

最后巩固练习中的第3题是提高题,要求学生说一说怎么想,使学生能够灵活地运用学过的知识。

六年级数学《比的意义》课件

《比的意义》说课稿

比的意义教案

教案:比的意义

比尾巴优秀教案设计

《比的意义》教学设计

“比的意义”教学反思

比的意义教学反思

《比意义》评课稿

比意义评课稿

《比的意义2(人教版六年级教案设计)(共16篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档