以下是小编帮大家整理的分数连除应用题(人教版六年级教案设计),本文共19篇,仅供参考,大家一起来看看吧。

篇1:分数连除应用题(人教版六年级教案设计)
教学目标
1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。
2.进一步提高学生的分析概括能力及解题能力。
教学重点
找准单位“1”,巩固分数除法应用题的解答方法。
教学难点
掌握分数连除应用题的结构及数量关系。
教学过程
(一)复习
(投影)
1.找准单位“1”,并列式解答。
2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)
提问:美术组,生物组,航模组三个数量之间有什么关系。
(4)请一名同学列式解答,然后订正。
(二)讲授新课
老师把准备题进行改编。
指名读题,找出已知条件和未知条件。
1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)
提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)
老师按学生的回答,把准备题的图示进行修改。
2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。
(5)这个式子的等号两边相等吗?为什么?
人。)
学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)
老师板书:
解 设美术组有x人。
答:美术组有30人。
看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)
师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。
(三)巩固练习
(投影)
先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。
2.看图,找出数量间相等的关系,并列方程解答:
(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)
三好生4人。
学生动笔做,老师带领学生订正。
的高是多少厘米?
根据题意填空:
是( )厘米。设( )为x。
果树有多棵?
(四)课堂总结
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)
这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)
(五)布置作业
(略)
课堂教学设计说明
本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。
篇2:分数连除、乘除复合应用题(人教版六年级教案设计)
教学目标
1.使学生掌握分数连除、乘除复合应用题的结构和数量关系,能正确解答分数连除、乘除应用题.
2.进一步提高学生的分析解题能力,发展学生思维.
教学重点
使学生掌握分数连除、乘除复合应用题的数量关系,并能正确解答.
教学难点
使学生正确解答分数连除、乘除复合应用题.
教学过程
一、复习引新
(一)找准单位“1”,并列式解答.
1.一袋面粉重50千克,吃了 ,吃了多少千克?
2.一条路修了200千米,正好占全长的 ,全长多少千米?
3.白兔有40只,白兔只数是黑兔只数的 .黑兔有多少只?
(二)光明小学美术组有30人,生物组的人数是美术组的 ,航模组的人数是生物组的 ,航模组有多少人?
二、讲授新课
(一)教学例4(把复习第二题改编成例4)
例4.光明小学航模组人数是生物组的 ,生物组人数是美术组的 ,航模组有8人,美术组有多少人?
1.找出已知条件和所求问题,说说这道题里有哪几个数量?
2.画图分析
(1)航模组的人数是生物组的 ,应该把谁看作单位“1”?生物组的人数看作单位“1”
(2)生物组人数是美术组的 ,应把谁看作单位“1”?美术组的人数看作单位“1”
(3)哪两个组的人数有关系?航模组的人数与生物组的有关,生物组的人数与美术组的有关,
(4)应先画哪个组的人数?应先画出美术组
3.引导学生分析数量关系
因为:美术组的人数× =生物组的人数
生物组的人数× =航模组人数,航模组人数是8人.
所以:
解:设美术组有 人.
答:美术组有30人.
4.练习
商店运来一些水果.梨的筐数是苹果筐数的 ,苹果的筐数是橘子筐数的 .运来梨15筐,运来橘子多少筐?
(二)教学例5
例5.商店运来一些水果,运来苹果20筐,梨的筐数是苹果的 ,同时又是橘子的 ,运来桔子多少筐?
1.找出已知条件和问题.
2.找出分率句,找准单位“1” .
3.分析数量关系.
(1)苹果的筐数和哪个量有关系?有什么关系?
和梨的筐数有关系.苹果筐数的 是梨的筐数,即:苹果的筐数× =梨的筐数
(2)梨的筐数和哪个量有关系?有什么关系?
和橘子的筐数有关.橘子筐数的 是梨的筐数,即:橘子的筐数× =梨的筐数
(3)梨、苹果、橘子三量之间是什么关系?
梨的筐数既是苹果的 ,也是橘子的
(4)你能列出等量关系式吗?
苹果的筐数× =桔子的筐数×
解:设运来桔子 筐.
答:运来橘子25筐.
(三)小结
1.今天学的应用题和以前几节课学习的应用题一样吗?(有两个分率句)
2.如何分析这类应用题?
抓住分率句,找谁单位“1”,画图来分析,列式不用急.
三、巩固练习
(一)蔬菜商店运来的茄子筐数是西红柿的 ,运来的西红柿筐数是黄瓜的 .运来茄子21筐,运来黄瓜多少筐?
(二)同学们踢毽子,小红踢了18个,小兰踢的是小红踢的 ,同时又是小华踢的 ,小华踢了多少个?
(三)商店里红气球的个数是蓝气球的 ,是黄气球的 ,有蓝气球240个,有黄气球多少个?
(四)对比练习
1.一个长方体的宽是长的 ,长是高的 ,宽是42厘米.高是多少厘米?(等量关系式:高× × =宽)
篇3:分数应用题(人教版六年级教案设计)
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的分数应用题的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的分数应用题的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的分数应用题和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
分数应用题
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米? 例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果 的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答
篇4:连除应用题(人教版四年级教案设计)
教学目标
(一)使学生理解连除应用题的数量关系,并会用两种方法解答.
(二)使学生进一步学习用线段图表示应用题的条件和问题.
(三)通过对连乘、连除应用题的对比,学生进一步理解其内在联系及互逆关系.
(四)通过观察、比较、分析,提高学生解答应用题的能力.
教学重点和难点
掌握连除应用题的分析方法是重点,理解连乘、连除应用题的互逆关系是难点.
教学过程设计
(一)复习准备
1.板演.
一种织布机每台每小时织4米布,5台8小时可以织多少米布?(用两种方法解答)
2.全班同时口算:
24×5×8 35×2×9 18×2×5
64÷8÷4 120÷6÷4 160÷5÷8
订正1题时,说出两种不同的解题思路.
(二)学习新课
1.新课引入.
复习题改为:一种织布机5台8小时织布160米,平均每台每小时织多少米布?我们今天要学习的内容就是解像这样的应用题.(板书:应用题)
2.出示例2.
一种织布机5台8小时织160米布,平均每台每小时织布多少米?
(1)观察、比较,例2与复习题有什么联系?
(通过观察比较可以看出:复习题中的条件是例2的问题,复习题中的问题是例2的条件.)
说明这两种应用题有着密切的联系.
(2)怎样用线段图表示已知条件和问题?在老师的引导下画出:
(3)要求每台每小时织多少米布,要先求什么?再求什么?
(根据题意,要求每台每小时织多少米布,可以先求出每台织布机8小时织多少米布,再求每台每小时织多少米布.)
(4)怎样分步列式计算?在学生回答的同时,教师板书:
①每台织布机8小时织多少米布?
160÷5=32(米)
②每台织布机每小时织多少米布?
32÷8=4(米)
(5)你能用综合算式解答吗?(独立做在本子上)
160÷5÷8 (每台8小时)
=32÷8 (每台1小时)
=4(米)
答:每台织布机每小时织4米布.
让学生叙述解题思路,说出每步求的是什么.
(6)这道题还可以怎样解答?要先算什么?怎样用线段图表示条件和问题?
小组讨论,阅读课本第10页.
在讨论、自学的基础上,把分步列式的标题填在书上,并独立列出综合算式解答.
集体交流说思路.
160÷8÷5 5台1小时)
=20÷5 每台1小时)
=4(米)
答:平均每台织布机每小时织4米.
3.师生共同总结.
(1)今天学习的是什么应用题?(今天学习的是连除应用题)
教师把“连除”二字板书在课题的前边,即连除应用题.
(2)通过刚才用不同的方法分析这道题,你发现这类连除应用题有什么特点吗?(题中的160米既与5台织布机有关系,也与8小时有关系.)
教师在学生回答的基础上,加以概括:
这类连除应用题的特点是:总量与两个变化的量有关系,是随着两个变量的变化而变化.正如同学们所说,160米既与5台织布机有关系,也与8小时有关系,因此要求每台每小时织多少米布,既可以先求每台8小时织多少米,又可以先求5台1小时织多少米.由于思路不同,就有不同的解法,重在分析数量关系.
4.对比.
(1)1辆汽车1天运货20吨,4辆汽车5天运货多少吨?
(2)4辆汽车5天共运货400吨,1辆汽车1天运货多少吨?
同学们在独立解答的基础上,二人讨论,这两道题有什么联系?有什么区别?
订正:
(1)20×5×4 2)40÷4÷5
=100×4=100÷5
=400(吨) =20(吨)
(两道题的区别:(1)题是连乘应用题,(2)题是连除应用题.这两道题又有内在联系,(1)题的已知条件是(2)题的问题,(1)题的问题是(2)题的已知条件.)
教师给以肯定后,再进一步明确说明:连乘和连除这两种应用题是互逆关系,应用这种互逆关系还可以对应用题进行检验.
(三)巩固反馈
1.独立计算基本题.
(1)3辆汽车4次可以运288筐苹果,1辆汽车1次可以运多少筐苹果?
(2)光明中学的团员平整操场,35人3小时平整了1260平方米,平均每人每小时平整多少平方米?
2.叙述条件有变化.
一份稿件共960页,8个打字员共打12小时才完成,平均每个打字员每小时可以打字几页?
3.改编题.
每只鸡每天吃饲料4500克,照这样计算,6只鸡5天吃饲料多少千克?
把上题改为用除法解答的应用题.
4.变化提高题.
4台碾米机3小时可以碾米4800千克,1台碾米机8小时可以碾米多少千克?
(如有困难可稍加提示;从问题入手分析,要求1台8小时碾米多少千克,就要先求出1台1小时碾米多少千克.)
(四)作业
练习三第1~5题.
课堂教学设计说明
本节课学习连除应用题的要点是总量与两个变化的量有关系,并随着两个变量的变化而变化,因此也可以用两种方法解答.与前面学过的连乘应用题是互逆关系.
新课分为三个层次.
第一层是在教师引导下,通过画图表示题里的条件和问题,重点分析第一种思路和方法.
第二层是通过学生自学课本,在小组讨论的基础上,明确线段图中的数量关系,自己类推出第二种思路和方法.在此基础上共同总结出连除应用题的特点.
第三层是通过对连乘、连除应用题的对比,明确这两种应用题之间的内在联系及其互逆关系.
练习的设计围绕重点,有基本题、变化题、改编题.为以后学习稍复杂的归一问题打基础.
板书设计
连除应用题
例2 一种织布机5台8小时织160米布,
平均每台每小时织多少米布?
(1)每台织布机8小时织布多少米?
160÷5=32(米)
(2)每台织布机1小时织布多少米?
32÷8=4(米)
综合算式:
160÷5÷8
=32÷8
=4(米)
答:平均每台每小时织布4米.
对比(1)1辆汽车1天运货20吨,照这样计算,4辆汽车 5天运货多少吨?
20×4×5 20×5×4
=80×5 =100×4
=400(吨) =400(吨)
答:4辆汽车5天运货400吨
对比(2)4辆汽车5天共运货400吨,平均1辆汽车 1次运货多少吨?
400÷4÷5 400÷5÷4
=100÷5 =80÷4
=20(吨) =20(吨)
答:平均1辆汽车1天运货20吨.
篇5:连除应用题(人教版四年级教案设计)
教学目标
1.理解此类连除应用题的数量关系,能用两种方法解答此类应用题.
2.正确列综合算式解答应用题,理解连除与连乘应用题的互逆关系.
3.培养学生分析推理能力和逆向思维能力.
教学重点
分析理解数量关系.
教学难点
利用线段图理解数量关系,确定计算步骤.
教学步骤
一、复习.
一种织布机每台每小时织布4米,5台织布机8小时可织布多少米?
要求学生:画线段图,并用两种方法解答.
二、探究新知.
1.出示例2:一种织布机5台8小时织布160米,平均每台每小时可织布多少米?
讨论:例题与复习题相比较,有什么特点?
结果:例题与复习题的问题与已知条件换了位.
根据学生汇报的讨论结果,让学生在复习题的两个线段图上,标注一下,已知什么,求什么?
2.引导学生对照线段图讨论:要想求出每台每小时织布多少米,我们应先求什么?
让学生在线段图中标出是哪一段,应该怎样求?根据学生回答,教师板书每一步的小标题.让学生在练习本上分步解答并汇报结果,教师板书:
(1)每台织布机8小时织布多少米?
160÷5=32(米)
(2)每台织布机每小时织布多少米?
32÷8=4(米)
引导学生列综合算式解答:
160÷5÷8
= 32 ÷ 8
= 4(米)
答:平均每台织布机每小时织布4米.
3.改例2线段图的问题和条件成下图,根据这幅图,我们应该先求什么?怎样求?
4.学生讨论确定先求“5台1小时织布多少米”,再求“1台1小时织布多少米”,教师根据学生汇报书写小标题.
(1)5台织布机1小时织布多少米?
161÷8=20(米)
(2)每台织布机每小时织布多少米?
20÷5=4(米)
列综合算式解答为:
160÷8÷5
=20÷5
=4(米)
答:平均每台织布机每小时织布4米.
三、巩固发展.
第一组题目:
条件:“书法小组每人每天写8个大字,5个人4天共写了160个大字.”
填空:8×5求的是_______________________;
8×4求的是_______________________;
160÷5求的是_____________________;
160÷4求的是_____________________.
第二组题目:
判断:①8×5与160÷4表示的意义相同.( )
②8×4与160÷5表示的意义相同.( )
③8×5与160÷4表示的意义不同.( )
④8×4与160÷5表示的意义不同.( )
第三组题目:
连线题,把意义相同的算式用线连接起来.
8×4 160÷4
8×5 160÷5
8×5×4 16÷5÷4
四、课堂小结.
通过小结,进一步把连乘应用题与连除应用题进行比较区分,并对两种解题方法再进行理解区分.
五、布置作业.
联系生活实际自编一道连除应用题,要求画线段图并用两种方法解.
板书设计
探究活动
给妈妈买衣服
活动目的
引导学生灵活运用知识,尝试各种算法的多样化,进一步巩固两步计算的应用题.
活动准备
1.4开白纸1张,教师出示下表所用.
2.学生每人准备1支水彩笔.
活动过程
师:同学们,小丽是一位很懂事又很孝顺的好孩子,用自己获得的100元奖学金,要买一套衣服送给妈妈,如何买这套衣服呢?你们来帮一帮她,出一出金点子好吗?谁想先来说一说,你有什么好的金点子?用打“√”表示一种买法.你有几种不同买法,用打“√”表示,求还剩多少元呢?
学生买法一:我是这样买的,先用100元买一件最好的上衣56元,再买一条裤子用43元,还剩下1元我坐车回家.
篇6:连除应用题(人教版二年级教案设计)
课题:连除应用题
教学目标
1.使学生掌握连除应用题的基本结构和数量关系,学会列综合算式用两种方法解答连乘应用题.
2.培养学生分析解决实际问题和灵活应用所学知识的能力,学会有条理地叙述思维过程.
3.培养学生主动探索的学习热情,感受数学与生活的密切联系.
教学重点
认识连除应用题的数量关系,初步学会两种解答方法.
教学难点
理解连除应用题的两种解题思路.
教学过程
一、提出问题 激疑诱趣.
1.出示【图片“参观农业展览”】
三年级同学去参观农业展览.他们平均分成2队,每队分成3组,每组15人,一共有多少人?(用两种方法列综合算式解答)
答:一共90人. 2.改变复习题的一个条件和问题后,出示例2.
例2:三年级同学去参观农业展览.把90人平均分成2队,每队平均分成3组,每组有多少人?
教师提问:例题与复习题在条件和问题上有什么变化?
教师导入:已知条件和问题发生了变化,还能用原来的方法解答吗?这就是我们今天要共同研究的新知识.(板书:应用题)
二、师生共同参与探索.
1.学习两种分析、解答应用题的方法.
出示例2:三年级同学去参观农业展览.把90人平均分成2队,每队平均分成3组,每组有多少人?
(1)自由提问,思考讨论.
教师提问:看到这道题,你想到了什么?有哪些问题?
学生可能提出如下问题,教师可以进行简记:
①这道题已知什么条件,要求什么问题?用线段图如何表示?
②要求每组多少人?必须先求出什么?
③分步列式如何解答?
(2)汇报结果,共同探索.
①教师提问:谁能回答第①个问题?
根据学生回答,出示线段图
②教师提问:谁能解决第②个问题?
结合学生讨论,教学两种解法,并列出综合算式.
第一种解法:要求每组有多少人?必须先求出每队多少人?(借助线段图帮助学生理解)已知条件中告诉我们共有90人,平均分成2队,求每队多少人?就是把90人平均分成2份,每份是多少?用除法计算.知道每队45人,又知道每队分3组,就能求出每组有多少人?
板书:
每队多少人? 综合算式:90÷2÷3
90÷2=45(人) =45÷3
每组有多少人? =15(人)
45÷3=15(人)
第二种解法:(借助线段图)要想求每组多少人?必须先求出一共多少组?知道每队分3组,分成2队,就是求2个3是多少?用乘法计算.6组对应90人,要求出每组多少人?就是把90平均分成6份,求每份是多少?
板书:
一共多少组? 综合算式: 90÷(2×3)
3×2=6(组) =90÷6
每组多少人? =15(人)
90÷6=15(人)
2.观察比较,归纳概括.
教师提问:观察两种解法在思路上有什么异同?
引导学生说出:相同点是所求的问题一样.不同点是先求的不一样,第一种解法先求的是每组多少人,第二种解法先求一共多少组,所以第一步的解法也就不一样.
3.引发思考,掌握检验方法.
教师提问:同学们,我们已经知道两种解法可以互相检验,除了这种方法外,还可以怎么检验应用题?(小组讨论)
引导学生发现:把已经计算出的结果作为已知条件,进行逆运算,如果最后算出的结果与题目的已知条件相同,说明解答正确.
15×3×2
=45×2
=90(人)
三、分层练习反馈矫正.
1.独立用两种方法解答,口头检验.
(1)图书馆买来新书240本,平均放在3个书架上,每个书架上放4层,平均每层放多少本?
订正:
答:平均每层放20本.
(2)商店卖出7箱保温杯,每箱12个,一共收入336元,每个保温杯多少元?
篇7:分数乘法应用题(人教版六年级教案设计)
教学目标
1.进一步掌握分数乘法应用题的数量关系.
2.学会用一个数乘分数的意义解答两步分数乘法应用题.
教学重点
1.掌握两步分数应用题的解题思路和方法.
2.画线段图分析应用题的能力.
教学难点
分析两次单位“1”的不同之处.
教学过程
一、复习、质疑、引新
(一)指出下面分率句中的单位“1” .
1.乙是甲的
2.小红的身高是小明的
3.参加合唱队的同学占全班同学的
4.乙的 相当于甲
5.1个篮球的价钱是一个排球价钱的 倍
(二)口头分析并列式解答
1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小华储蓄了多少元?
2.小华储蓄了15元,小新储蓄的是小华的 ,小新储蓄了多少元?
(三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.
(出示课题--分数应用题)
二、探索、悟理
(一)出示组编的例题
例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 ,小新储蓄了多少元?
1.思考讨论
(1)小华储蓄的钱是小亮的 ,是什么意思?谁是单位“1”?
(2)小新储蓄的是小华的 ,又是什么意思?谁是单位“1”?
2.汇报思路讲方法
根据“小华储蓄的钱是小亮的 ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱: .根据“小新储蓄的是小华的 ”,把小华的钱看作单位“1”,再标出小新的储蓄钱: .
由此基础上试列综合算式:
(二)巩固练习
小华有36张邮票,小新的邮票是小华的 ,小明的邮票是小新的 ,小明有多少张邮票?
1.分析数量关系,独立画图并列式解答.
2.学生板演.
(张)
(张)
答:小明有40张.
3.综合算式
三、归纳、明理
用连乘解答的题有什么特点?”“解题思路是什么?”
1.认真读题弄清条件和问题
2.确定单位“1”找准数量关系
根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.
3.列式解答
板书:抓住分率句,找准单位“1”,
画图来分析,列式不用急.
四、训练、深化
(一)联想练习根据下面的每句话,你能想到什么?
1.苹果的个数是梨的 .(如,梨是单位“1”;苹果少,梨多;苹果比梨少 等)
2.修了全长的
3.现在的售价比原来降低了
(二)先口头分析数量关系,再列式解答.
1.鹅的孵化期是30天,鸭的孵化期是鹅的 ,鸡的孵化期是鸭的 ,鸡的孵化期是多少天?
2.3个同学跳绳,小明跳了120下,小强跳的是小明的 ,小亮跳的是小强的 倍,小亮跳了多少下?
(三)提高题.
六年级有三个班参加植树,___________,二班植树棵数是一班的 ,三班植树棵数是二班的 倍,___________?
五、课后作业
(一)六年级同学收集了180个易拉罐,其中 是一班收集的, 是二班收集的.两班各收集多少个?
(二)长跑锻炼,小雄跑了3千米,小雄跑的 等于小刚跑的,小勇跑的是小雄的 .小刚和小勇各跑多少千米?
六、板书设计
分数乘法应用题
小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的 ,小新储蓄的钱是小华的 .小新储蓄了多少钱?
教案点评:
解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。
这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。
篇8:分数除法应用题(人教版六年级教案设计)
教学目标
1.使学生进一步熟悉应用题的数量关系,能够掌握用算术、方程法解答两步计算的分数小数应用题。
2.提高学生分析和解答应用题的能力。
3.渗透对应思想。
教学重点
掌握数量关系,明确解题思路。
教学难点
会分析数量间的等量关系。
教学准备
投影片。
教学过程
(一)复习
1.看句子列算式。
2.复习数量关系。
(1)行程问题中的三量关系式是什么?
(2)相遇问题与行程问题三量关系有什么区别?是什么?
投影出示:速度和×相遇时间=合走路程
合走路程÷速度和=相遇时间
合走路程÷相遇时间=速度和
(3)它们同类量之间有什么关系?
合走路程=甲走的路程+乙走路程
速度和=甲的速度+乙的速度
(二)导入新课
这些数量关系以前学过,解决了一些实际问题,今天我们就来应用这些数量关系解决分数、小数中的一些实际问题。(板书课题)
(三)讲授新课
例1 两地相距13千米,甲乙二人从两地同时出发,相向而行,经
1.读题,说出已知、未知条件分别是什么?
2.分析:
(1)这是什么类型的题?和我们以前学过的相遇问题有什么区别?
(相遇问题,相遇时间给的是分数。)
(相遇时间,甲乙二人都行了这么长时间。)
在日常生活中,遇到的数不可能都是整数,那就要用分数、小数来表示。这样的问题你们会解决吗?
(3)请同学们自己选择方法做这道题。
(4)投影反馈各种不同做法,讲算理。
说每步的算理。
解③ 设乙每小时行x千米。
为什么这样列方程,根据是什么?
(甲走的路程+乙走的路程=总路程)
解④ 设(略)
列方程根据是:速度和×相遇时间=距离。
(5)对比用方程解答和用算术方法解答从解题思路上有什么不同?
(算术法是根据已知量,运用关系式,求出未知量;方程法是根据关系式确定等量关系,让未知数x参加运算。)
(6)小结:解答应用题时,首先明确数量之间的关系,灵活运用,选择多角度思考,用不同方法解答。
(1)读题分析:
这道题是一道什么样的应用题?
分数应用题的解题步骤是什么?
(一、认真审题;二、分析重点句;三、确定单位“1”;四、准确画图;五、列式计算。)
(2)根据解题步骤同桌讨论后,说出解题思路。(重点句是“两周正好
共修的总和。)
(3)同学们自己画图,列式。(一生板演)
解①设这段公路长x米。
等号左边和等号右边各表示什么?
为什么这样列式?
以先求两周共修的,然后再求这段公路全长多少千米。)
(4)两种解法的思路有什么不同?
(方程法设全长单位“1”为x,根据分数乘法的意义来列等量关系
出单位“1”。)
(5)例2与以前学的简单分数应用题的区别是什么?
(简单分数应用题是直接给出相对应的量率;而今天学的是运用对应思想,间接地求出相对应的量率。)
以上两个例题的学习使我们明白,在整数应用题时所学的数量关系,在小数、分数中照样可以应用,思路相同。
(三)巩固练习
1.课本第77页的“做一做”,任选一种方法列式计算,投影两种解法,区别比较。
方程法 算术法
解 设运来桔子x吨。
(用方程法解,思路清晰;用算术方法解逆向思维,尤其是加上0.5,不易理解。)
2.课本第78页的“做一做”,任选一种方法列式计算,投影订正。
3.选择正确答案。(举号选择)
(设钢笔价钱为x元)
第二月比第一月多生产30条。前两个月共生产毛巾被多少条?
(四)布置作业
第80页1~4题。
课堂教学设计说明
这节课是分数、小数应用题的第一课时,关键要把整数之间的数量关系迁移到分数、小数范围内,目的是迁移、巩固、提高。所以在设计这节课的教案时,改变过去以老师讲解为主的状况,让学生互相讨论,说解题思路,大胆放手让学生试做,然后根据学生所做的情况,说算理,说列方程的依据,明确列方程的等量关系。由于分析、思考的角度不同,所以确定的等量关系式也不同,列的方程式也就不同,这样就从多角度复习了数量之间的关系,发散了学生的思维。
分数应用题是这册书的重点。例2是在以前学过简单的分数应用题的基础上出现的,引导学生通过充分说算理,正确地画出图形,列出方程式和算术式,进一步加深了学生对求一个数的几分之几意义的理解。同时,向学生渗透对应思想,由简单的一一对应,向间接地求出相对应的量和率过渡,明确数量之间关系,为今后解决较复杂的分数应用题做好铺垫。
教案设计注意发挥学生主体作用,让学生参与教学,不是老师牵着学生鼻子走,而是为学生主动学习创设发展思维的环境。
篇9:分数应用题2(人教版六年级教案设计)
教学目的
1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
教学重点
通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.
教学难点
通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)的电视机价格比降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%. ( )
4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
篇10:六年级分数应用题教案设计
教学目标
1.理解以“和倍”问题为基础的分数应用题的解题思路.会列方程解答此类应用题.
2.培养学生的迁移类推能力.
3.培养学生运用所学的知识解决生活中的实际问题的能力.
教学重点
理解应用的数量关系,找到题目中的等量关系.
教学难点
找准题中的等量关系.
教学过程
一、复习。(用含有字母的式子表示)
1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|棵。
苹果树和梨树一共有()棵。
2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。
二、生活引入.
上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?
1.老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了.
2.板书课题:分数除法应用题。
3、学生读题,理解题意弄清谁是单位”1“,画出线段图.
4、分层指导。
思考:(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?
(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师、杨莹的岁数用含有的式子怎么表示?
5.学生练习,集体订正,说明思路。
三、尝试练习
(一)出示例3
例3.饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的.白兔和黑兔
各有几只?
1.读题,理解题意弄清谁是单位”1“,画出线段图.
2.小组回答:
(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?
(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含
有的式子怎么表示?
3.学生练习。
4.学生打开书本对答。(65页)
解:设白兔的只数为只,黑兔的只数是.
白兔只数+黑兔只数=总只数
答:白兔有15只,黑兔有3只.
4.教师提问:这道题还可以怎样列式?
18÷(1+)什么意思?
(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答.
1.商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?
2.商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多
少筐?
教师归纳:今天学习的应用题在解答时要根据分率句确定单位”1“,把单位”1“设为.
另一个数就是几分之几.根据已知条件列出方程解答.
四、巩固练习.
(一)变式练习
小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?
(二)对比练习
1.李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多
少吨?
2.李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?
(三)选择练习
果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?
解:设桃树有棵.
A.B.
C.D.
五、质疑总结.
1.用方程解这类题的关键是什么?
2.用算术方法解答时应注意什么?
六、板书设计
分数除法应用题
解:设老师的年龄是岁.
......老师年龄
42-30=12......杨莹的年龄
答:老师30岁,杨莹12岁.
六年级分数应用题教案设计二
教学目标:
使学生比较系统地掌握分数应用题的解答方法。弄清稍复杂的分数应用题是从基本题扩展而来的,抓住关键提高学生的辩别能力。
使学生能够正确地选择适当的方法解答分数(百分数)应用题。
教学过程:
指导学习例题
基本复习
谁能根据这两个已知条件提出简单的用分烽解的问题并列出相应的算式。(水彩画是蜡笔画的几分之几?50/80;蜡笔画是水彩画的几分之几?80/50)
稍复杂分数应用题的复习:
根据上面已知条件,教师提出“蜡笔画比水彩画多几分之几”谁会列式并算出结果?(学生列式教师板书(80-50)÷50=3/5)如果提出“水彩画比蜡笔画少几分之几”又该怎样列式?结果又是多少?学生列式教师板书(80-50)÷80=3/8)
提问:解答以上问题列式的关键是什么?关键弄清哪个量是哪个量、哪个量比哪个量多(少)几分之几。“是”和“比”后面的量就看作单位“1”的量做除数,前面的量则做被除数。
稍有变化的复习题:根据上面总结的解题关键,我们来讨论下面两个问题。(教材111页的两道小题,可一一出示后让学生列式解答。)
总结解答方法:
找准题中单位“1”的量。
看单位“1”的量是已知还是未知。(单位“1”的量是已知就用乘法解答,否则可用方程解)
单位“1”的量×几分之几=几分之几的量
完成教材111页例4的“想一想”:
教师强调说明解题方法一样。因为这里的分数与百分数都是表示两个数的相除关系,实质是一样的,只是形式不同,如最前面的基本题中最后结果要化成百分数。
3.巩固练习
只列式说得数
完成教材113页的“做一做”。
小军看一本240页的书,第一天看了全书的1/5,第二天看了全书的1/4。
1)240×1/5求的是( )。
2)240×(1/4-1/5)求的是( )。
3)240×(1/4+1/5)求的是( )。
4)240×(1-1/4-1/5)求的是( )。
解答下面各题
一根铁丝第一次截去全长的3/7,第二次截去3/7米,还剩下全长的3/7。这根铁丝有多长?
光明学校的男生数占全校学生的33%,比女生少170人,女生有多少人?
(此二题可供班级中优等生解答,对学习有困难的同学可做教材练习二十八第一题。)
4.全课总结(略)
篇11:六年级分数应用题教案设计
教学目标
1、进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。
2、进一步掌握已知一个数的几分之几是多少求这个数的应用题的解题思路。
3、进一步培养学生解决问题和分析、推理等思维能力,提高解题能力。
教学重难点
进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 复习铺垫
二、教学新课
三、巩固练习
四、课堂小结
五、作业
1、复习
出示复习题(见幻灯)
问:解答这道题是怎样想的?为什么列方程解?
2、揭示课题
解答分数应用题,要先确定单位“1”,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。
1、教学例2
(1)学生读题,找条件和问题。
(2)找关键句,说数量关系。
(3)学生画线段图。
(4)学生独立列式、计算。
(5)小结:这道题的解题思路是怎样的?
2、教学试一试。
(1)学生读题,找条件和问题。
(2)找关键句,说数量关系。
(3)学生画线段图。
(4)学生独立列式、计算。
3、小结
问:通过上面的学习,你认为解答分数应用题该怎么去思考?
1、做练习十第6题
2、做“练一练”
3、做练习十第9题
问:列方程解是怎样想的?
这节课学习了什么内容?解答分数应用题一般要怎样想?今天学习的这类应用题可以有哪些方法解答?
练习使7、8、10
课后感受
例2比较简单,从学生的掌握情况来看,“试一试”稍有一些难度。所以本节课的重点放在了“试一试”的分析上。的确通过画线段图的分析,学生对此类题目有了一定的解题思路。
篇12:连除应用题数学教案设计
连除应用题数学教案设计
教学内容:连除应用题练习
教学目的
一、计算练习
做练习二十三的第5、6、11题
1、 第6题,让学生独立口算,共同核对得数。
2、 第6题,让学生独立笔算,填出得数,集体订正。
3、 第6题,第一行指名板演,并要求学生说说怎样估算,第二行全班学生在练习本上估算,指名口答得数,共同订正。
二、应用题解题练习
练习二十三的第7-10题及第12、14、15题
1、第七题,全班学生独立在练习本上解答,教师巡视,分别指名将两种不同的解法的综合算式抄在黑板上:
7200 ÷12÷ 6 7200 ÷ (12 ÷ 6)
让学生比较两种解法的不同。
2、第8题,先引导学生回顾除法应用题中常见的数量关系,然后再求。
3、第9、10题,先让学生读题,审题,比较两题的不同,第9题是连除应用题,第10题不是连除应用题。
4、 第12题,两道小题也要让学生对比着练,先让学生独立解答,然后指名说解法。
5、 第14、15题,让学生独立列出综合算式解答,集体订正。
三、应用题补充条件、问题练习
做练习二十三的'第13、16题
1、 第13题,读题,明确条件,然后给予适当的启发。
2、 第16题,要求学生补充一个条件和一个问题,成为一道两步应用题;再补充另一个条件和问题,成为另一道两步应用题
3、 整理和复习
复习混合运算式题、文字题和连乘、连除应用题
教学内容
课本第116页的第1-3题;练习二十六的第1-4题
教学目的
1、 通过整理和复习,使学生进一步掌握含有两级运算的三步式题的运算顺序,能比较熟练地进行计算,并会列综合算式解答两步计算的文字题。
2、 使学生进一步理解连乘、连除应用题的数量关系,能比较熟练地解答这两种应用题,提高理解能力。
教学过程
一、复习混合运算
1、 混合运算式题
(1) 做课本第116页第1题及补充题
97-12× 6+43 29+187÷ 17-34
156-56÷ 4× 7 (350-275)×(19+25)
(2)做练习二十六的第1题
学生独立做,教师巡视,发现问题,集体订正。
(3)做练习二十六的第3题
左图是变化了形式的三步混合运算式题,右图是以框图形式出现的混合运算。让学生独立计算,指名说出亿时结果。
2、 两步计算文字题
做第116页的第2题
让学生说说每道题求什么,必须知道哪两个数,再引导学生列综合算式
做练习二十六的第2题
让学生独立列出综合算式计算,指名答出,共同订正。
二、复习连乘、连除应用题
1、 做课本第116页的第3题
让学生根据题意画线段图,教师巡视指导。
解答后,引导学生把它改编成用除法计算的两步应用题。
2、 练习二十六的第4题
让学生列综合算式解答,订正时,指名说说两小题的相同点和不同点以及综合算式的每一步求什么。教师归纳,指出解答连乘、连除应用题应注意的问题。
篇13:分数乘法应用题2(人教版六年级教案设计)
教学目标
1.理解和掌握“求一个数的几分之几是多少”的分数应用题的结构和解题方法.
2.渗透对应思想.
教学重点
理解应用题中的单位“1”和问题的关系.
教学难点
1.理解“求一个数的几分之几是多少”的应用题的解题方法.
2.正确灵活的判断单位“1”.
教学过程
一、复习、质疑、引新
1.说出 、 、 米 的意义.
2.列式计算
20的 是多少?6的 是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘
法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)
二、探索、质疑、悟理
(一)教学例1(也可以结合学生的实际自编)
学校买来100千克白菜,吃了 ,吃了多少千克?
1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的关系.
2.分析.
教师提问:重点分析哪句话呢?“吃了 ”这句话是分率句.是什么意思呢?
(就是把100千克白菜平均分成5份,吃了这样的4份).
3.画图.(演示课件:分数乘法应用题1)
画图说明:a.量在下,率在上,先画单位“1”
b.十份以里分份,十份以上画示意图.
c.画图用尺子,用铅笔.
4.尝试解答.
解法一:用自己学过的整数乘法做
(千克)
解法二:
5.小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答.
(二)巩固练习
六年级一班有学生44人,参加合唱队的占全班学生的 ,参加合唱队有多少人?
1.把哪个数量看作单位“1”?
2.为什么用乘法计算?
(三)教学例2
例2.小林身高 米,小强身高是小林的 ,小强身高多少米?
1.演示课件:分数乘法应用题2
2.求参加合唱队有多少人实际上就是求 米的 是多少。
3.列式: (米)
答:小强身高 米.
(四)变式练习
小强身高 米,小林身高是小强的 倍,小林身高多少米?
三、归纳、总结
1.今天所学题目为什么用乘法计算
2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?
共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。
从分率可入手分析
四、训练、深化
(一)先分析数量关系,再列式解答
1.一只鸭重 千克,一只鸡的重量是鸭的 ,这只鸡重多少千克?
2.一个排球定价36元,一个篮球的价格是一个排球的 ,一个蓝球多少元?
(二)提高题
1.一桶油400千克,用去 ,用去多少千克?还剩多少千克?
2.一桶油400千克,用去 吨,用去多少千克?还剩多少千克?
五、课后作业
(一)修路队计划修路4千米,已经修了 。修了多少千米?
(二)一头鲸长7米,头部长占 。这头鲸的头部长多少米?
(三)成昆铁路全长1100千米,桥梁和隧道约占全长的 。桥梁和隧道约长多少千米?
六、板书设计
教案点评:
本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。
探究活动
活动目的
1.使学生掌握求一个数的几分之几是多少的应用题的数量关系和解答方法.
2.熟练判断单位“1”,并能根据实际情况灵活选择单位“1”的量.
活动题目
篇14:分数乘法应用题(三)(人教版六年级教案设计)
分数应用题
教学目标
抓住分数应用题的核心--倍数关系和等量对应,通过“一例多用”、“一题多变”,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.
教学过程
一、引入
根据条件列出对应关系.
1.青砖的块数比红砖多
2.青砖的块数比红砖少
3.红砖的块数比青砖多
4.红砖的块数比青砖少
上面各题哪一个量是单位“1”的量,占几份?另一个量所对应的分率是什么,占几份?
二、展开
(一)将上列各条件补充一个共同的条件和问题,出示例1.
红砖2100块 有青砖多少块?
1.学生独立解答;
2.大组交流;
3.列表归纳.
题号 1 2
对应
关系 红砖2100-5
青砖□-(5+2) 红砖2100-5
青砖□-(5-2)
解一 设青砖x块
设青砖x块
解二
题号 3 4
对应关系 青砖□-5
5
红砖2100-(5+2) 青砖□-5
5
红砖2100-(5-2)
解一 设青砖x块
设青砖x块
解二
(二)出示例2
电视机厂今年生产电视机3600台,____________________,去年生产多少台?
1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.
(1)相当于去年的25%
(2)比去年少25%
(3)比去年多25%
(4)去年生产的是今年的25%
(5)去年比今年少25%
(6)去年比今年多25%
2.将应选择的条件填入下列各式后的括号内.
( )
( )
( )
( )
( )
( )
3.师生共同分析
(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.
分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:
去年的产量□--100
今年的产量3600--25
设去年生产x台,得到的式子:
在第六个式子的括号里填(1).
(2)按照式子找应补充的条件.
如:
分析:100份与3600台相对应,也就是今年的生产量3600台是单位“1”的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).
三、巩固
(一)根据题意列式解答:
果园里有梨树168棵 苹果树有多少棵?
(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一
台机器要多少元?
(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?
(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?
教案点评
这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用“一例一类题”的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心--倍数关系和量率对应,采用了“一例多用”,“一题多变”的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。
篇15:分数乘法应用题(二)(人教版六年级教案设计)
教学目标
1.使学生掌握求一个数的几分之几是多少的两步分数乘法应用题的解题思路和解答方法。
2.在画图、分析的过程中培养学生的分析能力、推理能力等初步的逻辑思维能力。
教学重点和难点
1.正确分析关键句,找准单位“1”。
2.掌握分析思路,弄清所求问题是求谁的几分之几是多少。
教学过程
(一)复习准备
1.口算,并口述第二组算式的意义。
2.列式。
这些算式求的是什么?(求一个数的几分之几或几倍是多少。)
这里的b,a,x就是什么?(单位“1”)
3.找出下列各句子中的单位“1”,再说明另一个数量与单位“1”的关系。
提问:(3)题中怎样求甲?(4)题中怎样求乙?
今天我们继续学习分数乘法应用题。
(二)讲授新课
1.出示例3。
2.理解题意,画出线段图。
(1)读题,找出已知条件和所求问题。
(2)提问:你认为应着重分析哪些已知条件?(小华储蓄的钱是小亮的
(3)分组讨论这两个已知条件应怎样理解。
(4)学生口述已知条件的意义,老师板演线段图,加深学生对题意的理解。
18元看作单位“1”,平均分成6份,小华储蓄的钱数相当于这样的5份。
师板演:
数看作单位“1”,平均分成3份,小新储蓄的钱数相当于这样的2份。
所以小新储蓄的钱数是以谁为单位“1”?(以小华储蓄的钱数为单位“1”。)
怎样用线段表示小新的钱数?
生口述,师继续板演:
(把小华储蓄的钱数平均分成3份,小新储蓄的钱数相当于这样的2份。)
求什么?(小新的钱数)
3.分析数量关系,列式解答。
(1)根据刚才的分析,再结合线段图想一想,能不能一步求出小新储蓄的钱数?(不能)
必须先求什么?再求什么?(先求小华储蓄的钱数,再求小新储蓄的钱数。)
因此这道题要分两步解答。
根据哪两个条件能求出小华的钱数?
元。)
求出小华的钱数,又怎样求小新的钱数?
(2)以小组为单位共同完成列式解答。
(3)口述列式,并说明理由。
求什么?为什么这样列式?(求小华储蓄的钱数。因为小华储蓄的钱
求什么?根据什么列式?(求小新储蓄的钱数,因为小新储蓄的钱数
(4)你能列综合算式解答吗?
答:小新储蓄了10元。
(三)巩固反馈
1.出示“做一做”。
小明有多少枚邮票?
(1)读题,找出已知条件和问题。
(2)请你确定从哪些条件入手分析。
(3)小组讨论:分析已知条件并画线段图。
(4)反馈:请代表分析,并出示该小组的线段图。
作单位“1”,平均分成6份,小新的邮票数量是这样的5份。
均分成3份,小明的邮票是这样的4份。求小明有多少邮票。
应先求什么?再求什么?
(6)列式解答,做在练习本上。
2.出示21页的9题。
要求学生独立画图,分析解答。再互查。
3.变换条件和问题进行对比练习。
(1)找出已知条件中的相同处和不同处。
(2)画图分析并列式解答。
4.选择正确列式。(小组讨论完成)
第二天看了多少页?
(四)布置作业
课本20页第6题,21页第10,12题。
课堂教学设计说明
解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几。这也正是课堂教学的重点与难点,是学生分析能力的体现。是我们课堂的教学目标之一。
这节课是分数乘法应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是例3增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易。
教学中采用小组合作的形式,发挥集体智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。
篇16:分数除法应用题2(人教版六年级教案设计)
教学目标
1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位“1”,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位“1”
1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位“1”?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积× ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1.找出已知条件和问题
2.画图并分析数量关系
3.列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1.教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位“1”?
2.引导学生说出线段图应怎样画?上衣价格的
3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价× =裤子的单价)
4.让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5.怎样直接用算术方法求出上衣的单价?
(元)
6.比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的关系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长
篇17:分数乘法应用题(一)(人教版六年级教案设计)
教学目标
1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。
2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。
教学重点和难点
1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。
2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。
教学过程
(一)复习准备
1.谈话、提问。
我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?
为什么呢?
分5份后取其中的2份是多少。)
当一个数乘以分数时求的是什么?
(一个数乘以分数就是求这个数的几分之几是多少。)
2.口述下列算式的意义。
求一个数的几分之几是多少怎样列式呢?
3.列式。
(二)学习新课
1.出示例1。
2.分析题意。
(1)读题,找出已知条件和所求问题。
(2)分析已知条件。
①谈话提问:
题中有两个已知条件,其中学校买来100千克白菜是已知学校买来
那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。
③汇报讨论结果。
均分成5份,吃了的占其中的4份。)
④那么我们应把谁看作单位“1”?(100千克)
⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?
3.列式解答。
(1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?
100÷5×4=80(千克)
100÷5求的是什么?再乘以4呢?
(2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?
所以把谁看作单位“1”?(100千克)
根据一个数乘以分数的意义应怎样列式?
答:吃了80千克。
4.课堂练习。
队的有多少人?
(1)读题,找出已知条件和问题。
(3)请你们以小组为单位进行分析,并画出线段图,解答出来。
(4)反馈。
说一说你们小组的分析思路及解答方法。
是多少。)
5.小结。
刚才我们解答的两道题,都是已知单位“1”是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?
(分析含有分率的句子,找准单位“1”,再根据一个数乘以分数的意义列式解答。)
6.下面我们来看这样一道题,看看它与上面的题有什么不同?
(1)出示例2。
(2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高
(3)分析、画图。
①你怎样理解这个条件?(把小林身高看作单位“1”,平均分成8份,小强的身高是这样的7份。)
②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)
③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?
(4)看图列式。
少。)
②怎样列式解答?
7.改动上题,你能独立分析吗?
米?
(2)画图分析解答。
(3)提问反馈:
①把谁看作单位“1”?
②小林身高怎样用线段图表示?
③求小林身高就是求什么?
求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。
(三)课堂总结
例1、例2有什么相同点和不同点?
(四)巩固反馈
(画图,解答)
球价格多少元?
3.对比练习:
少元?
(五)布置作业
20页第1~5题。
课堂教学设计说明
本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。
例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。
例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。
篇18:分数、百分数应用题复习(人教版六年级教案设计)
教学目标
1.使学生较熟练地掌握“求一个数的几分之几(百分之几)是多少”和“已知一个数的几分之几(百分之几)是多少,求这个数”这两类应用题。
2.提高学生分析、解答应用题的能力,培养学生“对立统一”的辩证思想。
教学重点和难点
找准量和率之间的对应关系是教学中的重点;能够画出较复杂应用题的线段图是教学中的难点。
教学过程设计
(一)复习基础知识
教师谈话:我们已经复习了“求一个数是另一个数的几分之几(百分之几)”、“求一个数的几分之几(百分之几)是多少”和“已知一个数的几分之几(百分之几)是多少,求这个数”这三类应用题。这节课,我们在前两节课的基础上,继续复习分数、百分数应用题。(板书:分数,百分数应用题复习)
投影出示如下习题:
1.读题列式并按要求改编题:
①一本书100页,读了60页,读了这本书的几分之几?
学生读题:
如果把问题改成“读了百分之几”应如何解答?
样列式计算?
③如果把一本书的页数当成问题,如何编题?怎样列式计算?(板
2.补充问题。
(1)六一班有男生30人,女生20人,_______________?
可以求什么?从最基本的想起。
学生读题后补充问题并列式:
①女生是男生的几分之几(百分之几?)
②女生比男生少几分之几(百分之几?)
③男生是女生的几分之几(百分之几?)
④男生比女生多几分之几(百分之几?)
可以求什么?从最基本的想起,
学生读题后补充问题并列式:
①女生有多少人?
②全班共有多少人?
③男生比女生多多少人?
④女生比男生少多少人?
3.回答问题。
师述:大家做一个比赛,看谁想得多?(学生自己在本上独立完成。)
③甲是甲乙差的4倍。
⑤乙是单位“1”。
4.小结。
通过刚才的练习,我们复习了分数、百分数的哪些类型应用题?它们各自的解法是什么?
(二)画线段图分析解答
投影出示如下练习:
1.录音机每台降价30%后,售价350元,这种录音机原来售价多少元?
①学生读题;
②学生自己画图列式;
③订正画图;
④指名列式。为什么不是350×(1-30%)?
⑤那为什么也不是350×30%?
2.修一条路,第一天修了全长的20%,第二天修了200m,第三天修的是前两天的总和,这条路全长多少米?
3.一根绳子截去20%后,再接上6m,结果比原来的绳子长了30%。这根绳子原来长多少米?
指名学生到黑板上画图。
4.一根绳子截去20%后,再接上6m,结果比原来的绳子长了1.5m,这根绳子原来长多少米?
(三)综合练习
1.题组训练(只列式不计算)
共多少吨?
箱重量正好相等,原来两箱桔子各有多少千克?
老师用投影出示下图帮助学生理理解题意。
学生课后完成。
课堂教学设计说明
本节课教学可分为三部分。
第一部分,复习“求一个数是另一个数的几分之几(百分之几)”,“求一个数的几分之几(百分之几)是多少”和“已知一个数的几分之几(百分之几)是多少,求这个数”这一类应用题。通过补充问题这种方式,使学生能够把分数、百分数应用题的数量关系和解题方法进行复习,并且打开解应用题的思路,充分调动学生的积极性。
第二部分是画线段图分析应用题。这部分的应用题具有典型性,要求学生能够画图进行分析,通过线段图找准量和率的对应关系,能够顺利地解决分数、百分数应用题。
第三部分是深入理解三种应用题的解题思想,综合应用知识。这部分应用题比较难,主要是为了让学生能够综合应用所学过的知识,进一步提高学生的解题能力,让学有余力的学生有发散思维的机会,调动他们的积极性。
板书设计
篇19:分数乘、除法应用题比较(人教版六年级教案设计)
教学目标
1.通过对比,掌握三类题的相同点和不同点。
2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力,为学习较复杂应用题打下基础。
教学重点和难点
掌握三类题的相同点和不同点,巩固解题方法,培养学生分析问题、解决问题的能力。
教学过程
(一)复习准备
教师谈话:前一阶段我们学习了三种类型的分数应用题。解决这三类题的关键是什么?
(抓住含有分率的句子,找准单位“1”。)
1.出示投影,找出单位“1”。
2.(板书)选择条件回答问题,下列算式各求的是什么?
15÷30。(求男生是女生的几分之几,女为单位“1”)
3.提问:求一个数是另一个数的几分之几用什么方法?求一个数的几分之几是多少用什么方法?已知一个数的几分之几是多少,求这个数,用什么方法?
导入:为了更进一步了解每一类的特点,巩固解题方法,请同学们和老师一起来做下面一组练习。
(二)讲授新课
例3 先分析数量关系,再解答。
(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
提问:鹅的只数是鸭的几分之几,应该把谁看做单位“1”?
根据学生的回答,老师画图。
提问:求鹅是鸭的几分之几用什么方法?为什么?
(用除法。因为求一个数的几倍用除法,根据分数和除法的关系,求一个数是另一个数的几分之几也用除法。)
提问:怎么求?谁做除数?
(鸭为单位“1”,鸭的只数做除数。)
老师将第(1)题进行改编。
谁是单位“1”?(鸭的只数为单位“1”。)
这句话是什么意思?(把鸭的只数看作单位“1”,把它平均分成3份,鹅的只数占其中的一份。)老师根据学生的回答画图。
什么?(因为单位“1”的数量是已知的,根据乘法意义,求一个数的几
答:有鹅4只。
师:你能把第二题改编成一道“已知一个数的几分之几是多少,求这个数”的题吗?(学生讨论,根据学生讨论结果出示第3题。)
提问:(边提问边根据学生回答画图。)
这道题已知什么?求什么?(指导学生画图)
这道题可以用什么方法解答?
(板书)①方程法:
解 设鸭为x只。
②算术法:
答:池塘里有12只鸭。
找出三道题的相同点和不同点。
1.观察三道题的已知条件和未知条件,有什么相同点和不同点?
相同点:都有3个数量,鸭的只数,鹅的只数,鹅是鸭的几分之几。
不同点:已知和未知条件不同。
2.在解题思路上有什么相同点?有什么不同点?
不同点:根据已知、未知的变化确定用什么方法解答。第(1)题,求分率用除法;第(2)题知道单位“1”的量,求单位“1”的几分之几用乘法;第(3)题知道分率和分率的对应量,求单位“1”的量用除法或方程。
练一练
选择条件列出算式。
每一道题谁为单位“1”?是已知还是未知?解这三类题有什么规律?
(三)巩固练习
(投影)
1.看图编题并列式解答。
2.根据分数三类应用题,补充问题,并列式解答。
(2)一条路长15千米,修了5千米,________。
3.选择正确的答案。
(2)一条水渠长120米,修了90米,修了的占全长的几分之几?
(四)课堂总结
这节课我们进行了三类题的对比练习。求一个数是另一个数的几分之几是多少,用什么方法。求一个数的几分之几是多少,用什么方法?已知一个数的几分之几是多少,求这个数,用什么方法?解决这三类题的关键是什么?(找准单位“1”,确定题的类型,从而选择正确的方法。)
(五)布置作业
(略)
课堂教学设计说明
本教案把分数的三类应用题放在了一起进行教学,这样,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。充分发挥了教师优化知识结构,紧扣教材,沟通事物间内在联系的能力。巩固练习形式多样,无论是选择条件列式还是补充问题列式答题以及看图编题,目的都是培养学生对三类题的辨析能力,促进学生对知识的理解和掌握,使学生的思维得到进一步发展。
通过本节课的教学以及课下的练习,为学生学习较复杂的分数应用题,打下了坚实的基础。
★上学期六年级数学教案(2)分数连成应用题 (人教新课标六年级上册)
文档为doc格式