欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

如何解比例分配应用题六年级教案设计

时间:2022-06-05 08:14:41 其他范文 收藏本文 下载本文

以下是小编整理的如何解比例分配应用题六年级教案设计,本文共14篇,欢迎阅读分享。

如何解比例分配应用题六年级教案设计

篇1:如何解比例分配应用题六年级教案设计

如何解比例分配应用题六年级教案设计

教学内容:

第十一册p5859,例2、例3,练习十三15

教学要求:

1、使学生认识按比例分配应用题的结构特点和解题思路,能正确解答按比例分配应用题。

2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

教材简析:按比例分配应用题是把一个数量按照一定的比进行分配。它是平均分问题的发展。本课的教学重点是根据两个量的比推想出各占总数量的几分之几。

教学过程:

一、创设情境,提出问题:

我校四(3)班有男生30人,女生18人。体育课上,沈老师要把24个实心球分给男、女同学分成两大组进行练习,可以怎样分呢?男同学组、女同学组各能分到几个?

同桌讨论,再回答。

(估计学生回答:1、平均分,就是男生12个,女生12个;2、这样不合理。3、应该按人数来分,男女生人数的比是30:18,化简后是5:3,按这个比例来分较合理。)

师小结:这样24个实心球按5:3来分,男女生各能分到几个?你能解决这样问题吗?

二、主动探究,归纳方法:

老师把刚才的问题板书成应用题出示,并引导学生一起研究解决刚才的问题:

四(3)班体育课,沈老师要把24个实心球分给男、女同学分成两组练习,男女生人数的比是5:3,男女生各分到实心球几个?

学生尝试独立解决问题。有困难的同学老师建议画个图帮助理解。解答后同桌说说是怎么想的?

学生讨论后汇报交流,说说自己的思路及解答方法。生1:24(5+3)5=15(个)24-15=9(个);生2:先想男生是总人数的几分之几?5+3=8,男生是总人数的5/8。245/8=15(个)24-15=9(个)师补充:这样做,实际上是转化成了求一个数的几分之几是多少?生3:24(5+3)=3(次)35=15(个)24-15=9(个);

方法引导:同学们想出了很多方法来解决这个问题,这些方法都可以,具体解题时用什么方法,同学们可以灵活地选择。

小结:我们分东西,可以用平均分,也可以按一定的比例来分。像刚才一样,把一个数量按照一定的`比例进行分配,这种分配的方法叫做按比例分配。(出示课题:按比例分配的应用题)

三、运用知识解决问题:

(1)初步运用

师:这样的问题你能解决吗?

出示:学校买科技书和故事书共540本,其中科技书和故事书数量的比是5:4,两种书各买几本?

(2)出出金点子:

师:像这样按比例分配的问题在生产、生活中应用非常广泛。下面,我们一起来帮助出出点子,好吗?

出示:水果店的李经理准备用3600元买进一些水果,可以买哪些水果,按怎样的比例分配,每种水果各用几元?你帮助出出主意好吗?

学生先自己做,再交流。

四、总结:

今天,我们学会了哪些知识?并说说我们是怎样学会这些知识的?

五、课堂练习:练习十三14

篇2:按比例分配应用题(人教版六年级教案设计)

教学目标

1.使学生理解按比例分配问题的意义。

2.使学生掌握按比例分配应用题的结构及解答方法。

3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。

教学重点和难点

1.理解按比例分配问题的意义。

2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。

教学过程设计

(一)复习准备

1.复习比的有关知识,为学习新知识做准备。

已知六年级1班男生人数和女生人数的比是3∶4。

男生人数与全班人数的比是(  )∶(  )。

女生人数与全班人数的比是(  )∶(  )。

2.创设情境,提出课题。

(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)

提问:妈妈是怎样分的?(平均分)

(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)

提问:这样分还是平均分吗?

日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。

(二)学习新课

1.讲解例2。

例2  一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?

(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?

(2)分析思考:看到“播种大豆和玉米面积的比是3∶2”这句话你想到了哪些倍数关系?小组讨论。

④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的

各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。

(3)解答例2。

①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?

②说说你是怎样做的?

方法a:3+2=5

播种大豆的面积 100÷5×3=60(公顷)

播种玉米的面积 100÷5×2=40(公顷)

方法b:总面积平均分成的份数为

3+2=5

③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)

说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就

(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)

2.练习:第62页中的“做一做”(1)。

六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?

(1)弄懂题意。

(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)

(3)独立完成。组员之间互相检验。

3.学习例3。

例3  学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)

(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?

(3)请你在练习本上独立完成。

①三个班的总人数:

47+45+48=140(人)

②一班应栽的棵数:

③二班应栽的棵数:

④三班应栽的棵数:

答:一班、二班、三班分别栽树94棵、90棵、96棵。

(4)同组同学互相检验。

4.练习:第62页中的“做一做”(2)。

一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?

(1)在练习本上独立完成。

(2)同组同学互相检验。

(三)课堂总结

今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)

回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。

(四)巩固反馈

1.填空练习:

①把35千克苹果平均分成7份,每份(  )千克,2份(  )千克,5份是(  )千克。

2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?

3.第62页的“做一做”(3)。

一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?

与练习题2有什么区别?

如果求它的最短边、最长边怎么求?

4.判断练习:(正确举√,错误举×)

一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?

(五)布置作业

第63页第1,2,3,4题。

课堂教学设计说明

本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。

本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。

篇3:用比例知识解应用题教案设计

用比例知识解应用题教案设计

本资料为WORD文档,请点击下载地址下载全文下载地址 用比例知识解应用题

一、教学内容:

P113例5,练习二十三。

二、教学目标:

使学生进一步认识正反比例应用题的特点,理解并掌握解答正反比例应用题的解题思路和解题方法。

三、教学重点:

使学生学会正确的解答正反比例应用题。

四、教学难点:

进一步培养学生应用知识进行分析、推理的能力,发展学生的思维。

五、教具准备:

小黑板。

六、教学过程:

教学过程自我增减

一、复习:

1、判断比例关系练习

出示一块小黑板,指名学生回答下列数量关系是否成比例,成什么比例?并说明理由。

(1)、汽车行驶的速度一定,行驶的路程与行驶的时间。( )

(2)、把一袋大米平均分装成小袋,每小袋装的数量与装的袋数。( )

(3)、一段公路的长度―定,已经修完的长度与还没有修的长度。( )

(4)、总产量一定.每天的产量与生产的天数。( )

(5)、一本书的单价一定,售出的本数与总价。( )

(6)、长方形的面积一定,它的长与它的.宽。( )

2、说出这两种量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行X小时。

二、复习用正比例知识解答应用题

1、教师出示

例5:“修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?”

问:这道题可以怎样解答?题中的数量关系能否成比例?如果成比例,成什么比例?

生:分析、讨论、交流并汇报。

师:巡视并提醒学生,题里问的是修完这条公路还要多少天?而不是求一共用多少天。在设未知数时要怎样设?列方程时应当怎样列?”

(1)、学生动脑想、动手试做。

(2)、学生相互交流并说解题思路。

(3)、教师分析并讲解解题思路。

①设修完这条公路还要X天: ②设修完这条公路一共要X天。

= (直接设未知数) = (间接设未知数)

(4)、分析比较两种不同的解法。

―是在列方程时,要使等式的每一边都是对应的量相比。如,在第(1)种解法中,等式右边的分母是修完这条公路还要用的天数x。上面的分子就要用还要修的长度来对应是l2-1.5而不是12。

二是在第(2)种解法中,列方程求出的是一共要用多少天,还要减去已经修的3天,才是还要多少天。

2、引导学生用算术解解答。能用几种方法?讲出每种方法的解题思路。

3、与算术方法解答联系对比。

教师概括:“用正比例关系解答的应用题,就是以前我们学过的‘归一问题’。如果题目中没有限定解法。用哪种方法解答都可以。

三、复习用反比例知识解答应用题

例:一艘轮船从甲港驶往乙港,每小时航行25千米,12小时到达。如果每小时多航行5千米,多少小时可以到达乙港?

教师引导学生分析题意,学生尝试做题。

四、课堂练习。

1、做练习二十三的第1、2、3题。

做题时先让学生判断题中的数量关系成不成比例?如果成比例,成什么比例?”

教师巡视,个别指导。如果有时间,还可以指名学生说一说解题思路和方法。

五、总结。

谈谈这节课你的收获?

六、布置作业:

练习二十三的第4、5、6、7题。

自我加减

篇4:用比例解应用题复习(人教版六年级教案设计)

教学目标

1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

2.复习用正比例方法解答应用题。

3.复习用反比例方法解答应用题。

教学重点和难点

判断两种相关联的量成什么比例;确定解答应用题的方法。

教学过程设计

(一)复习数量关系

判断两种相关联的量成不成比例,确定解答应用题的方法。

1.被除数一定,除数和商。

2.一条路,已修的和未修的。

3.梯形的上、下底长度一定,梯形的面积和它的高度。

4.每块砖的面积一定,砖的块数和铺地面积。

5.挖一条水渠,参加的人数和所需要的时间。

6.从甲地到乙地所需的时间和所行走的速度。

7.单位面积一定,播种面积和总产量。

8.时间一定,速度和距离。

9.订阅《北京儿童》的份数和所需钱数。

(二)复习应用题

1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

第一步,先找对应关系:

8天--56台

31天--?台

第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

请你在对应关系的旁边写上“正”字,决定用正比例方法做。

解 设到月底可生产x台。

x=217

答:照这样速度月底可生产217台。

2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

第一步,先找对应关系:

20页--600本

24页--?本

第二步,判断成什么比例?(纸张总页数一定,成反比例。)

请你在对应关系的旁边写上“反”字,决定用反比例方法做。

解 钉成24页一本的练习本,可钉x本。

24x=20×600

x=500

答:如果钉成24页一本的练习本可钉500本。

学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

(三)练习解答两步的比例应用题

1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

黑板上的对应关系变成:

解  设x天读完。

(6+4)x=6×30

10x=6×30

x=18

答:18天可以读完。

2.在第1题的基础上,改变问题。

李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

对应关系:

解  设如果每天多读4页,x天读完。

(6+4)x=6×30

10x=6×30

x=18

30-18=12(天)

答:提前12天读完。

(指导学生分析、比较。)

以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

练习(学生独立分析,做题。)

1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

解 设甲城到乙城有x千米。

3x=105×(3+1.2)

x=147

答:甲城到乙城有147km。

2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

解  设剩下的x天可以收割完。

90x=5×54

x=3

答:剩下的3天可以收割完。

(再用间接设的方法做两道题。)

1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

16×42=24x

42-x

2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

12x=48×15

x-48

(四)总结

这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

课堂教学设计说明

解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

板书设计

篇5:比例分配应用题及答案

比例分配应用题及答案

一、请用比例的方法试解下列应用题:

1、配制一种农药,药粉和水的比是1:500.

(1) 现有水6000千克,配制这种农药需要药粉多少千克?

(2) 现有药粉3.6千克,配制这种农药需要水多少千克?

2、学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?

3、一个房间,用面积为9平方分米的方砖铺地需240块,如果改用边长4分米的砖铺地,需多少块?

4、服装厂原来生产一套成人西服用布2.5米,改进裁剪方法后,每套节约用布20%,原来生产240套西服的布,现在可生产多少套?

二、应用题:用合适的方法进行求解

1、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的`共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

2、甲乙两地相距360千米,一辆汽汽车从甲地到乙地计划7小时行完全程,汽汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

3、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客汽车和货汽车同时从甲乙两地相对开出,经过3小时相遇。已知客汽车每小时行65千米,那么这辆货汽车每小时行多少千米?

4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽汽车从B城到C站共用了0.6小时,求这辆汽汽车的速度。

5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

6、小淘气看一本科技书,第一天看了全书的 ,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?

7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

8、某汽车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?

9、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?

10、客货两汽车的速度比是3:2,货汽车行完甲乙两地全程要 小时。如果客货两汽车同时从甲乙两地出发,几小时可以相遇?

三、生活题:

吴工程师和李技术员从公司出发,合乘一辆出租汽车,吴工程师去实验室,李技术员去工地。两人商定出租汽车费由两人合理分摊。

公司        4千米       实验室                                     工地

12千米

已知出租汽车的汽车费牌价为:0~3千米(起程价)8元;3千米以上每千米1.8元。

①他俩的汽车费共计多少元?                 ②吴工程师应承担多少元汽车费?

篇6:解比例教案设计参考

解比例教案设计参考

教学目标

1.使学生理解解比例的意义.

2.使学生掌握解比例的方法,会解比例.

教学重点

使学生掌握解比例的方法,学会解比例.

教学难点

引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已

学过的含有未知数的等式.

教学过程

一、复习准备

(一)解下列简易方程,并口述过程.

2 =89

(二)什么叫做比例?什么叫做比例的'基本性质?

(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

(四)根据比例的基本性质,将下列各比例改写成其他等式.

3∶8=15∶40

二、新授教学

(一)揭示解比例不的意义.

1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

2.学生交流

根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

(二)教学例2.

例2.解比例 3∶8=15∶

1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

2.组织学生交流并明确.

(1)根据比例的基本性质,可以把比例改写为:3 =815.

(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

(3)规范并板书解比例的过程.

解:3=815

=40

(三)教学例3

例3.解比例

1.组织学生独立解答.

2.学生汇报

3.练习:解下面的比例.

=∶ = ∶

三、全课小结

这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

四、巩固练习

(一)解下面的比例.

1.2.3.

(二)根据下面的条件列出比例,并且解比例.

1.5和8的比等于40与 的比.

2. 和 的比等于 和 的比.

3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8.

五、布置作业

篇7:六年级数学解比例教案设计

解比例

教学目标:

使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

教学重点:

学会解比例。

教学难点:

掌握解比例的书写格式。

教学过程:

一、铺垫孕伏

1.解下列简易方程,并口述过程。

2.什么叫做比例?比例的基本性质是什么?

3.应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

4.根据比例的基本性质,将下列各比例改写成其它等式。

二、教学新课

1.出示例5

(1)审题,帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?

(放大前后的相关线段的长度是可以组成比例的)。

(2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?

引导学生写出含有未知数的比例式。

告诉学生:“像上面这样求比例中的未知项,叫做解比例。

(3)讨论:怎样解比例?根据是什么?

(4)思考:“根据比例的基本性质可以把比例变成什么形式?”

教师板书:6x=13.5×4。 “这变成了什么?”(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(在6x前加上“解:“)

(5)让学生把解比例的过程完整地写出来。指名板书。

2.总结解比例的过程。

提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?” (先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

“从上面的过程可以看出,在解比例的过程中哪一步是新知识?”

(根据比例的基本性质把比例变成方程。)

3.补充练习:

利用比例的.基本性质,把下列比例改写成含有未知数的等式。(投影出示,由学生独立完成后汇报。

)

三、全课小结:

1.通过本课的学习,你有哪些收获?

2.这节课我们学习了解比例。想一想,解比例的关键是什么?

(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可。

篇8:六年级数学解比例教案设计

“解比例”教学方案

简要提示:

本课教学内容是课程标准苏教版六年级(下)第45页的“解比例”。这部分内容是在学生已经理解了比例的意义、掌握了比例的基本性质的基础上进行教学的,通过教学使学生会应用比例的基本性质解比例,并掌握解比例的方法和过程;使学生在应用比例的基本性质解比例的过程中感受不同领域数学内容的内在联系,发展对数学的积极情感。

教学流程:

流程1:教学例5a

教师:李明同学在学习了图形的放大和缩小后,也在电脑上把下面的一张照片按比例放大。 课件出示例5。

教师读题:现在只知道放大后照片的长是13.5厘米,宽是多少厘米呢?你能解决这个问题吗? 教师:要求出宽,我们必须先理解“按比例放大”是什么意思,你能说给你的同桌听一听吗? 教师:按比例放大的意思呀就是说明这张照片放大前后的相应边长的比能组成比例,例如:放大前的照片的长:放大后的照片的长=放大前照片的宽:放大前照片的长:宽=放大后照片的长:宽。

流程2:教学例5b

教师:现在放大后的宽不知道,我们可以用什么来表示?

教师:我们就可以假设放大后的照片的宽为x厘米。

课件出示 解:设放大后的照片的宽为x厘米。

教师:现在你能列出比例式吗?

教师:我们可以列出这样的比例13.5:6=x:4

教师:动动脑筋,这个比例中的未知数x你能求出来吗?试一试!

流程3:教学例5c

课件出示解答过程。

教师:可以这样来解答。你知道把比例写成“6x=13.5×4”这一步的依据是什么吗?

教师:其实这就是根据比例的基本性质两个内项的积等于两个外项的积写的。你看懂了吗? 教师(指着):现在我们已经把未知数x求出来了,像这样求比例中的未知项的过程,就叫做解比例。(板书课题:解比例)

教师:请大家完整地看一看解比例的过程,想一想解比例的过程中最关键的是哪一步?把一个比例转化成这个等式的依据是什么?

教师:最关键的还是把一个比例写成等式这一步,它就是根据比例的基本性质得来的。

流程4:教学“试一试”a

教师:你现在会解比例了吗? 请大家看课本45页的试一试,请你接着完成它。

流程5:教学“试一试”b

课件出示解比例的过程。

教师:看一看,你做对了吗?说说把比例写成1.2x=75×0.4的依据是什么?

流程6:完成“练一练”

教师:请同学们继续看课本45页上的练一练,把这3题做在自己的练习本上,看谁做得有对又快。

教师:核对一下,你是这样做的吗?

课件出示三题的解题过程。

流程7:课堂总结

教师:今天我们学习了解比例,想一想在列比例解决问题时要注意什么?解比例的依据又是什么?

教师:在列比例式时我们要根据题意,正确找出题目里的比例,列出比例式,在解比例的过程中最重要的是要把比例根据比例的基本性质转化成一个等式,同时计算也要认真、细心。

流程8:完成练习十第6题

教师:下面我们再来做一些练习。

课件出示题目。

教师:请大家先读一读,然后独立在练习本上完成。

教师:我们可以这样来求未知数。

课件出示解答过程。

流程9:完成练习十第7

题教师:先读一读,想一想,然后做在练习本上,做完后同桌互相批改一下。

流程10:完成练习十第8题a

教师:请大家看课本47页第8题,先轻声地读一读。

教师:在练习本上分别写出每杯蜂蜜水中蜂蜜和水体积的比,然后看一看它们能不能组成比例。 教师:可以写成这样的比25:200、30:250,它们能组成比例。

流程11:完成练习十第8题b

教师:大家看第2个问题,题目中的“照第一杯蜂蜜水中蜂蜜和水的比计算:是什么意思? 教师:这句话的意思就是300毫升水中应加入的蜂蜜与水的体积的比等于第一杯中蜂蜜与水体积的比。

教师:正确理解了这个条件的意思后,就请大家列比例来解决这个问题。

课件出示解答过程。

教师:核对一下,你做对了吗?

流程12:完成思考题

教师:下面我们要来挑战一下自己了,有信心吗?请看??

课件出示题目。

教师:大家读一读,想一想,题目中告诉了我们哪些信息?

教师:“两个外项正好互为倒数”是什么意思?由此你能想到什么呢?

教师:两个外项正好互为倒数就说明两个外项的积是1,由此我们就能想到两个内项的积也是1。 教师:那另一个内项可以怎么求呢?请你列式算一算。 教师:另一个内项是3 ,你算对了吗? 16

流程13:布置作业

教师:今天的课堂作业是练习十的第5题。希望大家能认真完成。

篇9:解比例(六年级)(人教版六年级教案设计)

教学目标

1.使学生理解解比例的意义.

2.使学生掌握解比例的方法,会解比例.

教学重点

使学生掌握解比例的方法,学会解比例.

教学难点

引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已

学过的含有未知数的等式.

教学过程

一、复习准备

(一)解下列简易方程,并口述过程.

2  =8×9

(二)什么叫做比例?什么叫做比例的基本性质?

(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

(四)根据比例的基本性质,将下列各比例改写成其他等式.

3∶8=15∶40

二、新授教学

(一)揭示解比例的意义.

1.将上述两题中的任意一项用  来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

2.学生交流

根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

(二)教学例2.

例2.解比例 3∶8=15∶

1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

2.组织学生交流并明确.

(1)根据比例的基本性质,可以把比例改写为:3  =8×15.

(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

(3)规范并板书解比例的过程.

解:3 =8×15

=40

(三)教学例3

例3.解比例

1.组织学生独立解答.

2.学生汇报

3.练习:解下面的比例.

=      ∶  =  ∶

三、全课小结

这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

四、巩固练习

(一)解下面的比例.

1.  2.  3.

(二)根据下面的条件列出比例,并且解比例.

1.5和8的比等于40与  的比.

2.  和  的比等于  和  的比.

3.等号左端的比是1.5∶  ,等号右端比的前项和后项分别是3.6和4.8.

五、布置作业

(一)解比例.

=    =    ∶  =3∶12

(二)商店有一种衣服,售价是24元,比原来定价便宜25%.现在售价比原来定价便宜多少元?

(三)一个梯形的面积是12平方厘米,它的上底是3厘米,下底是5厘米,高是多少厘米?(列方程解答)

六、板书设计

教案点评

该教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。

篇10:解比例应用题含答案

第一题

某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。现在由三人共同加工,问完成任务时,三人各加工了多少个?

解答

甲、乙、丙三人工作效率的比=

容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。

第二题

有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。现将两瓶盐水并在一起,问在混合后的.盐水中盐与水重量的比是多少?

解答

正确的解答是:1∶8=2∶16,2+16=18;

1∶5=3:15,3+15=10。(2+3)∶(16+15)=5:31

答:在混合后的盐水中盐与水重量的比是5∶31。

篇11:解比例应用题含答案

(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(2)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(3在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(4) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

(5)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(6)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(7)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(8)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(9)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?(用比例解)

(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?(用比例解)

(11)修一条公路,原计划每天修360米,30天可以修完。如果要提前5天修完,每天要修多少米?(用比例解)

(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)

(13)修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)

(14)用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?(用比例方法解)

(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)

(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约1/8,实际可以烧多少天?(比例解)

(17)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)

(18)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。从动轮有20个齿,每分转多少转?(用比例方法解)

(19)6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?(用比例方法解)

(20)一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?(用比例方法解)

(21)某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天就完成,每天要多运多少车?(用比例方法解)

篇12:按比例分配(人教版六年级教案设计)

解:设氧为x千克。

x=(5.4-x)×8

x=43.2-8x

9x=43.2

x=4.8

5.4-x

=5.4-4.8

=0.6

以上方法4,5,6要写全过程。

(四)布置作业

(略)

课堂教学设计说明

1.通过复习,使学生认识到比与分数是有联系的。

2.讲授新课时,先讲了一个最一般的按比例分配题,练习1~3题以后出现另一种形式的按比例分配题,这里老师采用讲练结合的方法。最后让学生用多种方法解答一道题,从而让学生认识到整数、分数、比和比例这些知识的内在联系,使学生明确,当题中给出比的条件时,可以直接用比例的知识解题,也可以根据整数、分数、比和比例之间的联系,把比所表示的两个数量之间的关系用分数、整数之间的关系来表示,并解答题。但是由于分析的思路不同,解答的方法也不同。不管学生采用哪种方法解答,老师都要加以肯定,并鼓励学生采用多种方法解答。

板书设计

篇13:比例分配应用题教学反思

比例分配应用题教学反思

有些好的教学片段,往往在不经意间被你瞬间捕捉。而一堂精彩的数学课,必须有教学理念的支撑,教学方法的落实,学生思维的启发。

比例分配应用题刚上完。我对此有些想法,以便在今后的教学中积累一点有用的东西,以便更好的服务于学生。

一、有价值的问题,激发学生积极思维

导课问题有价值。我处理如下,有45只苹果分给六(1)班的男女同学,你们自己打算怎样分。这样的问题比较开放,不以条条框框限制学生思维,限制学生的思维空间,体现学生主体性发展的过程,充分挖掘每个学生的潜能。

引导问题有价值。如能否根据比例与分数之间的联系来解决比例分配应用题等。问题必须提在点子上,让学生在已有的基础上,运用知识迁移解释问题的解决。一堂成功的数学课就在于师生之间的解释清晰明了的程度。

二、营造机会,寻找思维的切入口

联系导课问题,营造机会。抓住按男女生人数来分作为契机,六(1)班男生21人,女生24人,以班级实际联系比的知识,让学生自编符合课时要求的应用题。拉进知识与学生的距离,启发学生思维,创造距离机会。

创设跳一跳摘“桃子”的机会,以小坡度多元化来解决问题。如运用多种方法解比例分配应用题的引导。看一下班级的具体人数能解决问题吗?这种是什么方法呢?

三、提供线索条件,让学生尝试摸索

如比例分配应用题解答方法不是一种,赛一赛谁的方法多,并给自己的方法取个名好吗?再如男女生人数比是7比8,你知道了什么?也可以接着给予提示。教学就是要创设一个宽松的环境,鼓励学生思考、讨论、想象。敢于提出自己的`独立见解和方法。

四、倡导学生相互解释,验证方案地可行性

现在的学习,是多渠道、多元化、提倡终身学习的学习。学生最终必须得依赖自己,而不是教师,因此他们不得不学会学习。在数学教学中,尽量避免教师的绝对权威,判断学生的是非。应在教师的引导下,逐步应用一些方法让学生用自己的知识来审视自己的思考过程。

最后,针对自己不足提些疑问,希望我的教学反思上交后,帮助我解决一个疑问。再此我表示深深地感谢。

(1)、课文规定一课时的内容我能否分两课时上,比如情况出现在公开课。

(2)、方法多样化,是否能够照顾到后近生。

(3)、上课时,鼓励学生一题多解,有时学生的方法确实可行,但你不能很好的解释,该如何处理。

篇14:解应用题的教案设计

解应用题的教案设计

解应用题的教案设计

教学内容

教科书118页例6及“做一做”。练习二十九1~5题。

一、素质教育目标

(一)知识教学点

1.使学生初步学会分析“已知有两个数的和与差,和两个数的倍数关系,求两个数各是多少”的应用题的数系,正确列出方程进行解答。

2.指导学生设末知数,表示两个数之间的关系。

3.训练学生分析这类应用题的数量关系。

(二)能力训练点

1.会解答所列方程形如ax bx=c的应用题。

2.会正确找出应用题的等量关系。

3.会进行检验。

(三)德育渗透点

1.培养学生认真学习的好习惯。

2.渗透不同事物之间既有联系又有区别的观点。

(四)美育渗透点

通过题目中的等量关系,使学生感受到人民的卓越智慧,体会到源于生活。

二、学法指导

1.引导学生分析题意,找出等量关系。

2.指导学生试算,利用已有经验进行体验。

三、教学重点

用方程解答“和倍”“差倍”应用题的方法。

四、教学难点

分析应用题等量关系,设末知数。

教学过程设计

(一)复习准备

1.列方程并求出方程的解。

(1)x的5倍与x的3倍的和是40;

(2)某数的4倍比它的6倍少24。

2.根据下面的条件,找出数量间的相等关系。

(1)大米与面粉重量的和是1000千克;(大米的重量+面粉的重量=重量和。)

(2)每支钢笔比每支圆珠笔贵3.8元;(每支钢笔的价钱-每支圆珠笔的价钱=贵的价钱。)

(3)已看的页数比剩下的页数少76页。(剩下的页数-已看的页数=少的页数。)

3.用含有字母的式子表示。

(1)学校科技组有女生x人,男生人数是女生的.3倍,男生有()人,男生女生一共有()人,男生比女生多()人;

(2)果园里苹果树的棵数是梨树的2倍,梨树有x棵,苹果树有()棵,苹果树和梨树一共有()棵,梨树比苹果树少()棵。

4.解答:果园里有桃树45棵,杏树的棵数是桃树的3倍。两种树一共有多少棵?

(1)学生审题画图,独立解答。

(2)学生解答后讲解:

解法1:

列式:45+45×3=45+135=180(棵)

解法2:

列式:45×(3+1)=45×4=180(棵)

答:两种树一共有180棵。

(二)学习新课

1.改变上题的条件和问题,使之成为例6。

果园里桃树和杏树一共有180棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?

(1)学生审题,将复习题的图改为例6。

(2)思考:

①这道题求什么?与以前学习的应用题有什么不同?(有两个未知数。)

②怎样设未知数呢?

如果设桃树有x棵,那么杏树就有3x棵;

比较哪种设法比较简便?为什么?

易解。

将线段图中的问号改为x或3x。

(3)根据哪个条件找数量间的相等关系?

根据桃树和杏树一共有180棵,找等量关系。

(4)列方程,解方程,

解:设桃树有x棵。或:

(5)检验,答题。

教师:检验时,可以把得数代入题目,看是否符合已知条件。

学生进行检验。

①看桃树和杏树一共的棵数是否是180棵,

45+135=180(棵)

②看杏树棵数是否是桃树的3倍,

135÷45=3

答:桃树有45棵,杏树有135棵。

2.试做:

果园里杏树比桃树多90棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?

(1)思考:

此题与例6相比,哪些地方相同?哪些地方不同?数量关系是怎样的?(倍数关系相同,不同点是把两种树的和改成了两种树的差。)

数量关系为:

(2)试做:

检验:

①135-45=90;

②135÷45=3。

答:桃树有45棵,杏树有135棵。

3.小结:

思考讨论:

(1)我们今天学习的应用题有什么特点?(今天学习的应用题,都是已知两种数量的倍数关系以及它们的和或差,求这两种数量各是多少。)

(2)这样的应用题,我们是怎样解答的?(一般根据倍数关系,设一倍数为x,另一个数用含有字母的式子表示;再根据这两种量的和或差,找出数量之间的相等关系,就可列出方程,并解方程,求出得数;最后还要把得数代入题目中去,看是否符合已知条件。)

用比例解应用题复习(人教版六年级教案设计)

六年级解比例测试题

六年级《解比例》教学设计

《解比例》说课稿

《按比例分配解决问题》六年级数学说课稿

解比例教学反思

解比例教学反思

解比例教学设计

《解比例》教学反思

分数乘法应用题(人教版六年级教案设计)

《如何解比例分配应用题六年级教案设计(推荐14篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档