欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

稍复杂的分数乘、除法应用题的比较(人教版六年级教案设计)

时间:2023-04-17 09:02:32 其他范文 收藏本文 下载本文

下面小编给大家整理的稍复杂的分数乘、除法应用题的比较(人教版六年级教案设计),本文共12篇,欢迎阅读!

稍复杂的分数乘、除法应用题的比较(人教版六年级教案设计)

篇1:稍复杂的分数乘、除法应用题的比较(人教版六年级教案设计)

教学目标

1.通过观察、分析、改编、解答、比较,使学生进一步弄清较复杂的分数乘、除法应用题数量关系和解题思路的联系和区别,掌握解题方法。

2.培养、提高学生分析推理、解答应用题的能力。

教学重点和难点

明确比一个数多(少)几分之几的分数乘除法应用题的联系和区别,掌握解题方法。

教具准备

投影仪、投影片。

教学过程

(一)复习

1.根据关系句填空。

(  )是单位“1”,苹果树除了有和梨树同样多的数量外,还多(  ),苹果树是梨树的(  )。

(  )是单位“1”,椅子价钱是桌子价钱的(  )。

椅子价钱○(  )=(  )

2.仿照上面例子分析关系句。

(二)导入新课

我们复习了分数乘、除法应用题的数量关系。通过上题发现,有很多题的叙述形式很相似,但解题方法却大不相同。为什么不相同呢?今天我们就来研究稍复杂的分数乘除法的应用题,对比、区别它们之间的异同点。(板书课题)

(三)讲授新课

1.出示例1。

(1)默读例题。

(2)同桌互说分析思路。理解足球是单位“1”,篮球除了有和足球

篮球的个数,用乘法计算。

(3)学生在练习本上画图列式。(组长检查)一名学生板书:

(4)反馈、订正、说出不同的列式。

(5)问:两种方法在解题思路上有什么相同点?有什么不同点?

(共同点是两种方法中都有一步是求20的几分之几是多少。不同点是:方法一是先求篮球是足球的几倍,再求足球的几倍,也就是篮球的

加上足球个数就是篮球的个数。)

2.改编上题,第一个条件不变,只变换单位“1”,即为例2。(改的文字用红粉笔)

(1)学生默读例题思考,为什么足球和篮球变换位置?

(2)同桌互说分析思路。

(3)画图、列式:(在本上做,一生板书)

方法一:解  设篮球有x个。

(4)三种解法在解题思路上有什么不同?

等于20个为等量关系列方程;方法二则是先求出足球相当于篮球的几倍,

(5)例1和例2的不同点是什么?

位“1”,用除法计算。)

3.根据图形编题,出示例3。

(1)学生默读。

(2)根据思考题讨论。

①你们所编的题谁是单位“1”?为什么以它为单位“1”?

②列式。

③问例1例3有什么相同点和不同点?

(相同点:例1、例3的单位“1”都是已知的,都是求单位“1”

(1)根据思考题小组讨论。

观察算式,你认为谁是单位“1”,为什么?

(2)学生画图、列式。(方程、算术两种方法。组长检查、辅导,一生板演。)

(3)反馈、订正。

方法一:解  设篮球有x个

(4)观察例3、例4与例2、例4的异同点。(小组讨论)

集体订正:例3和例4的单位“1”不同。例3的单位“1”是足

数是多少,根据乘法意义用乘法计算;例4的单位“1”是篮球的个数,

法意义就要用方程列式,也可根据逆运算用算术法列式。例2例4的相同点:都是把篮球看作单位“1”,篮球个数都是所求的,因此根据乘法意义,找等量关系,列方程,或根据逆运算用除法列式。不同点:例2

于足球的倍数。

(5)学生自己观察黑板的四个例题,再次观察异同点。(看题、看图、看列式。)

(6)质疑。

四、课堂总结

(略)

五、巩固练习

1.第94页中“做一做”的第1,2题。

2.第95页第1题。

课堂教学设计说明

这节课的内容是稍复杂的分数乘除法应用题的比较练习课,目的是明确数量之间的内在联系和区别,明确相比的量相当于单位“1”的几分之几或几倍,所以在教案设计上突出了分数乘除法例题的对比。在让学生独立完成例1的基础上,改变单位“1”出示例2,通过一改一编,突出了两题的区别。例3的出示是根据图形而编出来的,比直接给出例题更容易激发学生的兴趣。对思考题的讨论加深了学生对如何找单位

区别。例4的出示是根据算式编的题,使学生进一步明确了分数应用题的结构及解题思路。

篇2:稍复杂的分数除法应用题(人教版六年级教案设计)

教学目标

1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题。

2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

教学重点和难点

确定单位“1”,理清题中的数量关系。利用题中的等量关系用方程解答。

教学过程

(一)复习准备

1.找出单位“1”。

2.出示第88页的复习题。

(1)画图分析并列式解答。

(2)说说你是怎样思考和解答的?

(3)学生分析教师板演线段图。

3.导入:

今天我们继续学习分数应用题。

(二)学习新课

现在老师把这道题改动一下。

1.出示例6。

千克?

2.分析解答。

(1)读题,找出已知条件和问题。

(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的

不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

(4)谁来分析这个条件?

成8份,吃了的占其中的5份。)

学生分析的同时教师板演线段图:

(5)上道题是已知单位“1”的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

生在黑板上画出:

(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

(10)试着在练习本上列方程解答。

(11)谁能说说你是怎样解答的?

生口述:

解  设买来大米x千克。

答:买来大米40千克。

题中的等量关系式是什么?

(买来的重量×还剩几分之几=还剩的重量。)

3.小结。

通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)

解答方法相同吗?为什么?

(解答方法不同。单位“1”已知,可根据数量关系用算术方法解答;单位“1”未知,可用x代替,运用数量关系式列方程解答。)

4.出示例7。

烧煤多少吨?

(1)读题,找出已知条件和所求问题。

(3)画图分析解答。

①从这个条件可以看出题中是几个数量相比?(两个数量相比。)

追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)

我们应把哪个数量看作单位“1”?为什么?(把原计划烧煤量看作单位“1”。因为和它相比,以它为标准,所以把它看作单位“1”。)

②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)

下一步画什么?(实际烧煤吨数。)

指名回答:把计划烧煤量看作单位“1”,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的

这两条线段谁为已知?谁为未知?

在提问回答的过程中教师板演线段图:

③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

(计划烧煤吨数-节约吨数=实际烧煤吨数。)

计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)

④试做在练习本上。

⑤反馈:说说你的解答方法及依据。

解  设四月份原计划烧煤x吨。

答:四月份原计划烧煤135吨。

(1)学生独立画图分析并列式解答。

(2)反馈提问:

②你用什么方法解答的?依据的等量关系式是什么?

(三)课堂总结

今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

(数量间的等量关系相同,解答方法不同。)

(四)巩固反馈

(1)课本第91页的第2题。

(2)根据列式补充条件:

[  ]

(五)布置作业

课本第91页第1,3题。

课堂教学设计说明

本节课的内容是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。

在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

篇3:分数乘、除法应用题比较(人教版六年级教案设计)

教学目标

1.通过对比,掌握三类题的相同点和不同点。

2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力,为学习较复杂应用题打下基础。

教学重点和难点

掌握三类题的相同点和不同点,巩固解题方法,培养学生分析问题、解决问题的能力。

教学过程

(一)复习准备

教师谈话:前一阶段我们学习了三种类型的分数应用题。解决这三类题的关键是什么?

(抓住含有分率的句子,找准单位“1”。)

1.出示投影,找出单位“1”。

2.(板书)选择条件回答问题,下列算式各求的是什么?

15÷30。(求男生是女生的几分之几,女为单位“1”)

3.提问:求一个数是另一个数的几分之几用什么方法?求一个数的几分之几是多少用什么方法?已知一个数的几分之几是多少,求这个数,用什么方法?

导入:为了更进一步了解每一类的特点,巩固解题方法,请同学们和老师一起来做下面一组练习。

(二)讲授新课

例3  先分析数量关系,再解答。

(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

提问:鹅的只数是鸭的几分之几,应该把谁看做单位“1”?

根据学生的回答,老师画图。

提问:求鹅是鸭的几分之几用什么方法?为什么?

(用除法。因为求一个数的几倍用除法,根据分数和除法的关系,求一个数是另一个数的几分之几也用除法。)

提问:怎么求?谁做除数?

(鸭为单位“1”,鸭的只数做除数。)

老师将第(1)题进行改编。

谁是单位“1”?(鸭的只数为单位“1”。)

这句话是什么意思?(把鸭的只数看作单位“1”,把它平均分成3份,鹅的只数占其中的一份。)老师根据学生的回答画图。

什么?(因为单位“1”的数量是已知的,根据乘法意义,求一个数的几

答:有鹅4只。

师:你能把第二题改编成一道“已知一个数的几分之几是多少,求这个数”的题吗?(学生讨论,根据学生讨论结果出示第3题。)

提问:(边提问边根据学生回答画图。)

这道题已知什么?求什么?(指导学生画图)

这道题可以用什么方法解答?

(板书)①方程法:

解  设鸭为x只。

②算术法:

答:池塘里有12只鸭。

找出三道题的相同点和不同点。

1.观察三道题的已知条件和未知条件,有什么相同点和不同点?

相同点:都有3个数量,鸭的只数,鹅的只数,鹅是鸭的几分之几。

不同点:已知和未知条件不同。

2.在解题思路上有什么相同点?有什么不同点?

不同点:根据已知、未知的变化确定用什么方法解答。第(1)题,求分率用除法;第(2)题知道单位“1”的量,求单位“1”的几分之几用乘法;第(3)题知道分率和分率的对应量,求单位“1”的量用除法或方程。

练一练

选择条件列出算式。

每一道题谁为单位“1”?是已知还是未知?解这三类题有什么规律?

(三)巩固练习

(投影)

1.看图编题并列式解答。

2.根据分数三类应用题,补充问题,并列式解答。

(2)一条路长15千米,修了5千米,________。

3.选择正确的答案。

(2)一条水渠长120米,修了90米,修了的占全长的几分之几?

(四)课堂总结

这节课我们进行了三类题的对比练习。求一个数是另一个数的几分之几是多少,用什么方法。求一个数的几分之几是多少,用什么方法?已知一个数的几分之几是多少,求这个数,用什么方法?解决这三类题的关键是什么?(找准单位“1”,确定题的类型,从而选择正确的方法。)

(五)布置作业

(略)

课堂教学设计说明

本教案把分数的三类应用题放在了一起进行教学,这样,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。充分发挥了教师优化知识结构,紧扣教材,沟通事物间内在联系的能力。巩固练习形式多样,无论是选择条件列式还是补充问题列式答题以及看图编题,目的都是培养学生对三类题的辨析能力,促进学生对知识的理解和掌握,使学生的思维得到进一步发展。

通过本节课的教学以及课下的练习,为学生学习较复杂的分数应用题,打下了坚实的基础。

篇4:稍复杂的分数乘法应用题(人教版六年级教案设计)

教学目标

1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位“1”。

2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

3.培养学生分析、解决问题的能力,以及知识迁移的能力。

4.培养学生良好的审题习惯。

教学重点和难点

1.会分析数量关系,掌握解题思路,正确解答。

2.找准单位“1”;根据问题需要的条件,把间接条件转化为直接条件。

教学过程

导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

(一)复习铺垫

1.说图意填空。(投影)

问:谁是单位“1”?

2.说图意回答问题。(投影)

问:①谁和谁比,谁是单位“1”?

3.准备题:

(做在练习本上,画图列式计算,一个学生到黑板板演。)

教师订正讲评。

提问:①谁是单位“1”?

③要求用去多少吨就是求什么?

少。)

④根据什么用乘法计算?

(根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

师:如果把问改成“还剩多少吨”应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上“稍复杂的”。)

(二)学习新课

1.学习例4。

(1)读题找出条件和问题,并问:问题变了,现在“?”应画在哪?(在线段图中把“?”号移动。)

(2)分析数量关系。(同桌互相说。)

提问:单位“1”变了吗?单位“1”是谁?

请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

学生汇报结果,让学生说解题思路,老师一边把图补充完整。

=2500-1500

=1000(吨)

答:还剩1000吨。

生:把原有煤的总数看作单位“1”,先求出用去多少吨,就可以求出还剩多少吨。

师追问:求用去多少吨你是怎么想的?

答:还剩1000吨。

生:把原有煤的总数看作单位“1”,欲求剩下多少吨,就要先求

(3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

相同点:两种解法都是经过两步计算。

不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

(4)练习“做一做”(1):

昆虫标本有多少件?

(做完让学生说解题思路、投影订正。)

2.学习例5。

六月份捕鱼多少吨?

(1)读题找出条件、问题。

(2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

问:①谁和谁比,谁是单位“1”?

(3)列式解答。

师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

学生汇报结果。(老师板书列式)

答:六月份捕鱼3000吨。

师追问:你是怎么想的?

生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

师再追问:怎样求六月份比五月份多捕的吨数?

捕的吨数。

答:六月份捕鱼3000吨。

师追问:怎么想的?

生:把五月份的吨数看作单位“1”,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

师问:这两种解法有什么联系和区别?

(联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)

(4)练习“做一做”(2)。

答。

(三)巩固练习

1.补充问题并列式解答。(复合投影片)

________?

2.选择正确答案的序号填在(  )里。

包?列式是

[  ]

[  ]

A.乙队修了多少米?

B.乙队比甲队多修多少米?

C.甲队比乙队多修多少米?

D.乙队比甲队少修多少米?

(3)根据条件和问题列出算式。

已知一袋大米重40千克。

(四)课堂总结

今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

课堂教学设计说明

(1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

(2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

(3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

篇5:分数乘、除法应用题对比(人教版六年级教案设计)

教学目标

1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.

2.掌握分数乘、除法应用题的分析、解答方法.

教学重点

训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.

教学难点

准确判断单位“1”,正确地解答分数应用题.

教学步骤

一、铺垫孕伏

(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

(二)判断单位“1”.

1.鹅的只数是鸭的  .

2.甲的  是乙.

3.乙是甲的  .

4.男生人数的  相当于女生.

5.小齿轮的齿数占大齿轮的  .

(三)列式计算.

1.4是12的几分之几?

2.12的  是多少?

3.一个数的  是4,求这个数.

二、探究新知

(一)教学例3第(1)题

池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

1.读题并找出已知条件和问题

2.提问:应把谁看作单位“1”?是根据题中哪句话判断的?

3.画图.

4.列式解答

答:鹅的只数是鸭的  .

(二)教学例3第(2)、(3)题.

池塘里有12只鸭,鹅的只数是鸭的  .池塘里有多少只鹅?

池塘里有4只鹅,正好是鸭的只数的  ,池塘里有多少只鸭?

1.画图理解题意

2.列式解答

3.集体订正

(三)小结

这三道题有什么相同点和不同点?解题关键是什么?

1.结构上

相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

不同点:已知和未知不一样.

2.解题思路上

相同点:都要首先弄清谁作标准,把谁看作单位“1”;

不同点:根据已知、未知的变化,确定不同的解答方法.

解题关键是:正确分析题中的数量关系,明确谁作单位“1”.

教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解

答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位“1”.这样才能提高解答分数应用题的能力.

三、全课小结

这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位“1”,从而确定解答方法.

四、巩固练习

(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的  .商店运来蓝毛衣多少包?

(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的  .商店运来红毛衣多少包?

五、课后作业

(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的  ,校园里栽了松树多少棵?

(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

(三)农场有小牛40头,是大牛头数的  .农场有大牛多少头?

六、板书设计

分数乘、除法应用题对比

1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

4÷12=

答:鹅的只数是鸭的  .

2.池塘里有12只鸭,鹅的只数是鸭的  .池塘里有多少只鹅?

12×  =4(只)

答:池塘里有4只鹅.

3.池塘里有4只鹅,正好是鸭的只数的  .池塘里有多少只鸭?

4÷  =12(只)

答:池塘里有12只鸭.

篇6:《稍复杂的分数乘除法应用题》的评课稿

《稍复杂的分数乘除法应用题》的评课稿

一﹑扎实抓好应用题基础训练的教学,提高学生解答应用题的能力。

应用题基础训练是学习应用题的基础,只有认真扎实抓好应用题的基础训练的教学,才能培养学生良好的解答应用题的能力。王老师的这节课就非常注重这方面的教学,从复习题的“求一个数的几分之几的数是多少”的训练,再到例2让学生动手画线段图,说数量关系式,列式解答,再到巩固练习时第一题找标准题,比较量,并说出求比较题的数量关系式,第二题的看图列式题,都是应用题的基础训练,教师整一节课都在围绕着应用题的基础训练进行。从这节课的教学效果可以看到,只有像王老师那样,扎实抓好应用题基础训练的教学,才能提高学生解答应用题的能力。

二、强化学生对应用题说的能力的训练,促其内化,收到良好的效果。

大家都知道:“数学是思维的体操”。发展思维是应用题教学中一个极为重要的内容,而思维又与语言密切相关。因此培养学生有条有理,有根有据地表述解题思路,是发展思维的`一个重要方面,这也是应用题教学中最重要的一环。数学教学大纲指出,应用题教学应着重让学生分析数量关系,探求解题思路,掌握解题方法。王老师的这节应用题的教学就非常重视训练学生说的能力,因为学生会1说了,就自然会解题了。王老师在例题学习中把关键句“噪音降低”让学生理81解为“现在是原来的(1-)”减轻了例题的难度。在例题的教学中,教者更注8意发挥学生的主动性,让学生根据讲座题分组讨论,同位互说,个人发表意见等

多种形式训练学生说解题思路,使学生充分内化为自己的思想,达到以说促学的良好效果。从这节课学生说解题思路说得非常好,我们也可以看出王老师平时的课堂教学非常注重学生口头表达能力的培养。如果王老师能把数量关系用文字的形式写出来就最好了。

篇7:分数除法应用题(人教版六年级教案设计)

教学目标

1.使学生进一步熟悉应用题的数量关系,能够掌握用算术、方程法解答两步计算的分数小数应用题。

2.提高学生分析和解答应用题的能力。

3.渗透对应思想。

教学重点

掌握数量关系,明确解题思路。

教学难点

会分析数量间的等量关系。

教学准备

投影片。

教学过程

(一)复习

1.看句子列算式。

2.复习数量关系。

(1)行程问题中的三量关系式是什么?

(2)相遇问题与行程问题三量关系有什么区别?是什么?

投影出示:速度和×相遇时间=合走路程

合走路程÷速度和=相遇时间

合走路程÷相遇时间=速度和

(3)它们同类量之间有什么关系?

合走路程=甲走的路程+乙走路程

速度和=甲的速度+乙的速度

(二)导入新课

这些数量关系以前学过,解决了一些实际问题,今天我们就来应用这些数量关系解决分数、小数中的一些实际问题。(板书课题)

(三)讲授新课

例1  两地相距13千米,甲乙二人从两地同时出发,相向而行,经

1.读题,说出已知、未知条件分别是什么?

2.分析:

(1)这是什么类型的题?和我们以前学过的相遇问题有什么区别?

(相遇问题,相遇时间给的是分数。)

(相遇时间,甲乙二人都行了这么长时间。)

在日常生活中,遇到的数不可能都是整数,那就要用分数、小数来表示。这样的问题你们会解决吗?

(3)请同学们自己选择方法做这道题。

(4)投影反馈各种不同做法,讲算理。

说每步的算理。

解③  设乙每小时行x千米。

为什么这样列方程,根据是什么?

(甲走的路程+乙走的路程=总路程)

解④  设(略)

列方程根据是:速度和×相遇时间=距离。

(5)对比用方程解答和用算术方法解答从解题思路上有什么不同?

(算术法是根据已知量,运用关系式,求出未知量;方程法是根据关系式确定等量关系,让未知数x参加运算。)

(6)小结:解答应用题时,首先明确数量之间的关系,灵活运用,选择多角度思考,用不同方法解答。

(1)读题分析:

这道题是一道什么样的应用题?

分数应用题的解题步骤是什么?

(一、认真审题;二、分析重点句;三、确定单位“1”;四、准确画图;五、列式计算。)

(2)根据解题步骤同桌讨论后,说出解题思路。(重点句是“两周正好

共修的总和。)

(3)同学们自己画图,列式。(一生板演)

解①设这段公路长x米。

等号左边和等号右边各表示什么?

为什么这样列式?

以先求两周共修的,然后再求这段公路全长多少千米。)

(4)两种解法的思路有什么不同?

(方程法设全长单位“1”为x,根据分数乘法的意义来列等量关系

出单位“1”。)

(5)例2与以前学的简单分数应用题的区别是什么?

(简单分数应用题是直接给出相对应的量率;而今天学的是运用对应思想,间接地求出相对应的量率。)

以上两个例题的学习使我们明白,在整数应用题时所学的数量关系,在小数、分数中照样可以应用,思路相同。

(三)巩固练习

1.课本第77页的“做一做”,任选一种方法列式计算,投影两种解法,区别比较。

方程法  算术法

解  设运来桔子x吨。

(用方程法解,思路清晰;用算术方法解逆向思维,尤其是加上0.5,不易理解。)

2.课本第78页的“做一做”,任选一种方法列式计算,投影订正。

3.选择正确答案。(举号选择)

(设钢笔价钱为x元)

第二月比第一月多生产30条。前两个月共生产毛巾被多少条?

(四)布置作业

第80页1~4题。

课堂教学设计说明

这节课是分数、小数应用题的第一课时,关键要把整数之间的数量关系迁移到分数、小数范围内,目的是迁移、巩固、提高。所以在设计这节课的教案时,改变过去以老师讲解为主的状况,让学生互相讨论,说解题思路,大胆放手让学生试做,然后根据学生所做的情况,说算理,说列方程的依据,明确列方程的等量关系。由于分析、思考的角度不同,所以确定的等量关系式也不同,列的方程式也就不同,这样就从多角度复习了数量之间的关系,发散了学生的思维。

分数应用题是这册书的重点。例2是在以前学过简单的分数应用题的基础上出现的,引导学生通过充分说算理,正确地画出图形,列出方程式和算术式,进一步加深了学生对求一个数的几分之几意义的理解。同时,向学生渗透对应思想,由简单的一一对应,向间接地求出相对应的量和率过渡,明确数量之间关系,为今后解决较复杂的分数应用题做好铺垫。

教案设计注意发挥学生主体作用,让学生参与教学,不是老师牵着学生鼻子走,而是为学生主动学习创设发展思维的环境。

篇8:列方程解稍复杂的分数应用题(人教版六年级教案设计)

教学目标

1.理解稍复杂的已知一个数的几分之几是多少,求这个数的应用题的数量关系.

2.会列方程解答这类应用题.

3.培养学生分析推理能力.

教学重点

分析应用题的数量关系.

教学难点

找应用题的等量关系.

教学过程

一、复习旧知.

小红买来一袋大米重40千克,吃了  ,还剩多少千克?

1.画图理解题意

2.指名叙述解答过程.

3.列式解答40-40×    40×(1-  )

教师小结:解答分数应用题,关键是找准单位“1”,如果单位“1”是已知的,求它的几分之几是多少,就可以根据一个数乘分数的意义直接用乘法计算.

二、探究新知.

(一)变式引出例6

例6.小红买来一袋大米,吃了  ,还剩15千克买来大米多少千克?

1.读题

2.画线段图

3.分析数量关系,列方程.

4.教师提问:题中表示等量关系的三个量是什么?可以怎样列方程?

(1)解:设买来大米  千克.

买来大米的重量-吃了的重量=剩下的重量

(2)买来大米的重量×剩下几分之几=剩下的重量

5.学生自己解方程并检验.

答:这袋大米重40千克.

(二)归纳总结.

例6中的单位“1”是未知的,而已知剩下的量和吃了的分率,要求的恰好是单位“1”的重量,所以不能直接用乘法直接乘,可以列方程解答.或是找准和已知量相对应的分率用除法解答.

三、巩固练习

(一)找出下面各题的等量关系和对应关系.

1.某修路除要修一条路,已经修了全长的  ,还剩240米没修,这条路全长是多少米?

等量关系:

一条路的长度-已经修的米数=没修的米数

一条路的长度×没修的分率=没修的米数

对应关系:

剩的米数÷剩下的分率=全长的米数

2.一根电线杆,埋在地下的部分是全长的  ,露地面的部分是5米.这根电线杆长多少米?

3.选择正确的列式.

一个畜牧场卖出肉牛头数的  ,还剩300头,这个畜牧场共有肉牛多少头?正确列式是(      )

解:设共有肉牛  头.

(1)  (2)

(3)   (4)

四、质疑小结

列方程解应用题的关键是什么?怎样准确迅速地找出题中等量关系?

五、板书设计

列方程解分数应用题

例6.小红买来一袋大米,吃了  ,还剩15千克买来大米多少千克?

解:设一袋大米重  千克.

一袋大米重量-吃去的重量=还剩的重量

答:一袋大米重40千克.

篇9:分数乘、除法应用题的对比(人教版六年级教案设计)

教学目标

1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

2.能正确熟练地解答稍复杂的分数应用题.

3.培养学生分析问题和解决问题的能力.

教学重点

明确分数乘、除法应用题的联系和区别.

教学难点

明确分数乘、除法应用题的联系和区别.

教学过程

一、启发谈话,激发兴趣.

在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

二、学习新知

(一)出示例8的4个小题.

1.学校有20个足球,篮球比足球多  ,篮球有多少个?

2.学校有20个足球,足球比篮球多  ,篮球有多少个?

3.学校有20个足球,篮球比足球少  ,篮球有多少个?

4.学校有20个足球,足球比篮球少  ,篮球有多少个?

(二)学生试做.

1.第一题

解法(一)

解法(二)

2.第二题

解:设篮球有  个.

解法(一)

解法(二)

解法(三)

3.第三题

解法(一)

解法(二)

4.第四题

解:设篮球  个.

解法(一)

解法(二)

解法(三)

(三)比较区别

1.比较1、3题.

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把足球看作单位“1”,单位“1”的量是已知的,求篮球有多少个?

就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多  ,而第(3)题是篮球比足球少  ,计算进一个要加上多的数,一个要减去少的个数.

2.比较2、4题

教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把篮球看作单位“1”,而且单位“1”的量者是未知的,因此要设单位“1”的量为  ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

三、巩固练习.

(一)请你根据算式补充不同的条件.

学校有苹果树30棵,________________,桃树有多少棵,

1.         2.

3.       4.

5.     6.

(二)分析下面的数量关系,并列出算式或方程.

1.校园里有柳树60棵,杨树比柳树多  ,杨树有多少棵?

2.校园里有柳树60棵,杨树比柳树少  ,杨树有多少棵?

3.校园里的杨树比柳树多  ,杨树有25棵,柳树有多少棵?

4.校园里的柳树比杨树少  ,杨树有25棵,柳树有多少棵?

四、归纳总结.

今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.

五、板书设计

篇10:《分数乘除法应用题对比》教案设计

教学目标

1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.

2.掌握分数乘、除法应用题的分析、解答方法.

教学重点

训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.

教学难点

准确判断单位“1”,正确地解答分数应用题.

教学步骤

一、铺垫孕伏

(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

(二)判断单位“1”.

1.鹅的只数是鸭的 .

2.甲的 是乙.

3.乙是甲的 .

4.男生人数的 相当于女生.

5.小齿轮的齿数占大齿轮的 .

(三)列式计算.

1.4是12的几分之几?

2.12的 是多少?

3.一个数的 是4,求这个数.

二、探究新知

(一)教学例3第(1)题

池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

1.读题并找出已知条件和问题

2.提问:应把谁看作单位“1”?是根据题中哪句话判断的?

3.画图.

4.列式解答

答:鹅的只数是鸭的 .

(二)教学例3第(2)、(3)题.

池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

1.画图理解题意

2.列式解答

3.集体订正

(三)小结

这三道题有什么相同点和不同点?解题关键是什么?

1.结构上

相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

不同点:已知和未知不一样.

2.解题思路上

相同点:都要首先弄清谁作标准,把谁看作单位“1”;

不同点:根据已知、未知的变化,确定不同的解答方法.

解题关键是:正确分析题中的.数量关系,明确谁作单位“1”.

教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解

答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位“1”.这样才能提高解答分数应用题的能力.

三、全课小结

这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位“1”,从而确定解答方法.

四、巩固练习

(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?

(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?

五、课后作业

(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?

六、板书设计

篇11:《分数乘除法应用题对比》教案设计

1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

4÷12=

答:鹅的只数是鸭的 .

2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

12× =4(只)

答:池塘里有4只鹅.

3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

4÷ =12(只)

答:池塘里有12只鸭.

篇12:分数除法应用题2(人教版六年级教案设计)

教学目标

1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位“1”,找出等量关系.

教学难点

能正确的分析数量关系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位“1”

1.铅笔的支数是钢笔的  倍. 2.杨树的棵数是柳树的  .

3.白兔只数的  是黑兔. 4.红花朵数的  相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占  .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的  ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量关系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的  ,谁是单位“1”?

(2)如果要求全村耕地面积的  是多少,应该怎样列式?(全村耕地面积×  ).

(3)全村耕地面积的  就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是  公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把  代入原方程,左边  ,右边是45,左边=右边,所以  是原方程的解.)

(公顷)

(根据棉田面积和  是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

(二)练习

果园里有桃树560棵,占果树总数的  .果园里一共有果树多少棵?

1.找出已知条件和问题

2.画图并分析数量关系

3.列式解答

解1:设一共有果树  棵.

答:一共有果树640棵.

解1:  (棵)

(三)教学例2

例2.一条裤子75元,是一件上衣价格的  .一件上衣多少钱?

1.教师提问

(1)题中的已知条件和问题有什么?

(2)有几个量相比较,应把哪个数量作为单位“1”?

2.引导学生说出线段图应怎样画?上衣价格的

3.分析:上衣价格的  就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价×  =裤子的单价)

4.让学生独立用列方程的方法解答,并加强个别辅导.

解:设一件上衣  元.

答:一件上衣  元.

5.怎样直接用算术方法求出上衣的单价?

(元)

6.比较一下算术解法和方程解法的相同之处与不同之处.

相同点:都要根据数量间相等的关系式来列式.

不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

三、巩固练习

(一)一个修路队修一条路,第一天修了全长

人教分数乘分数说课稿

分数除法应用题说课稿

分数乘除法应用题复习的几种方法

分数乘法应用题(人教版六年级教案设计)

分数连除应用题(人教版六年级教案设计)

分数除法应用题教学反思

分数乘除法应用题教学反思-数学计划总结

《分数乘整数》教案设计

人教版乘除法应用题教学设计

《分数除法简单应用题》教学反思

《稍复杂的分数乘、除法应用题的比较(人教版六年级教案设计)(精选12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档